bevy_render/render_phase/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
//! The modular rendering abstraction responsible for queuing, preparing, sorting and drawing
//! entities as part of separate render phases.
//!
//! In Bevy each view (camera, or shadow-casting light, etc.) has one or multiple render phases
//! (e.g. opaque, transparent, shadow, etc).
//! They are used to queue entities for rendering.
//! Multiple phases might be required due to different sorting/batching behaviors
//! (e.g. opaque: front to back, transparent: back to front) or because one phase depends on
//! the rendered texture of the previous phase (e.g. for screen-space reflections).
//!
//! To draw an entity, a corresponding [`PhaseItem`] has to be added to one or multiple of these
//! render phases for each view that it is visible in.
//! This must be done in the [`RenderSet::Queue`].
//! After that the render phase sorts them in the [`RenderSet::PhaseSort`].
//! Finally the items are rendered using a single [`TrackedRenderPass`], during
//! the [`RenderSet::Render`].
//!
//! Therefore each phase item is assigned a [`Draw`] function.
//! These set up the state of the [`TrackedRenderPass`] (i.e. select the
//! [`RenderPipeline`](crate::render_resource::RenderPipeline), configure the
//! [`BindGroup`](crate::render_resource::BindGroup)s, etc.) and then issue a draw call,
//! for the corresponding item.
//!
//! The [`Draw`] function trait can either be implemented directly or such a function can be
//! created by composing multiple [`RenderCommand`]s.
mod draw;
mod draw_state;
mod rangefinder;
use bevy_app::{App, Plugin};
use bevy_derive::{Deref, DerefMut};
use bevy_utils::{default, hashbrown::hash_map::Entry, HashMap};
pub use draw::*;
pub use draw_state::*;
use encase::{internal::WriteInto, ShaderSize};
use nonmax::NonMaxU32;
pub use rangefinder::*;
use crate::sync_world::MainEntity;
use crate::{
batching::{
self,
gpu_preprocessing::{self, BatchedInstanceBuffers},
no_gpu_preprocessing::{self, BatchedInstanceBuffer},
GetFullBatchData,
},
render_resource::{CachedRenderPipelineId, GpuArrayBufferIndex, PipelineCache},
Render, RenderApp, RenderSet,
};
use bevy_ecs::{
entity::EntityHashMap,
prelude::*,
system::{lifetimeless::SRes, SystemParamItem},
};
use core::{
fmt::{self, Debug, Formatter},
hash::Hash,
iter,
marker::PhantomData,
ops::Range,
slice::SliceIndex,
};
use smallvec::SmallVec;
/// Stores the rendering instructions for a single phase that uses bins in all
/// views.
///
/// They're cleared out every frame, but storing them in a resource like this
/// allows us to reuse allocations.
#[derive(Resource, Deref, DerefMut)]
pub struct ViewBinnedRenderPhases<BPI>(pub EntityHashMap<BinnedRenderPhase<BPI>>)
where
BPI: BinnedPhaseItem;
/// A collection of all rendering instructions, that will be executed by the GPU, for a
/// single render phase for a single view.
///
/// Each view (camera, or shadow-casting light, etc.) can have one or multiple render phases.
/// They are used to queue entities for rendering.
/// Multiple phases might be required due to different sorting/batching behaviors
/// (e.g. opaque: front to back, transparent: back to front) or because one phase depends on
/// the rendered texture of the previous phase (e.g. for screen-space reflections).
/// All [`PhaseItem`]s are then rendered using a single [`TrackedRenderPass`].
/// The render pass might be reused for multiple phases to reduce GPU overhead.
///
/// This flavor of render phase is used for phases in which the ordering is less
/// critical: for example, `Opaque3d`. It's generally faster than the
/// alternative [`SortedRenderPhase`].
pub struct BinnedRenderPhase<BPI>
where
BPI: BinnedPhaseItem,
{
/// A list of `BinKey`s for batchable items.
///
/// These are accumulated in `queue_material_meshes` and then sorted in
/// `batch_and_prepare_binned_render_phase`.
pub batchable_mesh_keys: Vec<BPI::BinKey>,
/// The batchable bins themselves.
///
/// Each bin corresponds to a single batch set. For unbatchable entities,
/// prefer `unbatchable_values` instead.
pub batchable_mesh_values: HashMap<BPI::BinKey, Vec<(Entity, MainEntity)>>,
/// A list of `BinKey`s for unbatchable items.
///
/// These are accumulated in `queue_material_meshes` and then sorted in
/// `batch_and_prepare_binned_render_phase`.
pub unbatchable_mesh_keys: Vec<BPI::BinKey>,
/// The unbatchable bins.
///
/// Each entity here is rendered in a separate drawcall.
pub unbatchable_mesh_values: HashMap<BPI::BinKey, UnbatchableBinnedEntities>,
/// Items in the bin that aren't meshes at all.
///
/// Bevy itself doesn't place anything in this list, but plugins or your app
/// can in order to execute custom drawing commands. Draw functions for each
/// entity are simply called in order at rendering time.
///
/// See the `custom_phase_item` example for an example of how to use this.
pub non_mesh_items: Vec<(BPI::BinKey, (Entity, MainEntity))>,
/// Information on each batch set.
///
/// A *batch set* is a set of entities that will be batched together unless
/// we're on a platform that doesn't support storage buffers (e.g. WebGL 2)
/// and differing dynamic uniform indices force us to break batches. On
/// platforms that support storage buffers, a batch set always consists of
/// at most one batch.
///
/// The unbatchable entities immediately follow the batches in the storage
/// buffers.
pub(crate) batch_sets: Vec<SmallVec<[BinnedRenderPhaseBatch; 1]>>,
}
/// Information about a single batch of entities rendered using binned phase
/// items.
#[derive(Debug)]
pub struct BinnedRenderPhaseBatch {
/// An entity that's *representative* of this batch.
///
/// Bevy uses this to fetch the mesh. It can be any entity in the batch.
pub representative_entity: (Entity, MainEntity),
/// The range of instance indices in this batch.
pub instance_range: Range<u32>,
/// The dynamic offset of the batch.
///
/// Note that dynamic offsets are only used on platforms that don't support
/// storage buffers.
pub extra_index: PhaseItemExtraIndex,
}
/// Information about the unbatchable entities in a bin.
pub struct UnbatchableBinnedEntities {
/// The entities.
pub entities: Vec<(Entity, MainEntity)>,
/// The GPU array buffer indices of each unbatchable binned entity.
pub(crate) buffer_indices: UnbatchableBinnedEntityIndexSet,
}
/// Stores instance indices and dynamic offsets for unbatchable entities in a
/// binned render phase.
///
/// This is conceptually `Vec<UnbatchableBinnedEntityDynamicOffset>`, but it
/// avoids the overhead of storing dynamic offsets on platforms that support
/// them. In other words, this allows a fast path that avoids allocation on
/// platforms that aren't WebGL 2.
#[derive(Default)]
pub(crate) enum UnbatchableBinnedEntityIndexSet {
/// There are no unbatchable entities in this bin (yet).
#[default]
NoEntities,
/// The instances for all unbatchable entities in this bin are contiguous,
/// and there are no dynamic uniforms.
///
/// This is the typical case on platforms other than WebGL 2. We special
/// case this to avoid allocation on those platforms.
Sparse {
/// The range of indices.
instance_range: Range<u32>,
/// The index of the first indirect instance parameters.
///
/// The other indices immediately follow these.
first_indirect_parameters_index: Option<NonMaxU32>,
},
/// Dynamic uniforms are present for unbatchable entities in this bin.
///
/// We fall back to this on WebGL 2.
Dense(Vec<UnbatchableBinnedEntityIndices>),
}
/// The instance index and dynamic offset (if present) for an unbatchable entity.
///
/// This is only useful on platforms that don't support storage buffers.
#[derive(Clone, Copy)]
pub(crate) struct UnbatchableBinnedEntityIndices {
/// The instance index.
pub(crate) instance_index: u32,
/// The [`PhaseItemExtraIndex`], if present.
pub(crate) extra_index: PhaseItemExtraIndex,
}
/// Identifies the list within [`BinnedRenderPhase`] that a phase item is to be
/// placed in.
#[derive(Clone, Copy, PartialEq, Debug)]
pub enum BinnedRenderPhaseType {
/// The item is a mesh that's eligible for indirect rendering and can be
/// batched with other meshes of the same type.
BatchableMesh,
/// The item is a mesh that's eligible for indirect rendering, but can't be
/// batched with other meshes of the same type.
///
/// At the moment, this is used for skinned meshes.
UnbatchableMesh,
/// The item isn't a mesh at all.
///
/// Bevy will simply invoke the drawing commands for such items one after
/// another, with no further processing.
///
/// The engine itself doesn't enqueue any items of this type, but it's
/// available for use in your application and/or plugins.
NonMesh,
}
impl<T> From<GpuArrayBufferIndex<T>> for UnbatchableBinnedEntityIndices
where
T: Clone + ShaderSize + WriteInto,
{
fn from(value: GpuArrayBufferIndex<T>) -> Self {
UnbatchableBinnedEntityIndices {
instance_index: value.index,
extra_index: PhaseItemExtraIndex::maybe_dynamic_offset(value.dynamic_offset),
}
}
}
impl<BPI> Default for ViewBinnedRenderPhases<BPI>
where
BPI: BinnedPhaseItem,
{
fn default() -> Self {
Self(default())
}
}
impl<BPI> ViewBinnedRenderPhases<BPI>
where
BPI: BinnedPhaseItem,
{
pub fn insert_or_clear(&mut self, entity: Entity) {
match self.entry(entity) {
Entry::Occupied(mut entry) => entry.get_mut().clear(),
Entry::Vacant(entry) => {
entry.insert(default());
}
}
}
}
impl<BPI> BinnedRenderPhase<BPI>
where
BPI: BinnedPhaseItem,
{
/// Bins a new entity.
///
/// The `phase_type` parameter specifies whether the entity is a
/// preprocessable mesh and whether it can be binned with meshes of the same
/// type.
pub fn add(
&mut self,
key: BPI::BinKey,
entity: (Entity, MainEntity),
phase_type: BinnedRenderPhaseType,
) {
match phase_type {
BinnedRenderPhaseType::BatchableMesh => {
match self.batchable_mesh_values.entry(key.clone()) {
Entry::Occupied(mut entry) => entry.get_mut().push(entity),
Entry::Vacant(entry) => {
self.batchable_mesh_keys.push(key);
entry.insert(vec![entity]);
}
}
}
BinnedRenderPhaseType::UnbatchableMesh => {
match self.unbatchable_mesh_values.entry(key.clone()) {
Entry::Occupied(mut entry) => entry.get_mut().entities.push(entity),
Entry::Vacant(entry) => {
self.unbatchable_mesh_keys.push(key);
entry.insert(UnbatchableBinnedEntities {
entities: vec![entity],
buffer_indices: default(),
});
}
}
}
BinnedRenderPhaseType::NonMesh => {
// We don't process these items further.
self.non_mesh_items.push((key, entity));
}
}
}
/// Encodes the GPU commands needed to render all entities in this phase.
pub fn render<'w>(
&self,
render_pass: &mut TrackedRenderPass<'w>,
world: &'w World,
view: Entity,
) -> Result<(), DrawError> {
{
let draw_functions = world.resource::<DrawFunctions<BPI>>();
let mut draw_functions = draw_functions.write();
draw_functions.prepare(world);
// Make sure to drop the reader-writer lock here to avoid recursive
// locks.
}
self.render_batchable_meshes(render_pass, world, view)?;
self.render_unbatchable_meshes(render_pass, world, view)?;
self.render_non_meshes(render_pass, world, view)?;
Ok(())
}
/// Renders all batchable meshes queued in this phase.
fn render_batchable_meshes<'w>(
&self,
render_pass: &mut TrackedRenderPass<'w>,
world: &'w World,
view: Entity,
) -> Result<(), DrawError> {
let draw_functions = world.resource::<DrawFunctions<BPI>>();
let mut draw_functions = draw_functions.write();
debug_assert_eq!(self.batchable_mesh_keys.len(), self.batch_sets.len());
for (key, batch_set) in self.batchable_mesh_keys.iter().zip(self.batch_sets.iter()) {
for batch in batch_set {
let binned_phase_item = BPI::new(
key.clone(),
batch.representative_entity,
batch.instance_range.clone(),
batch.extra_index,
);
// Fetch the draw function.
let Some(draw_function) = draw_functions.get_mut(binned_phase_item.draw_function())
else {
continue;
};
draw_function.draw(world, render_pass, view, &binned_phase_item)?;
}
}
Ok(())
}
/// Renders all unbatchable meshes queued in this phase.
fn render_unbatchable_meshes<'w>(
&self,
render_pass: &mut TrackedRenderPass<'w>,
world: &'w World,
view: Entity,
) -> Result<(), DrawError> {
let draw_functions = world.resource::<DrawFunctions<BPI>>();
let mut draw_functions = draw_functions.write();
for key in &self.unbatchable_mesh_keys {
let unbatchable_entities = &self.unbatchable_mesh_values[key];
for (entity_index, &entity) in unbatchable_entities.entities.iter().enumerate() {
let unbatchable_dynamic_offset = match &unbatchable_entities.buffer_indices {
UnbatchableBinnedEntityIndexSet::NoEntities => {
// Shouldn't happen…
continue;
}
UnbatchableBinnedEntityIndexSet::Sparse {
instance_range,
first_indirect_parameters_index,
} => UnbatchableBinnedEntityIndices {
instance_index: instance_range.start + entity_index as u32,
extra_index: match first_indirect_parameters_index {
None => PhaseItemExtraIndex::NONE,
Some(first_indirect_parameters_index) => {
PhaseItemExtraIndex::indirect_parameters_index(
u32::from(*first_indirect_parameters_index)
+ entity_index as u32,
)
}
},
},
UnbatchableBinnedEntityIndexSet::Dense(ref dynamic_offsets) => {
dynamic_offsets[entity_index]
}
};
let binned_phase_item = BPI::new(
key.clone(),
entity,
unbatchable_dynamic_offset.instance_index
..(unbatchable_dynamic_offset.instance_index + 1),
unbatchable_dynamic_offset.extra_index,
);
// Fetch the draw function.
let Some(draw_function) = draw_functions.get_mut(binned_phase_item.draw_function())
else {
continue;
};
draw_function.draw(world, render_pass, view, &binned_phase_item)?;
}
}
Ok(())
}
/// Renders all objects of type [`BinnedRenderPhaseType::NonMesh`].
///
/// These will have been added by plugins or the application.
fn render_non_meshes<'w>(
&self,
render_pass: &mut TrackedRenderPass<'w>,
world: &'w World,
view: Entity,
) -> Result<(), DrawError> {
let draw_functions = world.resource::<DrawFunctions<BPI>>();
let mut draw_functions = draw_functions.write();
for &(ref key, entity) in &self.non_mesh_items {
// Come up with a fake batch range and extra index. The draw
// function is expected to manage any sort of batching logic itself.
let binned_phase_item = BPI::new(key.clone(), entity, 0..1, PhaseItemExtraIndex(0));
let Some(draw_function) = draw_functions.get_mut(binned_phase_item.draw_function())
else {
continue;
};
draw_function.draw(world, render_pass, view, &binned_phase_item)?;
}
Ok(())
}
pub fn is_empty(&self) -> bool {
self.batchable_mesh_keys.is_empty()
&& self.unbatchable_mesh_keys.is_empty()
&& self.non_mesh_items.is_empty()
}
pub fn clear(&mut self) {
self.batchable_mesh_keys.clear();
self.batchable_mesh_values.clear();
self.unbatchable_mesh_keys.clear();
self.unbatchable_mesh_values.clear();
self.non_mesh_items.clear();
self.batch_sets.clear();
}
}
impl<BPI> Default for BinnedRenderPhase<BPI>
where
BPI: BinnedPhaseItem,
{
fn default() -> Self {
Self {
batchable_mesh_keys: vec![],
batchable_mesh_values: HashMap::default(),
unbatchable_mesh_keys: vec![],
unbatchable_mesh_values: HashMap::default(),
non_mesh_items: vec![],
batch_sets: vec![],
}
}
}
impl UnbatchableBinnedEntityIndexSet {
/// Returns the [`UnbatchableBinnedEntityIndices`] for the given entity.
fn indices_for_entity_index(
&self,
entity_index: u32,
) -> Option<UnbatchableBinnedEntityIndices> {
match self {
UnbatchableBinnedEntityIndexSet::NoEntities => None,
UnbatchableBinnedEntityIndexSet::Sparse { instance_range, .. }
if entity_index >= instance_range.len() as u32 =>
{
None
}
UnbatchableBinnedEntityIndexSet::Sparse {
instance_range,
first_indirect_parameters_index: None,
} => Some(UnbatchableBinnedEntityIndices {
instance_index: instance_range.start + entity_index,
extra_index: PhaseItemExtraIndex::NONE,
}),
UnbatchableBinnedEntityIndexSet::Sparse {
instance_range,
first_indirect_parameters_index: Some(first_indirect_parameters_index),
} => Some(UnbatchableBinnedEntityIndices {
instance_index: instance_range.start + entity_index,
extra_index: PhaseItemExtraIndex::indirect_parameters_index(
u32::from(*first_indirect_parameters_index) + entity_index,
),
}),
UnbatchableBinnedEntityIndexSet::Dense(ref indices) => {
indices.get(entity_index as usize).copied()
}
}
}
}
/// A convenient abstraction for adding all the systems necessary for a binned
/// render phase to the render app.
///
/// This is the version used when the pipeline supports GPU preprocessing: e.g.
/// 3D PBR meshes.
pub struct BinnedRenderPhasePlugin<BPI, GFBD>(PhantomData<(BPI, GFBD)>)
where
BPI: BinnedPhaseItem,
GFBD: GetFullBatchData;
impl<BPI, GFBD> Default for BinnedRenderPhasePlugin<BPI, GFBD>
where
BPI: BinnedPhaseItem,
GFBD: GetFullBatchData,
{
fn default() -> Self {
Self(PhantomData)
}
}
impl<BPI, GFBD> Plugin for BinnedRenderPhasePlugin<BPI, GFBD>
where
BPI: BinnedPhaseItem,
GFBD: GetFullBatchData + Sync + Send + 'static,
{
fn build(&self, app: &mut App) {
let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
return;
};
render_app
.init_resource::<ViewBinnedRenderPhases<BPI>>()
.add_systems(
Render,
(
batching::sort_binned_render_phase::<BPI>.in_set(RenderSet::PhaseSort),
(
no_gpu_preprocessing::batch_and_prepare_binned_render_phase::<BPI, GFBD>
.run_if(resource_exists::<BatchedInstanceBuffer<GFBD::BufferData>>),
gpu_preprocessing::batch_and_prepare_binned_render_phase::<BPI, GFBD>
.run_if(
resource_exists::<
BatchedInstanceBuffers<GFBD::BufferData, GFBD::BufferInputData>,
>,
),
)
.in_set(RenderSet::PrepareResources),
),
);
}
}
/// Stores the rendering instructions for a single phase that sorts items in all
/// views.
///
/// They're cleared out every frame, but storing them in a resource like this
/// allows us to reuse allocations.
#[derive(Resource, Deref, DerefMut)]
pub struct ViewSortedRenderPhases<SPI>(pub EntityHashMap<SortedRenderPhase<SPI>>)
where
SPI: SortedPhaseItem;
impl<SPI> Default for ViewSortedRenderPhases<SPI>
where
SPI: SortedPhaseItem,
{
fn default() -> Self {
Self(default())
}
}
impl<SPI> ViewSortedRenderPhases<SPI>
where
SPI: SortedPhaseItem,
{
pub fn insert_or_clear(&mut self, entity: Entity) {
match self.entry(entity) {
Entry::Occupied(mut entry) => entry.get_mut().clear(),
Entry::Vacant(entry) => {
entry.insert(default());
}
}
}
}
/// A convenient abstraction for adding all the systems necessary for a sorted
/// render phase to the render app.
///
/// This is the version used when the pipeline supports GPU preprocessing: e.g.
/// 3D PBR meshes.
pub struct SortedRenderPhasePlugin<SPI, GFBD>(PhantomData<(SPI, GFBD)>)
where
SPI: SortedPhaseItem,
GFBD: GetFullBatchData;
impl<SPI, GFBD> Default for SortedRenderPhasePlugin<SPI, GFBD>
where
SPI: SortedPhaseItem,
GFBD: GetFullBatchData,
{
fn default() -> Self {
Self(PhantomData)
}
}
impl<SPI, GFBD> Plugin for SortedRenderPhasePlugin<SPI, GFBD>
where
SPI: SortedPhaseItem + CachedRenderPipelinePhaseItem,
GFBD: GetFullBatchData + Sync + Send + 'static,
{
fn build(&self, app: &mut App) {
let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
return;
};
render_app
.init_resource::<ViewSortedRenderPhases<SPI>>()
.add_systems(
Render,
(
no_gpu_preprocessing::batch_and_prepare_sorted_render_phase::<SPI, GFBD>
.run_if(resource_exists::<BatchedInstanceBuffer<GFBD::BufferData>>),
gpu_preprocessing::batch_and_prepare_sorted_render_phase::<SPI, GFBD>.run_if(
resource_exists::<
BatchedInstanceBuffers<GFBD::BufferData, GFBD::BufferInputData>,
>,
),
)
.in_set(RenderSet::PrepareResources),
);
}
}
impl UnbatchableBinnedEntityIndexSet {
/// Adds a new entity to the list of unbatchable binned entities.
pub fn add(&mut self, indices: UnbatchableBinnedEntityIndices) {
match self {
UnbatchableBinnedEntityIndexSet::NoEntities => {
if indices.extra_index.is_dynamic_offset() {
// This is the first entity we've seen, and we don't have
// compute shaders. Initialize an array.
*self = UnbatchableBinnedEntityIndexSet::Dense(vec![indices]);
} else {
// This is the first entity we've seen, and we have compute
// shaders. Initialize the fast path.
*self = UnbatchableBinnedEntityIndexSet::Sparse {
instance_range: indices.instance_index..indices.instance_index + 1,
first_indirect_parameters_index: indices
.extra_index
.as_indirect_parameters_index()
.and_then(|index| NonMaxU32::try_from(index).ok()),
}
}
}
UnbatchableBinnedEntityIndexSet::Sparse {
ref mut instance_range,
first_indirect_parameters_index,
} if instance_range.end == indices.instance_index
&& ((first_indirect_parameters_index.is_none()
&& indices.extra_index == PhaseItemExtraIndex::NONE)
|| first_indirect_parameters_index.is_some_and(
|first_indirect_parameters_index| {
Some(
u32::from(first_indirect_parameters_index) + instance_range.end
- instance_range.start,
) == indices.extra_index.as_indirect_parameters_index()
},
)) =>
{
// This is the normal case on non-WebGL 2.
instance_range.end += 1;
}
UnbatchableBinnedEntityIndexSet::Sparse { instance_range, .. } => {
// We thought we were in non-WebGL 2 mode, but we got a dynamic
// offset or non-contiguous index anyway. This shouldn't happen,
// but let's go ahead and do the sensible thing anyhow: demote
// the compressed `NoDynamicOffsets` field to the full
// `DynamicOffsets` array.
let new_dynamic_offsets = (0..instance_range.len() as u32)
.flat_map(|entity_index| self.indices_for_entity_index(entity_index))
.chain(iter::once(indices))
.collect();
*self = UnbatchableBinnedEntityIndexSet::Dense(new_dynamic_offsets);
}
UnbatchableBinnedEntityIndexSet::Dense(ref mut dense_indices) => {
dense_indices.push(indices);
}
}
}
}
/// A collection of all items to be rendered that will be encoded to GPU
/// commands for a single render phase for a single view.
///
/// Each view (camera, or shadow-casting light, etc.) can have one or multiple render phases.
/// They are used to queue entities for rendering.
/// Multiple phases might be required due to different sorting/batching behaviors
/// (e.g. opaque: front to back, transparent: back to front) or because one phase depends on
/// the rendered texture of the previous phase (e.g. for screen-space reflections).
/// All [`PhaseItem`]s are then rendered using a single [`TrackedRenderPass`].
/// The render pass might be reused for multiple phases to reduce GPU overhead.
///
/// This flavor of render phase is used only for meshes that need to be sorted
/// back-to-front, such as transparent meshes. For items that don't need strict
/// sorting, [`BinnedRenderPhase`] is preferred, for performance.
pub struct SortedRenderPhase<I>
where
I: SortedPhaseItem,
{
/// The items within this [`SortedRenderPhase`].
pub items: Vec<I>,
}
impl<I> Default for SortedRenderPhase<I>
where
I: SortedPhaseItem,
{
fn default() -> Self {
Self { items: Vec::new() }
}
}
impl<I> SortedRenderPhase<I>
where
I: SortedPhaseItem,
{
/// Adds a [`PhaseItem`] to this render phase.
#[inline]
pub fn add(&mut self, item: I) {
self.items.push(item);
}
/// Removes all [`PhaseItem`]s from this render phase.
#[inline]
pub fn clear(&mut self) {
self.items.clear();
}
/// Sorts all of its [`PhaseItem`]s.
pub fn sort(&mut self) {
I::sort(&mut self.items);
}
/// An [`Iterator`] through the associated [`Entity`] for each [`PhaseItem`] in order.
#[inline]
pub fn iter_entities(&'_ self) -> impl Iterator<Item = Entity> + '_ {
self.items.iter().map(PhaseItem::entity)
}
/// Renders all of its [`PhaseItem`]s using their corresponding draw functions.
pub fn render<'w>(
&self,
render_pass: &mut TrackedRenderPass<'w>,
world: &'w World,
view: Entity,
) -> Result<(), DrawError> {
self.render_range(render_pass, world, view, ..)
}
/// Renders all [`PhaseItem`]s in the provided `range` (based on their index in `self.items`) using their corresponding draw functions.
pub fn render_range<'w>(
&self,
render_pass: &mut TrackedRenderPass<'w>,
world: &'w World,
view: Entity,
range: impl SliceIndex<[I], Output = [I]>,
) -> Result<(), DrawError> {
let items = self
.items
.get(range)
.expect("`Range` provided to `render_range()` is out of bounds");
let draw_functions = world.resource::<DrawFunctions<I>>();
let mut draw_functions = draw_functions.write();
draw_functions.prepare(world);
let mut index = 0;
while index < items.len() {
let item = &items[index];
let batch_range = item.batch_range();
if batch_range.is_empty() {
index += 1;
} else {
let draw_function = draw_functions.get_mut(item.draw_function()).unwrap();
draw_function.draw(world, render_pass, view, item)?;
index += batch_range.len();
}
}
Ok(())
}
}
/// An item (entity of the render world) which will be drawn to a texture or the screen,
/// as part of a render phase.
///
/// The data required for rendering an entity is extracted from the main world in the
/// [`ExtractSchedule`](crate::ExtractSchedule).
/// Then it has to be queued up for rendering during the [`RenderSet::Queue`],
/// by adding a corresponding phase item to a render phase.
/// Afterwards it will be possibly sorted and rendered automatically in the
/// [`RenderSet::PhaseSort`] and [`RenderSet::Render`], respectively.
///
/// `PhaseItem`s come in two flavors: [`BinnedPhaseItem`]s and
/// [`SortedPhaseItem`]s.
///
/// * Binned phase items have a `BinKey` which specifies what bin they're to be
/// placed in. All items in the same bin are eligible to be batched together.
/// The `BinKey`s are sorted, but the individual bin items aren't. Binned phase
/// items are good for opaque meshes, in which the order of rendering isn't
/// important. Generally, binned phase items are faster than sorted phase items.
///
/// * Sorted phase items, on the other hand, are placed into one large buffer
/// and then sorted all at once. This is needed for transparent meshes, which
/// have to be sorted back-to-front to render with the painter's algorithm.
/// These types of phase items are generally slower than binned phase items.
pub trait PhaseItem: Sized + Send + Sync + 'static {
/// Whether or not this `PhaseItem` should be subjected to automatic batching. (Default: `true`)
const AUTOMATIC_BATCHING: bool = true;
/// The corresponding entity that will be drawn.
///
/// This is used to fetch the render data of the entity, required by the draw function,
/// from the render world .
fn entity(&self) -> Entity;
/// The main world entity represented by this `PhaseItem`.
fn main_entity(&self) -> MainEntity;
/// Specifies the [`Draw`] function used to render the item.
fn draw_function(&self) -> DrawFunctionId;
/// The range of instances that the batch covers. After doing a batched draw, batch range
/// length phase items will be skipped. This design is to avoid having to restructure the
/// render phase unnecessarily.
fn batch_range(&self) -> &Range<u32>;
fn batch_range_mut(&mut self) -> &mut Range<u32>;
/// Returns the [`PhaseItemExtraIndex`].
///
/// If present, this is either a dynamic offset or an indirect parameters
/// index.
fn extra_index(&self) -> PhaseItemExtraIndex;
/// Returns a pair of mutable references to both the batch range and extra
/// index.
fn batch_range_and_extra_index_mut(&mut self) -> (&mut Range<u32>, &mut PhaseItemExtraIndex);
}
/// The "extra index" associated with some [`PhaseItem`]s, alongside the
/// indirect instance index.
///
/// Sometimes phase items require another index in addition to the range of
/// instances they already have. These can be:
///
/// * The *dynamic offset*: a `wgpu` dynamic offset into the uniform buffer of
/// instance data. This is used on platforms that don't support storage
/// buffers, to work around uniform buffer size limitations.
///
/// * The *indirect parameters index*: an index into the buffer that specifies
/// the indirect parameters for this [`PhaseItem`]'s drawcall. This is used when
/// indirect mode is on (as used for GPU culling).
///
/// Note that our indirect draw functionality requires storage buffers, so it's
/// impossible to have both a dynamic offset and an indirect parameters index.
/// This convenient fact allows us to pack both indices into a single `u32`.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct PhaseItemExtraIndex(pub u32);
impl Debug for PhaseItemExtraIndex {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
if self.is_dynamic_offset() {
write!(f, "DynamicOffset({})", self.offset())
} else if self.is_indirect_parameters_index() {
write!(f, "IndirectParametersIndex({})", self.offset())
} else {
write!(f, "None")
}
}
}
impl PhaseItemExtraIndex {
/// The flag that indicates that this index is an indirect parameter. If not
/// set, this is a dynamic offset.
pub const INDIRECT_PARAMETER_INDEX: u32 = 1 << 31;
/// To extract the index from a packed [`PhaseItemExtraIndex`], bitwise-and
/// the contents with this value.
pub const OFFSET_MASK: u32 = Self::INDIRECT_PARAMETER_INDEX - 1;
/// To extract the flag from a packed [`PhaseItemExtraIndex`], bitwise-and
/// the contents with this value.
pub const FLAGS_MASK: u32 = !Self::OFFSET_MASK;
/// The special value that indicates that no extra index is present.
pub const NONE: PhaseItemExtraIndex = PhaseItemExtraIndex(u32::MAX);
/// Returns either the indirect parameters index or the dynamic offset,
/// depending on which is in use.
#[inline]
fn offset(&self) -> u32 {
self.0 & Self::OFFSET_MASK
}
/// Determines whether this extra index is a dynamic offset.
#[inline]
fn is_dynamic_offset(&self) -> bool {
*self != Self::NONE && (self.0 & Self::INDIRECT_PARAMETER_INDEX) == 0
}
/// Determines whether this extra index is an indirect parameters index.
#[inline]
fn is_indirect_parameters_index(&self) -> bool {
*self != Self::NONE && (self.0 & Self::INDIRECT_PARAMETER_INDEX) != 0
}
/// Packs a indirect parameters index into this extra index.
#[inline]
pub fn indirect_parameters_index(indirect_parameter_index: u32) -> PhaseItemExtraIndex {
// Make sure we didn't overflow.
debug_assert_eq!(indirect_parameter_index & Self::FLAGS_MASK, 0);
PhaseItemExtraIndex(indirect_parameter_index | Self::INDIRECT_PARAMETER_INDEX)
}
/// Returns either an indirect parameters index or
/// [`PhaseItemExtraIndex::NONE`], as appropriate.
#[inline]
pub fn maybe_indirect_parameters_index(
maybe_indirect_parameters_index: Option<NonMaxU32>,
) -> PhaseItemExtraIndex {
match maybe_indirect_parameters_index {
Some(indirect_parameters_index) => {
Self::indirect_parameters_index(indirect_parameters_index.into())
}
None => PhaseItemExtraIndex::NONE,
}
}
/// Packs a dynamic offset into this extra index.
#[inline]
pub fn dynamic_offset(dynamic_offset: u32) -> PhaseItemExtraIndex {
// Make sure we didn't overflow.
debug_assert_eq!(dynamic_offset & Self::FLAGS_MASK, 0);
PhaseItemExtraIndex(dynamic_offset)
}
/// Returns either a dynamic offset or [`PhaseItemExtraIndex::NONE`], as
/// appropriate.
#[inline]
pub fn maybe_dynamic_offset(maybe_dynamic_offset: Option<NonMaxU32>) -> PhaseItemExtraIndex {
match maybe_dynamic_offset {
Some(dynamic_offset) => Self::dynamic_offset(dynamic_offset.into()),
None => PhaseItemExtraIndex::NONE,
}
}
/// If this extra index describes a dynamic offset, returns it; otherwise,
/// returns `None`.
#[inline]
pub fn as_dynamic_offset(&self) -> Option<NonMaxU32> {
if self.is_dynamic_offset() {
NonMaxU32::try_from(self.0 & Self::OFFSET_MASK).ok()
} else {
None
}
}
/// If this extra index describes an indirect parameters index, returns it;
/// otherwise, returns `None`.
#[inline]
pub fn as_indirect_parameters_index(&self) -> Option<u32> {
if self.is_indirect_parameters_index() {
Some(self.0 & Self::OFFSET_MASK)
} else {
None
}
}
}
/// Represents phase items that are placed into bins. The `BinKey` specifies
/// which bin they're to be placed in. Bin keys are sorted, and items within the
/// same bin are eligible to be batched together. The elements within the bins
/// aren't themselves sorted.
///
/// An example of a binned phase item is `Opaque3d`, for which the rendering
/// order isn't critical.
pub trait BinnedPhaseItem: PhaseItem {
/// The key used for binning [`PhaseItem`]s into bins. Order the members of
/// [`BinnedPhaseItem::BinKey`] by the order of binding for best
/// performance. For example, pipeline id, draw function id, mesh asset id,
/// lowest variable bind group id such as the material bind group id, and
/// its dynamic offsets if any, next bind group and offsets, etc. This
/// reduces the need for rebinding between bins and improves performance.
type BinKey: Clone + Send + Sync + Eq + Ord + Hash;
/// Creates a new binned phase item from the key and per-entity data.
///
/// Unlike [`SortedPhaseItem`]s, this is generally called "just in time"
/// before rendering. The resulting phase item isn't stored in any data
/// structures, resulting in significant memory savings.
fn new(
key: Self::BinKey,
representative_entity: (Entity, MainEntity),
batch_range: Range<u32>,
extra_index: PhaseItemExtraIndex,
) -> Self;
}
/// Represents phase items that must be sorted. The `SortKey` specifies the
/// order that these items are drawn in. These are placed into a single array,
/// and the array as a whole is then sorted.
///
/// An example of a sorted phase item is `Transparent3d`, which must be sorted
/// back to front in order to correctly render with the painter's algorithm.
pub trait SortedPhaseItem: PhaseItem {
/// The type used for ordering the items. The smallest values are drawn first.
/// This order can be calculated using the [`ViewRangefinder3d`],
/// based on the view-space `Z` value of the corresponding view matrix.
type SortKey: Ord;
/// Determines the order in which the items are drawn.
fn sort_key(&self) -> Self::SortKey;
/// Sorts a slice of phase items into render order. Generally if the same type
/// is batched this should use a stable sort like [`slice::sort_by_key`].
/// In almost all other cases, this should not be altered from the default,
/// which uses a unstable sort, as this provides the best balance of CPU and GPU
/// performance.
///
/// Implementers can optionally not sort the list at all. This is generally advisable if and
/// only if the renderer supports a depth prepass, which is by default not supported by
/// the rest of Bevy's first party rendering crates. Even then, this may have a negative
/// impact on GPU-side performance due to overdraw.
///
/// It's advised to always profile for performance changes when changing this implementation.
#[inline]
fn sort(items: &mut [Self]) {
items.sort_unstable_by_key(Self::sort_key);
}
}
/// A [`PhaseItem`] item, that automatically sets the appropriate render pipeline,
/// cached in the [`PipelineCache`].
///
/// You can use the [`SetItemPipeline`] render command to set the pipeline for this item.
pub trait CachedRenderPipelinePhaseItem: PhaseItem {
/// The id of the render pipeline, cached in the [`PipelineCache`], that will be used to draw
/// this phase item.
fn cached_pipeline(&self) -> CachedRenderPipelineId;
}
/// A [`RenderCommand`] that sets the pipeline for the [`CachedRenderPipelinePhaseItem`].
pub struct SetItemPipeline;
impl<P: CachedRenderPipelinePhaseItem> RenderCommand<P> for SetItemPipeline {
type Param = SRes<PipelineCache>;
type ViewQuery = ();
type ItemQuery = ();
#[inline]
fn render<'w>(
item: &P,
_view: (),
_entity: Option<()>,
pipeline_cache: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
if let Some(pipeline) = pipeline_cache
.into_inner()
.get_render_pipeline(item.cached_pipeline())
{
pass.set_render_pipeline(pipeline);
RenderCommandResult::Success
} else {
RenderCommandResult::Skip
}
}
}
/// This system sorts the [`PhaseItem`]s of all [`SortedRenderPhase`]s of this
/// type.
pub fn sort_phase_system<I>(mut render_phases: ResMut<ViewSortedRenderPhases<I>>)
where
I: SortedPhaseItem,
{
for phase in render_phases.values_mut() {
phase.sort();
}
}
impl BinnedRenderPhaseType {
/// Creates the appropriate [`BinnedRenderPhaseType`] for a mesh, given its
/// batchability.
pub fn mesh(batchable: bool) -> BinnedRenderPhaseType {
if batchable {
BinnedRenderPhaseType::BatchableMesh
} else {
BinnedRenderPhaseType::UnbatchableMesh
}
}
}