bevy_render/view/mod.rs
1pub mod visibility;
2pub mod window;
3
4use bevy_camera::{
5 primitives::Frustum, CameraMainTextureUsages, ClearColor, ClearColorConfig, Exposure,
6 MainPassResolutionOverride, NormalizedRenderTarget,
7};
8use bevy_diagnostic::FrameCount;
9pub use visibility::*;
10pub use window::*;
11
12use crate::{
13 camera::{ExtractedCamera, MipBias, NormalizedRenderTargetExt as _, TemporalJitter},
14 experimental::occlusion_culling::OcclusionCulling,
15 extract_component::ExtractComponentPlugin,
16 render_asset::RenderAssets,
17 render_phase::ViewRangefinder3d,
18 render_resource::{DynamicUniformBuffer, ShaderType, Texture, TextureView},
19 renderer::{RenderDevice, RenderQueue},
20 sync_world::MainEntity,
21 texture::{
22 CachedTexture, ColorAttachment, DepthAttachment, GpuImage, ManualTextureViews,
23 OutputColorAttachment, TextureCache,
24 },
25 Render, RenderApp, RenderSystems,
26};
27use alloc::sync::Arc;
28use bevy_app::{App, Plugin};
29use bevy_color::LinearRgba;
30use bevy_derive::{Deref, DerefMut};
31use bevy_ecs::prelude::*;
32use bevy_image::{BevyDefault as _, ToExtents};
33use bevy_math::{mat3, vec2, vec3, Mat3, Mat4, UVec4, Vec2, Vec3, Vec4, Vec4Swizzles};
34use bevy_platform::collections::{hash_map::Entry, HashMap};
35use bevy_reflect::{std_traits::ReflectDefault, Reflect};
36use bevy_render_macros::ExtractComponent;
37use bevy_shader::load_shader_library;
38use bevy_transform::components::GlobalTransform;
39use core::{
40 ops::Range,
41 sync::atomic::{AtomicUsize, Ordering},
42};
43use wgpu::{
44 BufferUsages, RenderPassColorAttachment, RenderPassDepthStencilAttachment, StoreOp,
45 TextureDescriptor, TextureDimension, TextureFormat, TextureUsages,
46};
47
48/// The matrix that converts from the RGB to the LMS color space.
49///
50/// To derive this, first we convert from RGB to [CIE 1931 XYZ]:
51///
52/// ```text
53/// ⎡ X ⎤ ⎡ 0.490 0.310 0.200 ⎤ ⎡ R ⎤
54/// ⎢ Y ⎥ = ⎢ 0.177 0.812 0.011 ⎥ ⎢ G ⎥
55/// ⎣ Z ⎦ ⎣ 0.000 0.010 0.990 ⎦ ⎣ B ⎦
56/// ```
57///
58/// Then we convert to LMS according to the [CAM16 standard matrix]:
59///
60/// ```text
61/// ⎡ L ⎤ ⎡ 0.401 0.650 -0.051 ⎤ ⎡ X ⎤
62/// ⎢ M ⎥ = ⎢ -0.250 1.204 0.046 ⎥ ⎢ Y ⎥
63/// ⎣ S ⎦ ⎣ -0.002 0.049 0.953 ⎦ ⎣ Z ⎦
64/// ```
65///
66/// The resulting matrix is just the concatenation of these two matrices, to do
67/// the conversion in one step.
68///
69/// [CIE 1931 XYZ]: https://en.wikipedia.org/wiki/CIE_1931_color_space
70/// [CAM16 standard matrix]: https://en.wikipedia.org/wiki/LMS_color_space
71static RGB_TO_LMS: Mat3 = mat3(
72 vec3(0.311692, 0.0905138, 0.00764433),
73 vec3(0.652085, 0.901341, 0.0486554),
74 vec3(0.0362225, 0.00814478, 0.943700),
75);
76
77/// The inverse of the [`RGB_TO_LMS`] matrix, converting from the LMS color
78/// space back to RGB.
79static LMS_TO_RGB: Mat3 = mat3(
80 vec3(4.06305, -0.40791, -0.0118812),
81 vec3(-2.93241, 1.40437, -0.0486532),
82 vec3(-0.130646, 0.00353630, 1.0605344),
83);
84
85/// The [CIE 1931] *xy* chromaticity coordinates of the [D65 white point].
86///
87/// [CIE 1931]: https://en.wikipedia.org/wiki/CIE_1931_color_space
88/// [D65 white point]: https://en.wikipedia.org/wiki/Standard_illuminant#D65_values
89static D65_XY: Vec2 = vec2(0.31272, 0.32903);
90
91/// The [D65 white point] in [LMS color space].
92///
93/// [LMS color space]: https://en.wikipedia.org/wiki/LMS_color_space
94/// [D65 white point]: https://en.wikipedia.org/wiki/Standard_illuminant#D65_values
95static D65_LMS: Vec3 = vec3(0.975538, 1.01648, 1.08475);
96
97pub struct ViewPlugin;
98
99impl Plugin for ViewPlugin {
100 fn build(&self, app: &mut App) {
101 load_shader_library!(app, "view.wgsl");
102
103 app
104 // NOTE: windows.is_changed() handles cases where a window was resized
105 .add_plugins((
106 ExtractComponentPlugin::<Hdr>::default(),
107 ExtractComponentPlugin::<Msaa>::default(),
108 ExtractComponentPlugin::<OcclusionCulling>::default(),
109 RenderVisibilityRangePlugin,
110 ));
111
112 if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
113 render_app.add_systems(
114 Render,
115 (
116 // `TextureView`s need to be dropped before reconfiguring window surfaces.
117 clear_view_attachments
118 .in_set(RenderSystems::ManageViews)
119 .before(create_surfaces),
120 cleanup_view_targets_for_resize
121 .in_set(RenderSystems::ManageViews)
122 .before(create_surfaces),
123 prepare_view_attachments
124 .in_set(RenderSystems::ManageViews)
125 .before(prepare_view_targets)
126 .after(prepare_windows),
127 prepare_view_targets
128 .in_set(RenderSystems::ManageViews)
129 .after(prepare_windows)
130 .after(crate::render_asset::prepare_assets::<GpuImage>)
131 .ambiguous_with(crate::camera::sort_cameras), // doesn't use `sorted_camera_index_for_target`
132 prepare_view_uniforms.in_set(RenderSystems::PrepareResources),
133 ),
134 );
135 }
136 }
137
138 fn finish(&self, app: &mut App) {
139 if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
140 render_app
141 .init_resource::<ViewUniforms>()
142 .init_resource::<ViewTargetAttachments>();
143 }
144 }
145}
146
147/// Component for configuring the number of samples for [Multi-Sample Anti-Aliasing](https://en.wikipedia.org/wiki/Multisample_anti-aliasing)
148/// for a [`Camera`](bevy_camera::Camera).
149///
150/// Defaults to 4 samples. A higher number of samples results in smoother edges.
151///
152/// Some advanced rendering features may require that MSAA is disabled.
153///
154/// Note that the web currently only supports 1 or 4 samples.
155#[derive(
156 Component,
157 Default,
158 Clone,
159 Copy,
160 ExtractComponent,
161 Reflect,
162 PartialEq,
163 PartialOrd,
164 Eq,
165 Hash,
166 Debug,
167)]
168#[reflect(Component, Default, PartialEq, Hash, Debug)]
169pub enum Msaa {
170 Off = 1,
171 Sample2 = 2,
172 #[default]
173 Sample4 = 4,
174 Sample8 = 8,
175}
176
177impl Msaa {
178 #[inline]
179 pub fn samples(&self) -> u32 {
180 *self as u32
181 }
182
183 pub fn from_samples(samples: u32) -> Self {
184 match samples {
185 1 => Msaa::Off,
186 2 => Msaa::Sample2,
187 4 => Msaa::Sample4,
188 8 => Msaa::Sample8,
189 _ => panic!("Unsupported MSAA sample count: {samples}"),
190 }
191 }
192}
193
194/// If this component is added to a camera, the camera will use an intermediate "high dynamic range" render texture.
195/// This allows rendering with a wider range of lighting values. However, this does *not* affect
196/// whether the camera will render with hdr display output (which bevy does not support currently)
197/// and only affects the intermediate render texture.
198#[derive(
199 Component, Default, Copy, Clone, ExtractComponent, Reflect, PartialEq, Eq, Hash, Debug,
200)]
201#[reflect(Component, Default, PartialEq, Hash, Debug)]
202pub struct Hdr;
203
204/// An identifier for a view that is stable across frames.
205///
206/// We can't use [`Entity`] for this because render world entities aren't
207/// stable, and we can't use just [`MainEntity`] because some main world views
208/// extract to multiple render world views. For example, a directional light
209/// extracts to one render world view per cascade, and a point light extracts to
210/// one render world view per cubemap face. So we pair the main entity with an
211/// *auxiliary entity* and a *subview index*, which *together* uniquely identify
212/// a view in the render world in a way that's stable from frame to frame.
213#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
214pub struct RetainedViewEntity {
215 /// The main entity that this view corresponds to.
216 pub main_entity: MainEntity,
217
218 /// Another entity associated with the view entity.
219 ///
220 /// This is currently used for shadow cascades. If there are multiple
221 /// cameras, each camera needs to have its own set of shadow cascades. Thus
222 /// the light and subview index aren't themselves enough to uniquely
223 /// identify a shadow cascade: we need the camera that the cascade is
224 /// associated with as well. This entity stores that camera.
225 ///
226 /// If not present, this will be `MainEntity(Entity::PLACEHOLDER)`.
227 pub auxiliary_entity: MainEntity,
228
229 /// The index of the view corresponding to the entity.
230 ///
231 /// For example, for point lights that cast shadows, this is the index of
232 /// the cubemap face (0 through 5 inclusive). For directional lights, this
233 /// is the index of the cascade.
234 pub subview_index: u32,
235}
236
237impl RetainedViewEntity {
238 /// Creates a new [`RetainedViewEntity`] from the given main world entity,
239 /// auxiliary main world entity, and subview index.
240 ///
241 /// See [`RetainedViewEntity::subview_index`] for an explanation of what
242 /// `auxiliary_entity` and `subview_index` are.
243 pub fn new(
244 main_entity: MainEntity,
245 auxiliary_entity: Option<MainEntity>,
246 subview_index: u32,
247 ) -> Self {
248 Self {
249 main_entity,
250 auxiliary_entity: auxiliary_entity.unwrap_or(Entity::PLACEHOLDER.into()),
251 subview_index,
252 }
253 }
254}
255
256/// Describes a camera in the render world.
257///
258/// Each entity in the main world can potentially extract to multiple subviews,
259/// each of which has a [`RetainedViewEntity::subview_index`]. For instance, 3D
260/// cameras extract to both a 3D camera subview with index 0 and a special UI
261/// subview with index 1. Likewise, point lights with shadows extract to 6
262/// subviews, one for each side of the shadow cubemap.
263#[derive(Component)]
264pub struct ExtractedView {
265 /// The entity in the main world corresponding to this render world view.
266 pub retained_view_entity: RetainedViewEntity,
267 /// Typically a column-major right-handed projection matrix, one of either:
268 ///
269 /// Perspective (infinite reverse z)
270 /// ```text
271 /// f = 1 / tan(fov_y_radians / 2)
272 ///
273 /// ⎡ f / aspect 0 0 0 ⎤
274 /// ⎢ 0 f 0 0 ⎥
275 /// ⎢ 0 0 0 near ⎥
276 /// ⎣ 0 0 -1 0 ⎦
277 /// ```
278 ///
279 /// Orthographic
280 /// ```text
281 /// w = right - left
282 /// h = top - bottom
283 /// d = far - near
284 /// cw = -right - left
285 /// ch = -top - bottom
286 ///
287 /// ⎡ 2 / w 0 0 cw / w ⎤
288 /// ⎢ 0 2 / h 0 ch / h ⎥
289 /// ⎢ 0 0 1 / d far / d ⎥
290 /// ⎣ 0 0 0 1 ⎦
291 /// ```
292 ///
293 /// `clip_from_view[3][3] == 1.0` is the standard way to check if a projection is orthographic
294 ///
295 /// Glam matrices are column major, so for example getting the near plane of a perspective projection is `clip_from_view[3][2]`
296 ///
297 /// Custom projections are also possible however.
298 pub clip_from_view: Mat4,
299 pub world_from_view: GlobalTransform,
300 // The view-projection matrix. When provided it is used instead of deriving it from
301 // `projection` and `transform` fields, which can be helpful in cases where numerical
302 // stability matters and there is a more direct way to derive the view-projection matrix.
303 pub clip_from_world: Option<Mat4>,
304 pub hdr: bool,
305 // uvec4(origin.x, origin.y, width, height)
306 pub viewport: UVec4,
307 pub color_grading: ColorGrading,
308
309 /// Whether to switch culling mode so that materials that request backface
310 /// culling cull front faces, and vice versa.
311 ///
312 /// This is typically used for cameras that mirror the world that they
313 /// render across a plane, because doing that flips the winding of each
314 /// polygon.
315 ///
316 /// This setting doesn't affect materials that disable backface culling.
317 pub invert_culling: bool,
318}
319
320impl ExtractedView {
321 /// Creates a 3D rangefinder for a view
322 pub fn rangefinder3d(&self) -> ViewRangefinder3d {
323 ViewRangefinder3d::from_world_from_view(&self.world_from_view.affine())
324 }
325}
326
327/// Configures filmic color grading parameters to adjust the image appearance.
328///
329/// Color grading is applied just before tonemapping for a given
330/// [`Camera`](bevy_camera::Camera) entity, with the sole exception of the
331/// `post_saturation` value in [`ColorGradingGlobal`], which is applied after
332/// tonemapping.
333#[derive(Component, Reflect, Debug, Default, Clone)]
334#[reflect(Component, Default, Debug, Clone)]
335pub struct ColorGrading {
336 /// Filmic color grading values applied to the image as a whole (as opposed
337 /// to individual sections, like shadows and highlights).
338 pub global: ColorGradingGlobal,
339
340 /// Color grading values that are applied to the darker parts of the image.
341 ///
342 /// The cutoff points can be customized with the
343 /// [`ColorGradingGlobal::midtones_range`] field.
344 pub shadows: ColorGradingSection,
345
346 /// Color grading values that are applied to the parts of the image with
347 /// intermediate brightness.
348 ///
349 /// The cutoff points can be customized with the
350 /// [`ColorGradingGlobal::midtones_range`] field.
351 pub midtones: ColorGradingSection,
352
353 /// Color grading values that are applied to the lighter parts of the image.
354 ///
355 /// The cutoff points can be customized with the
356 /// [`ColorGradingGlobal::midtones_range`] field.
357 pub highlights: ColorGradingSection,
358}
359
360/// Filmic color grading values applied to the image as a whole (as opposed to
361/// individual sections, like shadows and highlights).
362#[derive(Clone, Debug, Reflect)]
363#[reflect(Default, Clone)]
364pub struct ColorGradingGlobal {
365 /// Exposure value (EV) offset, measured in stops.
366 pub exposure: f32,
367
368 /// An adjustment made to the [CIE 1931] chromaticity *x* value.
369 ///
370 /// Positive values make the colors redder. Negative values make the colors
371 /// bluer. This has no effect on luminance (brightness).
372 ///
373 /// [CIE 1931]: https://en.wikipedia.org/wiki/CIE_1931_color_space#CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space
374 pub temperature: f32,
375
376 /// An adjustment made to the [CIE 1931] chromaticity *y* value.
377 ///
378 /// Positive values make the colors more magenta. Negative values make the
379 /// colors greener. This has no effect on luminance (brightness).
380 ///
381 /// [CIE 1931]: https://en.wikipedia.org/wiki/CIE_1931_color_space#CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space
382 pub tint: f32,
383
384 /// An adjustment to the [hue], in radians.
385 ///
386 /// Adjusting this value changes the perceived colors in the image: red to
387 /// yellow to green to blue, etc. It has no effect on the saturation or
388 /// brightness of the colors.
389 ///
390 /// [hue]: https://en.wikipedia.org/wiki/HSL_and_HSV#Formal_derivation
391 pub hue: f32,
392
393 /// Saturation adjustment applied after tonemapping.
394 /// Values below 1.0 desaturate, with a value of 0.0 resulting in a grayscale image
395 /// with luminance defined by ITU-R BT.709
396 /// Values above 1.0 increase saturation.
397 pub post_saturation: f32,
398
399 /// The luminance (brightness) ranges that are considered part of the
400 /// "midtones" of the image.
401 ///
402 /// This affects which [`ColorGradingSection`]s apply to which colors. Note
403 /// that the sections smoothly blend into one another, to avoid abrupt
404 /// transitions.
405 ///
406 /// The default value is 0.2 to 0.7.
407 pub midtones_range: Range<f32>,
408}
409
410/// The [`ColorGrading`] structure, packed into the most efficient form for the
411/// GPU.
412#[derive(Clone, Copy, Debug, ShaderType)]
413pub struct ColorGradingUniform {
414 pub balance: Mat3,
415 pub saturation: Vec3,
416 pub contrast: Vec3,
417 pub gamma: Vec3,
418 pub gain: Vec3,
419 pub lift: Vec3,
420 pub midtone_range: Vec2,
421 pub exposure: f32,
422 pub hue: f32,
423 pub post_saturation: f32,
424}
425
426/// A section of color grading values that can be selectively applied to
427/// shadows, midtones, and highlights.
428#[derive(Reflect, Debug, Copy, Clone, PartialEq)]
429#[reflect(Clone, PartialEq)]
430pub struct ColorGradingSection {
431 /// Values below 1.0 desaturate, with a value of 0.0 resulting in a grayscale image
432 /// with luminance defined by ITU-R BT.709.
433 /// Values above 1.0 increase saturation.
434 pub saturation: f32,
435
436 /// Adjusts the range of colors.
437 ///
438 /// A value of 1.0 applies no changes. Values below 1.0 move the colors more
439 /// toward a neutral gray. Values above 1.0 spread the colors out away from
440 /// the neutral gray.
441 pub contrast: f32,
442
443 /// A nonlinear luminance adjustment, mainly affecting the high end of the
444 /// range.
445 ///
446 /// This is the *n* exponent in the standard [ASC CDL] formula for color
447 /// correction:
448 ///
449 /// ```text
450 /// out = (i × s + o)ⁿ
451 /// ```
452 ///
453 /// [ASC CDL]: https://en.wikipedia.org/wiki/ASC_CDL#Combined_Function
454 pub gamma: f32,
455
456 /// A linear luminance adjustment, mainly affecting the middle part of the
457 /// range.
458 ///
459 /// This is the *s* factor in the standard [ASC CDL] formula for color
460 /// correction:
461 ///
462 /// ```text
463 /// out = (i × s + o)ⁿ
464 /// ```
465 ///
466 /// [ASC CDL]: https://en.wikipedia.org/wiki/ASC_CDL#Combined_Function
467 pub gain: f32,
468
469 /// A fixed luminance adjustment, mainly affecting the lower part of the
470 /// range.
471 ///
472 /// This is the *o* term in the standard [ASC CDL] formula for color
473 /// correction:
474 ///
475 /// ```text
476 /// out = (i × s + o)ⁿ
477 /// ```
478 ///
479 /// [ASC CDL]: https://en.wikipedia.org/wiki/ASC_CDL#Combined_Function
480 pub lift: f32,
481}
482
483impl Default for ColorGradingGlobal {
484 fn default() -> Self {
485 Self {
486 exposure: 0.0,
487 temperature: 0.0,
488 tint: 0.0,
489 hue: 0.0,
490 post_saturation: 1.0,
491 midtones_range: 0.2..0.7,
492 }
493 }
494}
495
496impl Default for ColorGradingSection {
497 fn default() -> Self {
498 Self {
499 saturation: 1.0,
500 contrast: 1.0,
501 gamma: 1.0,
502 gain: 1.0,
503 lift: 0.0,
504 }
505 }
506}
507
508impl ColorGrading {
509 /// Creates a new [`ColorGrading`] instance in which shadows, midtones, and
510 /// highlights all have the same set of color grading values.
511 pub fn with_identical_sections(
512 global: ColorGradingGlobal,
513 section: ColorGradingSection,
514 ) -> ColorGrading {
515 ColorGrading {
516 global,
517 highlights: section,
518 midtones: section,
519 shadows: section,
520 }
521 }
522
523 /// Returns an iterator that visits the shadows, midtones, and highlights
524 /// sections, in that order.
525 pub fn all_sections(&self) -> impl Iterator<Item = &ColorGradingSection> {
526 [&self.shadows, &self.midtones, &self.highlights].into_iter()
527 }
528
529 /// Applies the given mutating function to the shadows, midtones, and
530 /// highlights sections, in that order.
531 ///
532 /// Returns an array composed of the results of such evaluation, in that
533 /// order.
534 pub fn all_sections_mut(&mut self) -> impl Iterator<Item = &mut ColorGradingSection> {
535 [&mut self.shadows, &mut self.midtones, &mut self.highlights].into_iter()
536 }
537}
538
539#[derive(Clone, ShaderType)]
540pub struct ViewUniform {
541 pub clip_from_world: Mat4,
542 pub unjittered_clip_from_world: Mat4,
543 pub world_from_clip: Mat4,
544 pub world_from_view: Mat4,
545 pub view_from_world: Mat4,
546 /// Typically a column-major right-handed projection matrix, one of either:
547 ///
548 /// Perspective (infinite reverse z)
549 /// ```text
550 /// f = 1 / tan(fov_y_radians / 2)
551 ///
552 /// ⎡ f / aspect 0 0 0 ⎤
553 /// ⎢ 0 f 0 0 ⎥
554 /// ⎢ 0 0 0 near ⎥
555 /// ⎣ 0 0 -1 0 ⎦
556 /// ```
557 ///
558 /// Orthographic
559 /// ```text
560 /// w = right - left
561 /// h = top - bottom
562 /// d = far - near
563 /// cw = -right - left
564 /// ch = -top - bottom
565 ///
566 /// ⎡ 2 / w 0 0 cw / w ⎤
567 /// ⎢ 0 2 / h 0 ch / h ⎥
568 /// ⎢ 0 0 1 / d far / d ⎥
569 /// ⎣ 0 0 0 1 ⎦
570 /// ```
571 ///
572 /// `clip_from_view[3][3] == 1.0` is the standard way to check if a projection is orthographic
573 ///
574 /// Glam matrices are column major, so for example getting the near plane of a perspective projection is `clip_from_view[3][2]`
575 ///
576 /// Custom projections are also possible however.
577 pub clip_from_view: Mat4,
578 pub view_from_clip: Mat4,
579 pub world_position: Vec3,
580 pub exposure: f32,
581 // viewport(x_origin, y_origin, width, height)
582 pub viewport: Vec4,
583 pub main_pass_viewport: Vec4,
584 /// 6 world-space half spaces (normal: vec3, distance: f32) ordered left, right, top, bottom, near, far.
585 /// The normal vectors point towards the interior of the frustum.
586 /// A half space contains `p` if `normal.dot(p) + distance > 0.`
587 pub frustum: [Vec4; 6],
588 pub color_grading: ColorGradingUniform,
589 pub mip_bias: f32,
590 pub frame_count: u32,
591}
592
593#[derive(Resource)]
594pub struct ViewUniforms {
595 pub uniforms: DynamicUniformBuffer<ViewUniform>,
596}
597
598impl FromWorld for ViewUniforms {
599 fn from_world(world: &mut World) -> Self {
600 let mut uniforms = DynamicUniformBuffer::default();
601 uniforms.set_label(Some("view_uniforms_buffer"));
602
603 let render_device = world.resource::<RenderDevice>();
604 if render_device.limits().max_storage_buffers_per_shader_stage > 0 {
605 uniforms.add_usages(BufferUsages::STORAGE);
606 }
607
608 Self { uniforms }
609 }
610}
611
612#[derive(Component)]
613pub struct ViewUniformOffset {
614 pub offset: u32,
615}
616
617#[derive(Component, Clone)]
618pub struct ViewTarget {
619 main_textures: MainTargetTextures,
620 main_texture_format: TextureFormat,
621 /// 0 represents `main_textures.a`, 1 represents `main_textures.b`
622 /// This is shared across view targets with the same render target
623 main_texture: Arc<AtomicUsize>,
624 out_texture: OutputColorAttachment,
625}
626
627/// Contains [`OutputColorAttachment`] used for each target present on any view in the current
628/// frame, after being prepared by [`prepare_view_attachments`]. Users that want to override
629/// the default output color attachment for a specific target can do so by adding a
630/// [`OutputColorAttachment`] to this resource before [`prepare_view_targets`] is called.
631#[derive(Resource, Default, Deref, DerefMut)]
632pub struct ViewTargetAttachments(HashMap<NormalizedRenderTarget, OutputColorAttachment>);
633
634pub struct PostProcessWrite<'a> {
635 pub source: &'a TextureView,
636 pub source_texture: &'a Texture,
637 pub destination: &'a TextureView,
638 pub destination_texture: &'a Texture,
639}
640
641impl From<ColorGrading> for ColorGradingUniform {
642 fn from(component: ColorGrading) -> Self {
643 // Compute the balance matrix that will be used to apply the white
644 // balance adjustment to an RGB color. Our general approach will be to
645 // convert both the color and the developer-supplied white point to the
646 // LMS color space, apply the conversion, and then convert back.
647 //
648 // First, we start with the CIE 1931 *xy* values of the standard D65
649 // illuminant:
650 // <https://en.wikipedia.org/wiki/Standard_illuminant#D65_values>
651 //
652 // We then adjust them based on the developer's requested white balance.
653 let white_point_xy = D65_XY + vec2(-component.global.temperature, component.global.tint);
654
655 // Convert the white point from CIE 1931 *xy* to LMS. First, we convert to XYZ:
656 //
657 // Y Y
658 // Y = 1 X = ─ x Z = ─ (1 - x - y)
659 // y y
660 //
661 // Then we convert from XYZ to LMS color space, using the CAM16 matrix
662 // from <https://en.wikipedia.org/wiki/LMS_color_space#Later_CIECAMs>:
663 //
664 // ⎡ L ⎤ ⎡ 0.401 0.650 -0.051 ⎤ ⎡ X ⎤
665 // ⎢ M ⎥ = ⎢ -0.250 1.204 0.046 ⎥ ⎢ Y ⎥
666 // ⎣ S ⎦ ⎣ -0.002 0.049 0.953 ⎦ ⎣ Z ⎦
667 //
668 // The following formula is just a simplification of the above.
669
670 let white_point_lms = vec3(0.701634, 1.15856, -0.904175)
671 + (vec3(-0.051461, 0.045854, 0.953127)
672 + vec3(0.452749, -0.296122, -0.955206) * white_point_xy.x)
673 / white_point_xy.y;
674
675 // Now that we're in LMS space, perform the white point scaling.
676 let white_point_adjustment = Mat3::from_diagonal(D65_LMS / white_point_lms);
677
678 // Finally, combine the RGB → LMS → corrected LMS → corrected RGB
679 // pipeline into a single 3×3 matrix.
680 let balance = LMS_TO_RGB * white_point_adjustment * RGB_TO_LMS;
681
682 Self {
683 balance,
684 saturation: vec3(
685 component.shadows.saturation,
686 component.midtones.saturation,
687 component.highlights.saturation,
688 ),
689 contrast: vec3(
690 component.shadows.contrast,
691 component.midtones.contrast,
692 component.highlights.contrast,
693 ),
694 gamma: vec3(
695 component.shadows.gamma,
696 component.midtones.gamma,
697 component.highlights.gamma,
698 ),
699 gain: vec3(
700 component.shadows.gain,
701 component.midtones.gain,
702 component.highlights.gain,
703 ),
704 lift: vec3(
705 component.shadows.lift,
706 component.midtones.lift,
707 component.highlights.lift,
708 ),
709 midtone_range: vec2(
710 component.global.midtones_range.start,
711 component.global.midtones_range.end,
712 ),
713 exposure: component.global.exposure,
714 hue: component.global.hue,
715 post_saturation: component.global.post_saturation,
716 }
717 }
718}
719
720/// Add this component to a camera to disable *indirect mode*.
721///
722/// Indirect mode, automatically enabled on supported hardware, allows Bevy to
723/// offload transform and cull operations to the GPU, reducing CPU overhead.
724/// Doing this, however, reduces the amount of control that your app has over
725/// instancing decisions. In certain circumstances, you may want to disable
726/// indirect drawing so that your app can manually instance meshes as it sees
727/// fit. See the `custom_shader_instancing` example.
728///
729/// The vast majority of applications will not need to use this component, as it
730/// generally reduces rendering performance.
731///
732/// Note: This component should only be added when initially spawning a camera. Adding
733/// or removing after spawn can result in unspecified behavior.
734#[derive(Component, Default)]
735pub struct NoIndirectDrawing;
736
737impl ViewTarget {
738 pub const TEXTURE_FORMAT_HDR: TextureFormat = TextureFormat::Rgba16Float;
739
740 /// Retrieve this target's main texture's color attachment.
741 pub fn get_color_attachment(&self) -> RenderPassColorAttachment<'_> {
742 if self.main_texture.load(Ordering::SeqCst) == 0 {
743 self.main_textures.a.get_attachment()
744 } else {
745 self.main_textures.b.get_attachment()
746 }
747 }
748
749 /// Retrieve this target's "unsampled" main texture's color attachment.
750 pub fn get_unsampled_color_attachment(&self) -> RenderPassColorAttachment<'_> {
751 if self.main_texture.load(Ordering::SeqCst) == 0 {
752 self.main_textures.a.get_unsampled_attachment()
753 } else {
754 self.main_textures.b.get_unsampled_attachment()
755 }
756 }
757
758 /// The "main" unsampled texture.
759 pub fn main_texture(&self) -> &Texture {
760 if self.main_texture.load(Ordering::SeqCst) == 0 {
761 &self.main_textures.a.texture.texture
762 } else {
763 &self.main_textures.b.texture.texture
764 }
765 }
766
767 /// The _other_ "main" unsampled texture.
768 /// In most cases you should use [`Self::main_texture`] instead and never this.
769 /// The textures will naturally be swapped when [`Self::post_process_write`] is called.
770 ///
771 /// A use case for this is to be able to prepare a bind group for all main textures
772 /// ahead of time.
773 pub fn main_texture_other(&self) -> &Texture {
774 if self.main_texture.load(Ordering::SeqCst) == 0 {
775 &self.main_textures.b.texture.texture
776 } else {
777 &self.main_textures.a.texture.texture
778 }
779 }
780
781 /// The "main" unsampled texture.
782 pub fn main_texture_view(&self) -> &TextureView {
783 if self.main_texture.load(Ordering::SeqCst) == 0 {
784 &self.main_textures.a.texture.default_view
785 } else {
786 &self.main_textures.b.texture.default_view
787 }
788 }
789
790 /// The _other_ "main" unsampled texture view.
791 /// In most cases you should use [`Self::main_texture_view`] instead and never this.
792 /// The textures will naturally be swapped when [`Self::post_process_write`] is called.
793 ///
794 /// A use case for this is to be able to prepare a bind group for all main textures
795 /// ahead of time.
796 pub fn main_texture_other_view(&self) -> &TextureView {
797 if self.main_texture.load(Ordering::SeqCst) == 0 {
798 &self.main_textures.b.texture.default_view
799 } else {
800 &self.main_textures.a.texture.default_view
801 }
802 }
803
804 /// The "main" sampled texture.
805 pub fn sampled_main_texture(&self) -> Option<&Texture> {
806 self.main_textures
807 .a
808 .resolve_target
809 .as_ref()
810 .map(|sampled| &sampled.texture)
811 }
812
813 /// The "main" sampled texture view.
814 pub fn sampled_main_texture_view(&self) -> Option<&TextureView> {
815 self.main_textures
816 .a
817 .resolve_target
818 .as_ref()
819 .map(|sampled| &sampled.default_view)
820 }
821
822 #[inline]
823 pub fn main_texture_format(&self) -> TextureFormat {
824 self.main_texture_format
825 }
826
827 /// Returns `true` if and only if the main texture is [`Self::TEXTURE_FORMAT_HDR`]
828 #[inline]
829 pub fn is_hdr(&self) -> bool {
830 self.main_texture_format == ViewTarget::TEXTURE_FORMAT_HDR
831 }
832
833 /// The final texture this view will render to.
834 #[inline]
835 pub fn out_texture(&self) -> &TextureView {
836 &self.out_texture.view
837 }
838
839 pub fn out_texture_color_attachment(
840 &self,
841 clear_color: Option<LinearRgba>,
842 ) -> RenderPassColorAttachment<'_> {
843 self.out_texture.get_attachment(clear_color)
844 }
845
846 /// Whether the final texture this view will render to needs to be presented.
847 pub fn needs_present(&self) -> bool {
848 self.out_texture.needs_present()
849 }
850
851 /// The format of the final texture this view will render to
852 #[inline]
853 pub fn out_texture_view_format(&self) -> TextureFormat {
854 self.out_texture.view_format
855 }
856
857 /// This will start a new "post process write", which assumes that the caller
858 /// will write the [`PostProcessWrite`]'s `source` to the `destination`.
859 ///
860 /// `source` is the "current" main texture. This will internally flip this
861 /// [`ViewTarget`]'s main texture to the `destination` texture, so the caller
862 /// _must_ ensure `source` is copied to `destination`, with or without modifications.
863 /// Failing to do so will cause the current main texture information to be lost.
864 pub fn post_process_write(&self) -> PostProcessWrite<'_> {
865 let old_is_a_main_texture = self.main_texture.fetch_xor(1, Ordering::SeqCst);
866 // if the old main texture is a, then the post processing must write from a to b
867 if old_is_a_main_texture == 0 {
868 self.main_textures.b.mark_as_cleared();
869 PostProcessWrite {
870 source: &self.main_textures.a.texture.default_view,
871 source_texture: &self.main_textures.a.texture.texture,
872 destination: &self.main_textures.b.texture.default_view,
873 destination_texture: &self.main_textures.b.texture.texture,
874 }
875 } else {
876 self.main_textures.a.mark_as_cleared();
877 PostProcessWrite {
878 source: &self.main_textures.b.texture.default_view,
879 source_texture: &self.main_textures.b.texture.texture,
880 destination: &self.main_textures.a.texture.default_view,
881 destination_texture: &self.main_textures.a.texture.texture,
882 }
883 }
884 }
885}
886
887#[derive(Component)]
888pub struct ViewDepthTexture {
889 pub texture: Texture,
890 attachment: DepthAttachment,
891}
892
893impl ViewDepthTexture {
894 pub fn new(texture: CachedTexture, clear_value: Option<f32>) -> Self {
895 Self {
896 texture: texture.texture,
897 attachment: DepthAttachment::new(texture.default_view, clear_value),
898 }
899 }
900
901 pub fn get_attachment(&self, store: StoreOp) -> RenderPassDepthStencilAttachment<'_> {
902 self.attachment.get_attachment(store)
903 }
904
905 pub fn view(&self) -> &TextureView {
906 &self.attachment.view
907 }
908}
909
910pub fn prepare_view_uniforms(
911 mut commands: Commands,
912 render_device: Res<RenderDevice>,
913 render_queue: Res<RenderQueue>,
914 mut view_uniforms: ResMut<ViewUniforms>,
915 views: Query<(
916 Entity,
917 Option<&ExtractedCamera>,
918 &ExtractedView,
919 Option<&Frustum>,
920 Option<&TemporalJitter>,
921 Option<&MipBias>,
922 Option<&MainPassResolutionOverride>,
923 )>,
924 frame_count: Res<FrameCount>,
925) {
926 let view_iter = views.iter();
927 let view_count = view_iter.len();
928 let Some(mut writer) =
929 view_uniforms
930 .uniforms
931 .get_writer(view_count, &render_device, &render_queue)
932 else {
933 return;
934 };
935 for (
936 entity,
937 extracted_camera,
938 extracted_view,
939 frustum,
940 temporal_jitter,
941 mip_bias,
942 resolution_override,
943 ) in &views
944 {
945 let viewport = extracted_view.viewport.as_vec4();
946 let mut main_pass_viewport = viewport;
947 if let Some(resolution_override) = resolution_override {
948 main_pass_viewport.z = resolution_override.0.x as f32;
949 main_pass_viewport.w = resolution_override.0.y as f32;
950 }
951
952 let unjittered_projection = extracted_view.clip_from_view;
953 let mut clip_from_view = unjittered_projection;
954
955 if let Some(temporal_jitter) = temporal_jitter {
956 temporal_jitter.jitter_projection(&mut clip_from_view, main_pass_viewport.zw());
957 }
958
959 let view_from_clip = clip_from_view.inverse();
960 let world_from_view = extracted_view.world_from_view.to_matrix();
961 let view_from_world = world_from_view.inverse();
962
963 let clip_from_world = if temporal_jitter.is_some() {
964 clip_from_view * view_from_world
965 } else {
966 extracted_view
967 .clip_from_world
968 .unwrap_or_else(|| clip_from_view * view_from_world)
969 };
970
971 // Map Frustum type to shader array<vec4<f32>, 6>
972 let frustum = frustum
973 .map(|frustum| frustum.half_spaces.map(|h| h.normal_d()))
974 .unwrap_or([Vec4::ZERO; 6]);
975
976 let view_uniforms = ViewUniformOffset {
977 offset: writer.write(&ViewUniform {
978 clip_from_world,
979 unjittered_clip_from_world: unjittered_projection * view_from_world,
980 world_from_clip: world_from_view * view_from_clip,
981 world_from_view,
982 view_from_world,
983 clip_from_view,
984 view_from_clip,
985 world_position: extracted_view.world_from_view.translation(),
986 exposure: extracted_camera
987 .map(|c| c.exposure)
988 .unwrap_or_else(|| Exposure::default().exposure()),
989 viewport,
990 main_pass_viewport,
991 frustum,
992 color_grading: extracted_view.color_grading.clone().into(),
993 mip_bias: mip_bias.unwrap_or(&MipBias(0.0)).0,
994 frame_count: frame_count.0,
995 }),
996 };
997
998 commands.entity(entity).insert(view_uniforms);
999 }
1000}
1001
1002#[derive(Clone)]
1003struct MainTargetTextures {
1004 a: ColorAttachment,
1005 b: ColorAttachment,
1006 /// 0 represents `main_textures.a`, 1 represents `main_textures.b`
1007 /// This is shared across view targets with the same render target
1008 main_texture: Arc<AtomicUsize>,
1009}
1010
1011/// Prepares the view target [`OutputColorAttachment`] for each view in the current frame.
1012pub fn prepare_view_attachments(
1013 windows: Res<ExtractedWindows>,
1014 images: Res<RenderAssets<GpuImage>>,
1015 manual_texture_views: Res<ManualTextureViews>,
1016 cameras: Query<&ExtractedCamera>,
1017 mut view_target_attachments: ResMut<ViewTargetAttachments>,
1018) {
1019 for camera in cameras.iter() {
1020 let Some(target) = &camera.target else {
1021 continue;
1022 };
1023
1024 match view_target_attachments.entry(target.clone()) {
1025 Entry::Occupied(_) => {}
1026 Entry::Vacant(entry) => {
1027 let Some(attachment) = target
1028 .get_texture_view(&windows, &images, &manual_texture_views)
1029 .cloned()
1030 .zip(target.get_texture_view_format(&windows, &images, &manual_texture_views))
1031 .map(|(view, format)| OutputColorAttachment::new(view.clone(), format))
1032 else {
1033 continue;
1034 };
1035 entry.insert(attachment);
1036 }
1037 };
1038 }
1039}
1040
1041/// Clears the view target [`OutputColorAttachment`]s.
1042pub fn clear_view_attachments(mut view_target_attachments: ResMut<ViewTargetAttachments>) {
1043 view_target_attachments.clear();
1044}
1045
1046pub fn cleanup_view_targets_for_resize(
1047 mut commands: Commands,
1048 windows: Res<ExtractedWindows>,
1049 cameras: Query<(Entity, &ExtractedCamera), With<ViewTarget>>,
1050) {
1051 for (entity, camera) in &cameras {
1052 if let Some(NormalizedRenderTarget::Window(window_ref)) = &camera.target
1053 && let Some(window) = windows.get(&window_ref.entity())
1054 && (window.size_changed || window.present_mode_changed)
1055 {
1056 commands.entity(entity).remove::<ViewTarget>();
1057 }
1058 }
1059}
1060
1061pub fn prepare_view_targets(
1062 mut commands: Commands,
1063 clear_color_global: Res<ClearColor>,
1064 render_device: Res<RenderDevice>,
1065 mut texture_cache: ResMut<TextureCache>,
1066 cameras: Query<(
1067 Entity,
1068 &ExtractedCamera,
1069 &ExtractedView,
1070 &CameraMainTextureUsages,
1071 &Msaa,
1072 )>,
1073 view_target_attachments: Res<ViewTargetAttachments>,
1074) {
1075 let mut textures = <HashMap<_, _>>::default();
1076 for (entity, camera, view, texture_usage, msaa) in cameras.iter() {
1077 let (Some(target_size), Some(out_attachment)) = (
1078 camera.physical_target_size,
1079 camera
1080 .target
1081 .as_ref()
1082 .and_then(|target| view_target_attachments.get(target)),
1083 ) else {
1084 // If we can't find an output attachment we need to remove the ViewTarget
1085 // component to make sure the camera doesn't try rendering to an invalid
1086 // output attachment.
1087 commands.entity(entity).try_remove::<ViewTarget>();
1088
1089 continue;
1090 };
1091
1092 let main_texture_format = if view.hdr {
1093 ViewTarget::TEXTURE_FORMAT_HDR
1094 } else {
1095 TextureFormat::bevy_default()
1096 };
1097
1098 let clear_color = match camera.clear_color {
1099 ClearColorConfig::Custom(color) => Some(color),
1100 ClearColorConfig::None => None,
1101 _ => Some(clear_color_global.0),
1102 };
1103
1104 let (a, b, sampled, main_texture) = textures
1105 .entry((camera.target.clone(), texture_usage.0, view.hdr, msaa))
1106 .or_insert_with(|| {
1107 let descriptor = TextureDescriptor {
1108 label: None,
1109 size: target_size.to_extents(),
1110 mip_level_count: 1,
1111 sample_count: 1,
1112 dimension: TextureDimension::D2,
1113 format: main_texture_format,
1114 usage: texture_usage.0,
1115 view_formats: match main_texture_format {
1116 TextureFormat::Bgra8Unorm => &[TextureFormat::Bgra8UnormSrgb],
1117 TextureFormat::Rgba8Unorm => &[TextureFormat::Rgba8UnormSrgb],
1118 _ => &[],
1119 },
1120 };
1121 let a = texture_cache.get(
1122 &render_device,
1123 TextureDescriptor {
1124 label: Some("main_texture_a"),
1125 ..descriptor
1126 },
1127 );
1128 let b = texture_cache.get(
1129 &render_device,
1130 TextureDescriptor {
1131 label: Some("main_texture_b"),
1132 ..descriptor
1133 },
1134 );
1135 let sampled = if msaa.samples() > 1 {
1136 let sampled = texture_cache.get(
1137 &render_device,
1138 TextureDescriptor {
1139 label: Some("main_texture_sampled"),
1140 size: target_size.to_extents(),
1141 mip_level_count: 1,
1142 sample_count: msaa.samples(),
1143 dimension: TextureDimension::D2,
1144 format: main_texture_format,
1145 usage: TextureUsages::RENDER_ATTACHMENT,
1146 view_formats: descriptor.view_formats,
1147 },
1148 );
1149 Some(sampled)
1150 } else {
1151 None
1152 };
1153 let main_texture = Arc::new(AtomicUsize::new(0));
1154 (a, b, sampled, main_texture)
1155 });
1156
1157 let converted_clear_color = clear_color.map(Into::into);
1158
1159 let main_textures = MainTargetTextures {
1160 a: ColorAttachment::new(a.clone(), sampled.clone(), None, converted_clear_color),
1161 b: ColorAttachment::new(b.clone(), sampled.clone(), None, converted_clear_color),
1162 main_texture: main_texture.clone(),
1163 };
1164
1165 commands.entity(entity).insert(ViewTarget {
1166 main_texture: main_textures.main_texture.clone(),
1167 main_textures,
1168 main_texture_format,
1169 out_texture: out_attachment.clone(),
1170 });
1171 }
1172}