bevy_render/renderer/
render_device.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
use super::RenderQueue;
use crate::render_resource::{
    BindGroup, BindGroupLayout, Buffer, ComputePipeline, RawRenderPipelineDescriptor,
    RenderPipeline, Sampler, Texture,
};
use crate::WgpuWrapper;
use alloc::sync::Arc;
use bevy_ecs::system::Resource;
use wgpu::{
    util::DeviceExt, BindGroupDescriptor, BindGroupEntry, BindGroupLayoutDescriptor,
    BindGroupLayoutEntry, BufferAsyncError, BufferBindingType, MaintainResult,
};

/// This GPU device is responsible for the creation of most rendering and compute resources.
#[derive(Resource, Clone)]
pub struct RenderDevice {
    device: Arc<WgpuWrapper<wgpu::Device>>,
}

impl From<wgpu::Device> for RenderDevice {
    fn from(device: wgpu::Device) -> Self {
        Self::new(Arc::new(WgpuWrapper::new(device)))
    }
}

impl RenderDevice {
    pub fn new(device: Arc<WgpuWrapper<wgpu::Device>>) -> Self {
        Self { device }
    }

    /// List all [`Features`](wgpu::Features) that may be used with this device.
    ///
    /// Functions may panic if you use unsupported features.
    #[inline]
    pub fn features(&self) -> wgpu::Features {
        self.device.features()
    }

    /// List all [`Limits`](wgpu::Limits) that were requested of this device.
    ///
    /// If any of these limits are exceeded, functions may panic.
    #[inline]
    pub fn limits(&self) -> wgpu::Limits {
        self.device.limits()
    }

    /// Creates a [`ShaderModule`](wgpu::ShaderModule) from either SPIR-V or WGSL source code.
    #[inline]
    pub fn create_shader_module(&self, desc: wgpu::ShaderModuleDescriptor) -> wgpu::ShaderModule {
        #[cfg(feature = "spirv_shader_passthrough")]
        match &desc.source {
            wgpu::ShaderSource::SpirV(source)
                if self
                    .features()
                    .contains(wgpu::Features::SPIRV_SHADER_PASSTHROUGH) =>
            {
                // SAFETY:
                // This call passes binary data to the backend as-is and can potentially result in a driver crash or bogus behavior.
                // No attempt is made to ensure that data is valid SPIR-V.
                unsafe {
                    self.device
                        .create_shader_module_spirv(&wgpu::ShaderModuleDescriptorSpirV {
                            label: desc.label,
                            source: source.clone(),
                        })
                }
            }
            _ => self.device.create_shader_module(desc),
        }

        #[cfg(not(feature = "spirv_shader_passthrough"))]
        self.device.create_shader_module(desc)
    }

    /// Check for resource cleanups and mapping callbacks.
    ///
    /// Return `true` if the queue is empty, or `false` if there are more queue
    /// submissions still in flight. (Note that, unless access to the [`wgpu::Queue`] is
    /// coordinated somehow, this information could be out of date by the time
    /// the caller receives it. `Queue`s can be shared between threads, so
    /// other threads could submit new work at any time.)
    ///
    /// no-op on the web, device is automatically polled.
    #[inline]
    pub fn poll(&self, maintain: wgpu::Maintain) -> MaintainResult {
        self.device.poll(maintain)
    }

    /// Creates an empty [`CommandEncoder`](wgpu::CommandEncoder).
    #[inline]
    pub fn create_command_encoder(
        &self,
        desc: &wgpu::CommandEncoderDescriptor,
    ) -> wgpu::CommandEncoder {
        self.device.create_command_encoder(desc)
    }

    /// Creates an empty [`RenderBundleEncoder`](wgpu::RenderBundleEncoder).
    #[inline]
    pub fn create_render_bundle_encoder(
        &self,
        desc: &wgpu::RenderBundleEncoderDescriptor,
    ) -> wgpu::RenderBundleEncoder {
        self.device.create_render_bundle_encoder(desc)
    }

    /// Creates a new [`BindGroup`](wgpu::BindGroup).
    #[inline]
    pub fn create_bind_group<'a>(
        &self,
        label: impl Into<wgpu::Label<'a>>,
        layout: &'a BindGroupLayout,
        entries: &'a [BindGroupEntry<'a>],
    ) -> BindGroup {
        let wgpu_bind_group = self.device.create_bind_group(&BindGroupDescriptor {
            label: label.into(),
            layout,
            entries,
        });
        BindGroup::from(wgpu_bind_group)
    }

    /// Creates a [`BindGroupLayout`](wgpu::BindGroupLayout).
    #[inline]
    pub fn create_bind_group_layout<'a>(
        &self,
        label: impl Into<wgpu::Label<'a>>,
        entries: &'a [BindGroupLayoutEntry],
    ) -> BindGroupLayout {
        BindGroupLayout::from(
            self.device
                .create_bind_group_layout(&BindGroupLayoutDescriptor {
                    label: label.into(),
                    entries,
                }),
        )
    }

    /// Creates a [`PipelineLayout`](wgpu::PipelineLayout).
    #[inline]
    pub fn create_pipeline_layout(
        &self,
        desc: &wgpu::PipelineLayoutDescriptor,
    ) -> wgpu::PipelineLayout {
        self.device.create_pipeline_layout(desc)
    }

    /// Creates a [`RenderPipeline`].
    #[inline]
    pub fn create_render_pipeline(&self, desc: &RawRenderPipelineDescriptor) -> RenderPipeline {
        let wgpu_render_pipeline = self.device.create_render_pipeline(desc);
        RenderPipeline::from(wgpu_render_pipeline)
    }

    /// Creates a [`ComputePipeline`].
    #[inline]
    pub fn create_compute_pipeline(
        &self,
        desc: &wgpu::ComputePipelineDescriptor,
    ) -> ComputePipeline {
        let wgpu_compute_pipeline = self.device.create_compute_pipeline(desc);
        ComputePipeline::from(wgpu_compute_pipeline)
    }

    /// Creates a [`Buffer`].
    pub fn create_buffer(&self, desc: &wgpu::BufferDescriptor) -> Buffer {
        let wgpu_buffer = self.device.create_buffer(desc);
        Buffer::from(wgpu_buffer)
    }

    /// Creates a [`Buffer`] and initializes it with the specified data.
    pub fn create_buffer_with_data(&self, desc: &wgpu::util::BufferInitDescriptor) -> Buffer {
        let wgpu_buffer = self.device.create_buffer_init(desc);
        Buffer::from(wgpu_buffer)
    }

    /// Creates a new [`Texture`] and initializes it with the specified data.
    ///
    /// `desc` specifies the general format of the texture.
    /// `data` is the raw data.
    pub fn create_texture_with_data(
        &self,
        render_queue: &RenderQueue,
        desc: &wgpu::TextureDescriptor,
        order: wgpu::util::TextureDataOrder,
        data: &[u8],
    ) -> Texture {
        let wgpu_texture =
            self.device
                .create_texture_with_data(render_queue.as_ref(), desc, order, data);
        Texture::from(wgpu_texture)
    }

    /// Creates a new [`Texture`].
    ///
    /// `desc` specifies the general format of the texture.
    pub fn create_texture(&self, desc: &wgpu::TextureDescriptor) -> Texture {
        let wgpu_texture = self.device.create_texture(desc);
        Texture::from(wgpu_texture)
    }

    /// Creates a new [`Sampler`].
    ///
    /// `desc` specifies the behavior of the sampler.
    pub fn create_sampler(&self, desc: &wgpu::SamplerDescriptor) -> Sampler {
        let wgpu_sampler = self.device.create_sampler(desc);
        Sampler::from(wgpu_sampler)
    }

    /// Initializes [`Surface`](wgpu::Surface) for presentation.
    ///
    /// # Panics
    ///
    /// - A old [`SurfaceTexture`](wgpu::SurfaceTexture) is still alive referencing an old surface.
    /// - Texture format requested is unsupported on the surface.
    pub fn configure_surface(&self, surface: &wgpu::Surface, config: &wgpu::SurfaceConfiguration) {
        surface.configure(&self.device, config);
    }

    /// Returns the wgpu [`Device`](wgpu::Device).
    pub fn wgpu_device(&self) -> &wgpu::Device {
        &self.device
    }

    pub fn map_buffer(
        &self,
        buffer: &wgpu::BufferSlice,
        map_mode: wgpu::MapMode,
        callback: impl FnOnce(Result<(), BufferAsyncError>) + Send + 'static,
    ) {
        buffer.map_async(map_mode, callback);
    }

    pub fn align_copy_bytes_per_row(row_bytes: usize) -> usize {
        let align = wgpu::COPY_BYTES_PER_ROW_ALIGNMENT as usize;
        let padded_bytes_per_row_padding = (align - row_bytes % align) % align;
        row_bytes + padded_bytes_per_row_padding
    }

    pub fn get_supported_read_only_binding_type(
        &self,
        buffers_per_shader_stage: u32,
    ) -> BufferBindingType {
        if self.limits().max_storage_buffers_per_shader_stage >= buffers_per_shader_stage {
            BufferBindingType::Storage { read_only: true }
        } else {
            BufferBindingType::Uniform
        }
    }
}