bevy_render/view/mod.rs
1pub mod visibility;
2pub mod window;
3
4use bevy_asset::{load_internal_asset, weak_handle, Handle};
5use bevy_diagnostic::FrameCount;
6pub use visibility::*;
7pub use window::*;
8
9use crate::{
10 camera::{
11 CameraMainTextureUsages, ClearColor, ClearColorConfig, Exposure, ExtractedCamera,
12 ManualTextureViews, MipBias, NormalizedRenderTarget, TemporalJitter,
13 },
14 experimental::occlusion_culling::OcclusionCulling,
15 extract_component::ExtractComponentPlugin,
16 prelude::Shader,
17 primitives::Frustum,
18 render_asset::RenderAssets,
19 render_phase::ViewRangefinder3d,
20 render_resource::{DynamicUniformBuffer, ShaderType, Texture, TextureView},
21 renderer::{RenderDevice, RenderQueue},
22 sync_world::MainEntity,
23 texture::{
24 CachedTexture, ColorAttachment, DepthAttachment, GpuImage, OutputColorAttachment,
25 TextureCache,
26 },
27 Render, RenderApp, RenderSet,
28};
29use alloc::sync::Arc;
30use bevy_app::{App, Plugin};
31use bevy_color::LinearRgba;
32use bevy_derive::{Deref, DerefMut};
33use bevy_ecs::prelude::*;
34use bevy_image::BevyDefault as _;
35use bevy_math::{mat3, vec2, vec3, Mat3, Mat4, UVec4, Vec2, Vec3, Vec4, Vec4Swizzles};
36use bevy_platform::collections::{hash_map::Entry, HashMap};
37use bevy_reflect::{std_traits::ReflectDefault, Reflect};
38use bevy_render_macros::ExtractComponent;
39use bevy_transform::components::GlobalTransform;
40use core::{
41 ops::Range,
42 sync::atomic::{AtomicUsize, Ordering},
43};
44use wgpu::{
45 BufferUsages, Extent3d, RenderPassColorAttachment, RenderPassDepthStencilAttachment, StoreOp,
46 TextureDescriptor, TextureDimension, TextureFormat, TextureUsages,
47};
48
49pub const VIEW_TYPE_HANDLE: Handle<Shader> = weak_handle!("7234423c-38bb-411c-acec-f67730f6db5b");
50
51/// The matrix that converts from the RGB to the LMS color space.
52///
53/// To derive this, first we convert from RGB to [CIE 1931 XYZ]:
54///
55/// ```text
56/// ⎡ X ⎤ ⎡ 0.490 0.310 0.200 ⎤ ⎡ R ⎤
57/// ⎢ Y ⎥ = ⎢ 0.177 0.812 0.011 ⎥ ⎢ G ⎥
58/// ⎣ Z ⎦ ⎣ 0.000 0.010 0.990 ⎦ ⎣ B ⎦
59/// ```
60///
61/// Then we convert to LMS according to the [CAM16 standard matrix]:
62///
63/// ```text
64/// ⎡ L ⎤ ⎡ 0.401 0.650 -0.051 ⎤ ⎡ X ⎤
65/// ⎢ M ⎥ = ⎢ -0.250 1.204 0.046 ⎥ ⎢ Y ⎥
66/// ⎣ S ⎦ ⎣ -0.002 0.049 0.953 ⎦ ⎣ Z ⎦
67/// ```
68///
69/// The resulting matrix is just the concatenation of these two matrices, to do
70/// the conversion in one step.
71///
72/// [CIE 1931 XYZ]: https://en.wikipedia.org/wiki/CIE_1931_color_space
73/// [CAM16 standard matrix]: https://en.wikipedia.org/wiki/LMS_color_space
74static RGB_TO_LMS: Mat3 = mat3(
75 vec3(0.311692, 0.0905138, 0.00764433),
76 vec3(0.652085, 0.901341, 0.0486554),
77 vec3(0.0362225, 0.00814478, 0.943700),
78);
79
80/// The inverse of the [`RGB_TO_LMS`] matrix, converting from the LMS color
81/// space back to RGB.
82static LMS_TO_RGB: Mat3 = mat3(
83 vec3(4.06305, -0.40791, -0.0118812),
84 vec3(-2.93241, 1.40437, -0.0486532),
85 vec3(-0.130646, 0.00353630, 1.0605344),
86);
87
88/// The [CIE 1931] *xy* chromaticity coordinates of the [D65 white point].
89///
90/// [CIE 1931]: https://en.wikipedia.org/wiki/CIE_1931_color_space
91/// [D65 white point]: https://en.wikipedia.org/wiki/Standard_illuminant#D65_values
92static D65_XY: Vec2 = vec2(0.31272, 0.32903);
93
94/// The [D65 white point] in [LMS color space].
95///
96/// [LMS color space]: https://en.wikipedia.org/wiki/LMS_color_space
97/// [D65 white point]: https://en.wikipedia.org/wiki/Standard_illuminant#D65_values
98static D65_LMS: Vec3 = vec3(0.975538, 1.01648, 1.08475);
99
100pub struct ViewPlugin;
101
102impl Plugin for ViewPlugin {
103 fn build(&self, app: &mut App) {
104 load_internal_asset!(app, VIEW_TYPE_HANDLE, "view.wgsl", Shader::from_wgsl);
105
106 app.register_type::<InheritedVisibility>()
107 .register_type::<ViewVisibility>()
108 .register_type::<Msaa>()
109 .register_type::<NoFrustumCulling>()
110 .register_type::<RenderLayers>()
111 .register_type::<Visibility>()
112 .register_type::<VisibleEntities>()
113 .register_type::<ColorGrading>()
114 .register_type::<OcclusionCulling>()
115 // NOTE: windows.is_changed() handles cases where a window was resized
116 .add_plugins((
117 ExtractComponentPlugin::<Msaa>::default(),
118 ExtractComponentPlugin::<OcclusionCulling>::default(),
119 VisibilityPlugin,
120 VisibilityRangePlugin,
121 ));
122
123 if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
124 render_app.add_systems(
125 Render,
126 (
127 // `TextureView`s need to be dropped before reconfiguring window surfaces.
128 clear_view_attachments
129 .in_set(RenderSet::ManageViews)
130 .before(create_surfaces),
131 prepare_view_attachments
132 .in_set(RenderSet::ManageViews)
133 .before(prepare_view_targets)
134 .after(prepare_windows),
135 prepare_view_targets
136 .in_set(RenderSet::ManageViews)
137 .after(prepare_windows)
138 .after(crate::render_asset::prepare_assets::<GpuImage>)
139 .ambiguous_with(crate::camera::sort_cameras), // doesn't use `sorted_camera_index_for_target`
140 prepare_view_uniforms.in_set(RenderSet::PrepareResources),
141 ),
142 );
143 }
144 }
145
146 fn finish(&self, app: &mut App) {
147 if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
148 render_app
149 .init_resource::<ViewUniforms>()
150 .init_resource::<ViewTargetAttachments>();
151 }
152 }
153}
154
155/// Component for configuring the number of samples for [Multi-Sample Anti-Aliasing](https://en.wikipedia.org/wiki/Multisample_anti-aliasing)
156/// for a [`Camera`](crate::camera::Camera).
157///
158/// Defaults to 4 samples. A higher number of samples results in smoother edges.
159///
160/// Some advanced rendering features may require that MSAA is disabled.
161///
162/// Note that the web currently only supports 1 or 4 samples.
163#[derive(
164 Component,
165 Default,
166 Clone,
167 Copy,
168 ExtractComponent,
169 Reflect,
170 PartialEq,
171 PartialOrd,
172 Eq,
173 Hash,
174 Debug,
175)]
176#[reflect(Component, Default, PartialEq, Hash, Debug)]
177pub enum Msaa {
178 Off = 1,
179 Sample2 = 2,
180 #[default]
181 Sample4 = 4,
182 Sample8 = 8,
183}
184
185impl Msaa {
186 #[inline]
187 pub fn samples(&self) -> u32 {
188 *self as u32
189 }
190
191 pub fn from_samples(samples: u32) -> Self {
192 match samples {
193 1 => Msaa::Off,
194 2 => Msaa::Sample2,
195 4 => Msaa::Sample4,
196 8 => Msaa::Sample8,
197 _ => panic!("Unsupported MSAA sample count: {}", samples),
198 }
199 }
200}
201
202/// An identifier for a view that is stable across frames.
203///
204/// We can't use [`Entity`] for this because render world entities aren't
205/// stable, and we can't use just [`MainEntity`] because some main world views
206/// extract to multiple render world views. For example, a directional light
207/// extracts to one render world view per cascade, and a point light extracts to
208/// one render world view per cubemap face. So we pair the main entity with an
209/// *auxiliary entity* and a *subview index*, which *together* uniquely identify
210/// a view in the render world in a way that's stable from frame to frame.
211#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
212pub struct RetainedViewEntity {
213 /// The main entity that this view corresponds to.
214 pub main_entity: MainEntity,
215
216 /// Another entity associated with the view entity.
217 ///
218 /// This is currently used for shadow cascades. If there are multiple
219 /// cameras, each camera needs to have its own set of shadow cascades. Thus
220 /// the light and subview index aren't themselves enough to uniquely
221 /// identify a shadow cascade: we need the camera that the cascade is
222 /// associated with as well. This entity stores that camera.
223 ///
224 /// If not present, this will be `MainEntity(Entity::PLACEHOLDER)`.
225 pub auxiliary_entity: MainEntity,
226
227 /// The index of the view corresponding to the entity.
228 ///
229 /// For example, for point lights that cast shadows, this is the index of
230 /// the cubemap face (0 through 5 inclusive). For directional lights, this
231 /// is the index of the cascade.
232 pub subview_index: u32,
233}
234
235impl RetainedViewEntity {
236 /// Creates a new [`RetainedViewEntity`] from the given main world entity,
237 /// auxiliary main world entity, and subview index.
238 ///
239 /// See [`RetainedViewEntity::subview_index`] for an explanation of what
240 /// `auxiliary_entity` and `subview_index` are.
241 pub fn new(
242 main_entity: MainEntity,
243 auxiliary_entity: Option<MainEntity>,
244 subview_index: u32,
245 ) -> Self {
246 Self {
247 main_entity,
248 auxiliary_entity: auxiliary_entity.unwrap_or(Entity::PLACEHOLDER.into()),
249 subview_index,
250 }
251 }
252}
253
254/// Describes a camera in the render world.
255///
256/// Each entity in the main world can potentially extract to multiple subviews,
257/// each of which has a [`RetainedViewEntity::subview_index`]. For instance, 3D
258/// cameras extract to both a 3D camera subview with index 0 and a special UI
259/// subview with index 1. Likewise, point lights with shadows extract to 6
260/// subviews, one for each side of the shadow cubemap.
261#[derive(Component)]
262pub struct ExtractedView {
263 /// The entity in the main world corresponding to this render world view.
264 pub retained_view_entity: RetainedViewEntity,
265 /// Typically a column-major right-handed projection matrix, one of either:
266 ///
267 /// Perspective (infinite reverse z)
268 /// ```text
269 /// f = 1 / tan(fov_y_radians / 2)
270 ///
271 /// ⎡ f / aspect 0 0 0 ⎤
272 /// ⎢ 0 f 0 0 ⎥
273 /// ⎢ 0 0 0 near ⎥
274 /// ⎣ 0 0 -1 0 ⎦
275 /// ```
276 ///
277 /// Orthographic
278 /// ```text
279 /// w = right - left
280 /// h = top - bottom
281 /// d = far - near
282 /// cw = -right - left
283 /// ch = -top - bottom
284 ///
285 /// ⎡ 2 / w 0 0 cw / w ⎤
286 /// ⎢ 0 2 / h 0 ch / h ⎥
287 /// ⎢ 0 0 1 / d far / d ⎥
288 /// ⎣ 0 0 0 1 ⎦
289 /// ```
290 ///
291 /// `clip_from_view[3][3] == 1.0` is the standard way to check if a projection is orthographic
292 ///
293 /// Glam matrices are column major, so for example getting the near plane of a perspective projection is `clip_from_view[3][2]`
294 ///
295 /// Custom projections are also possible however.
296 pub clip_from_view: Mat4,
297 pub world_from_view: GlobalTransform,
298 // The view-projection matrix. When provided it is used instead of deriving it from
299 // `projection` and `transform` fields, which can be helpful in cases where numerical
300 // stability matters and there is a more direct way to derive the view-projection matrix.
301 pub clip_from_world: Option<Mat4>,
302 pub hdr: bool,
303 // uvec4(origin.x, origin.y, width, height)
304 pub viewport: UVec4,
305 pub color_grading: ColorGrading,
306}
307
308impl ExtractedView {
309 /// Creates a 3D rangefinder for a view
310 pub fn rangefinder3d(&self) -> ViewRangefinder3d {
311 ViewRangefinder3d::from_world_from_view(&self.world_from_view.compute_matrix())
312 }
313}
314
315/// Configures filmic color grading parameters to adjust the image appearance.
316///
317/// Color grading is applied just before tonemapping for a given
318/// [`Camera`](crate::camera::Camera) entity, with the sole exception of the
319/// `post_saturation` value in [`ColorGradingGlobal`], which is applied after
320/// tonemapping.
321#[derive(Component, Reflect, Debug, Default, Clone)]
322#[reflect(Component, Default, Debug, Clone)]
323pub struct ColorGrading {
324 /// Filmic color grading values applied to the image as a whole (as opposed
325 /// to individual sections, like shadows and highlights).
326 pub global: ColorGradingGlobal,
327
328 /// Color grading values that are applied to the darker parts of the image.
329 ///
330 /// The cutoff points can be customized with the
331 /// [`ColorGradingGlobal::midtones_range`] field.
332 pub shadows: ColorGradingSection,
333
334 /// Color grading values that are applied to the parts of the image with
335 /// intermediate brightness.
336 ///
337 /// The cutoff points can be customized with the
338 /// [`ColorGradingGlobal::midtones_range`] field.
339 pub midtones: ColorGradingSection,
340
341 /// Color grading values that are applied to the lighter parts of the image.
342 ///
343 /// The cutoff points can be customized with the
344 /// [`ColorGradingGlobal::midtones_range`] field.
345 pub highlights: ColorGradingSection,
346}
347
348/// Filmic color grading values applied to the image as a whole (as opposed to
349/// individual sections, like shadows and highlights).
350#[derive(Clone, Debug, Reflect)]
351#[reflect(Default, Clone)]
352pub struct ColorGradingGlobal {
353 /// Exposure value (EV) offset, measured in stops.
354 pub exposure: f32,
355
356 /// An adjustment made to the [CIE 1931] chromaticity *x* value.
357 ///
358 /// Positive values make the colors redder. Negative values make the colors
359 /// bluer. This has no effect on luminance (brightness).
360 ///
361 /// [CIE 1931]: https://en.wikipedia.org/wiki/CIE_1931_color_space#CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space
362 pub temperature: f32,
363
364 /// An adjustment made to the [CIE 1931] chromaticity *y* value.
365 ///
366 /// Positive values make the colors more magenta. Negative values make the
367 /// colors greener. This has no effect on luminance (brightness).
368 ///
369 /// [CIE 1931]: https://en.wikipedia.org/wiki/CIE_1931_color_space#CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space
370 pub tint: f32,
371
372 /// An adjustment to the [hue], in radians.
373 ///
374 /// Adjusting this value changes the perceived colors in the image: red to
375 /// yellow to green to blue, etc. It has no effect on the saturation or
376 /// brightness of the colors.
377 ///
378 /// [hue]: https://en.wikipedia.org/wiki/HSL_and_HSV#Formal_derivation
379 pub hue: f32,
380
381 /// Saturation adjustment applied after tonemapping.
382 /// Values below 1.0 desaturate, with a value of 0.0 resulting in a grayscale image
383 /// with luminance defined by ITU-R BT.709
384 /// Values above 1.0 increase saturation.
385 pub post_saturation: f32,
386
387 /// The luminance (brightness) ranges that are considered part of the
388 /// "midtones" of the image.
389 ///
390 /// This affects which [`ColorGradingSection`]s apply to which colors. Note
391 /// that the sections smoothly blend into one another, to avoid abrupt
392 /// transitions.
393 ///
394 /// The default value is 0.2 to 0.7.
395 pub midtones_range: Range<f32>,
396}
397
398/// The [`ColorGrading`] structure, packed into the most efficient form for the
399/// GPU.
400#[derive(Clone, Copy, Debug, ShaderType)]
401pub struct ColorGradingUniform {
402 pub balance: Mat3,
403 pub saturation: Vec3,
404 pub contrast: Vec3,
405 pub gamma: Vec3,
406 pub gain: Vec3,
407 pub lift: Vec3,
408 pub midtone_range: Vec2,
409 pub exposure: f32,
410 pub hue: f32,
411 pub post_saturation: f32,
412}
413
414/// A section of color grading values that can be selectively applied to
415/// shadows, midtones, and highlights.
416#[derive(Reflect, Debug, Copy, Clone, PartialEq)]
417#[reflect(Clone, PartialEq)]
418pub struct ColorGradingSection {
419 /// Values below 1.0 desaturate, with a value of 0.0 resulting in a grayscale image
420 /// with luminance defined by ITU-R BT.709.
421 /// Values above 1.0 increase saturation.
422 pub saturation: f32,
423
424 /// Adjusts the range of colors.
425 ///
426 /// A value of 1.0 applies no changes. Values below 1.0 move the colors more
427 /// toward a neutral gray. Values above 1.0 spread the colors out away from
428 /// the neutral gray.
429 pub contrast: f32,
430
431 /// A nonlinear luminance adjustment, mainly affecting the high end of the
432 /// range.
433 ///
434 /// This is the *n* exponent in the standard [ASC CDL] formula for color
435 /// correction:
436 ///
437 /// ```text
438 /// out = (i × s + o)ⁿ
439 /// ```
440 ///
441 /// [ASC CDL]: https://en.wikipedia.org/wiki/ASC_CDL#Combined_Function
442 pub gamma: f32,
443
444 /// A linear luminance adjustment, mainly affecting the middle part of the
445 /// range.
446 ///
447 /// This is the *s* factor in the standard [ASC CDL] formula for color
448 /// correction:
449 ///
450 /// ```text
451 /// out = (i × s + o)ⁿ
452 /// ```
453 ///
454 /// [ASC CDL]: https://en.wikipedia.org/wiki/ASC_CDL#Combined_Function
455 pub gain: f32,
456
457 /// A fixed luminance adjustment, mainly affecting the lower part of the
458 /// range.
459 ///
460 /// This is the *o* term in the standard [ASC CDL] formula for color
461 /// correction:
462 ///
463 /// ```text
464 /// out = (i × s + o)ⁿ
465 /// ```
466 ///
467 /// [ASC CDL]: https://en.wikipedia.org/wiki/ASC_CDL#Combined_Function
468 pub lift: f32,
469}
470
471impl Default for ColorGradingGlobal {
472 fn default() -> Self {
473 Self {
474 exposure: 0.0,
475 temperature: 0.0,
476 tint: 0.0,
477 hue: 0.0,
478 post_saturation: 1.0,
479 midtones_range: 0.2..0.7,
480 }
481 }
482}
483
484impl Default for ColorGradingSection {
485 fn default() -> Self {
486 Self {
487 saturation: 1.0,
488 contrast: 1.0,
489 gamma: 1.0,
490 gain: 1.0,
491 lift: 0.0,
492 }
493 }
494}
495
496impl ColorGrading {
497 /// Creates a new [`ColorGrading`] instance in which shadows, midtones, and
498 /// highlights all have the same set of color grading values.
499 pub fn with_identical_sections(
500 global: ColorGradingGlobal,
501 section: ColorGradingSection,
502 ) -> ColorGrading {
503 ColorGrading {
504 global,
505 highlights: section,
506 midtones: section,
507 shadows: section,
508 }
509 }
510
511 /// Returns an iterator that visits the shadows, midtones, and highlights
512 /// sections, in that order.
513 pub fn all_sections(&self) -> impl Iterator<Item = &ColorGradingSection> {
514 [&self.shadows, &self.midtones, &self.highlights].into_iter()
515 }
516
517 /// Applies the given mutating function to the shadows, midtones, and
518 /// highlights sections, in that order.
519 ///
520 /// Returns an array composed of the results of such evaluation, in that
521 /// order.
522 pub fn all_sections_mut(&mut self) -> impl Iterator<Item = &mut ColorGradingSection> {
523 [&mut self.shadows, &mut self.midtones, &mut self.highlights].into_iter()
524 }
525}
526
527#[derive(Clone, ShaderType)]
528pub struct ViewUniform {
529 pub clip_from_world: Mat4,
530 pub unjittered_clip_from_world: Mat4,
531 pub world_from_clip: Mat4,
532 pub world_from_view: Mat4,
533 pub view_from_world: Mat4,
534 /// Typically a column-major right-handed projection matrix, one of either:
535 ///
536 /// Perspective (infinite reverse z)
537 /// ```text
538 /// f = 1 / tan(fov_y_radians / 2)
539 ///
540 /// ⎡ f / aspect 0 0 0 ⎤
541 /// ⎢ 0 f 0 0 ⎥
542 /// ⎢ 0 0 0 near ⎥
543 /// ⎣ 0 0 -1 0 ⎦
544 /// ```
545 ///
546 /// Orthographic
547 /// ```text
548 /// w = right - left
549 /// h = top - bottom
550 /// d = far - near
551 /// cw = -right - left
552 /// ch = -top - bottom
553 ///
554 /// ⎡ 2 / w 0 0 cw / w ⎤
555 /// ⎢ 0 2 / h 0 ch / h ⎥
556 /// ⎢ 0 0 1 / d far / d ⎥
557 /// ⎣ 0 0 0 1 ⎦
558 /// ```
559 ///
560 /// `clip_from_view[3][3] == 1.0` is the standard way to check if a projection is orthographic
561 ///
562 /// Glam matrices are column major, so for example getting the near plane of a perspective projection is `clip_from_view[3][2]`
563 ///
564 /// Custom projections are also possible however.
565 pub clip_from_view: Mat4,
566 pub view_from_clip: Mat4,
567 pub world_position: Vec3,
568 pub exposure: f32,
569 // viewport(x_origin, y_origin, width, height)
570 pub viewport: Vec4,
571 /// 6 world-space half spaces (normal: vec3, distance: f32) ordered left, right, top, bottom, near, far.
572 /// The normal vectors point towards the interior of the frustum.
573 /// A half space contains `p` if `normal.dot(p) + distance > 0.`
574 pub frustum: [Vec4; 6],
575 pub color_grading: ColorGradingUniform,
576 pub mip_bias: f32,
577 pub frame_count: u32,
578}
579
580#[derive(Resource)]
581pub struct ViewUniforms {
582 pub uniforms: DynamicUniformBuffer<ViewUniform>,
583}
584
585impl FromWorld for ViewUniforms {
586 fn from_world(world: &mut World) -> Self {
587 let mut uniforms = DynamicUniformBuffer::default();
588 uniforms.set_label(Some("view_uniforms_buffer"));
589
590 let render_device = world.resource::<RenderDevice>();
591 if render_device.limits().max_storage_buffers_per_shader_stage > 0 {
592 uniforms.add_usages(BufferUsages::STORAGE);
593 }
594
595 Self { uniforms }
596 }
597}
598
599#[derive(Component)]
600pub struct ViewUniformOffset {
601 pub offset: u32,
602}
603
604#[derive(Component)]
605pub struct ViewTarget {
606 main_textures: MainTargetTextures,
607 main_texture_format: TextureFormat,
608 /// 0 represents `main_textures.a`, 1 represents `main_textures.b`
609 /// This is shared across view targets with the same render target
610 main_texture: Arc<AtomicUsize>,
611 out_texture: OutputColorAttachment,
612}
613
614/// Contains [`OutputColorAttachment`] used for each target present on any view in the current
615/// frame, after being prepared by [`prepare_view_attachments`]. Users that want to override
616/// the default output color attachment for a specific target can do so by adding a
617/// [`OutputColorAttachment`] to this resource before [`prepare_view_targets`] is called.
618#[derive(Resource, Default, Deref, DerefMut)]
619pub struct ViewTargetAttachments(HashMap<NormalizedRenderTarget, OutputColorAttachment>);
620
621pub struct PostProcessWrite<'a> {
622 pub source: &'a TextureView,
623 pub source_texture: &'a Texture,
624 pub destination: &'a TextureView,
625 pub destination_texture: &'a Texture,
626}
627
628impl From<ColorGrading> for ColorGradingUniform {
629 fn from(component: ColorGrading) -> Self {
630 // Compute the balance matrix that will be used to apply the white
631 // balance adjustment to an RGB color. Our general approach will be to
632 // convert both the color and the developer-supplied white point to the
633 // LMS color space, apply the conversion, and then convert back.
634 //
635 // First, we start with the CIE 1931 *xy* values of the standard D65
636 // illuminant:
637 // <https://en.wikipedia.org/wiki/Standard_illuminant#D65_values>
638 //
639 // We then adjust them based on the developer's requested white balance.
640 let white_point_xy = D65_XY + vec2(-component.global.temperature, component.global.tint);
641
642 // Convert the white point from CIE 1931 *xy* to LMS. First, we convert to XYZ:
643 //
644 // Y Y
645 // Y = 1 X = ─ x Z = ─ (1 - x - y)
646 // y y
647 //
648 // Then we convert from XYZ to LMS color space, using the CAM16 matrix
649 // from <https://en.wikipedia.org/wiki/LMS_color_space#Later_CIECAMs>:
650 //
651 // ⎡ L ⎤ ⎡ 0.401 0.650 -0.051 ⎤ ⎡ X ⎤
652 // ⎢ M ⎥ = ⎢ -0.250 1.204 0.046 ⎥ ⎢ Y ⎥
653 // ⎣ S ⎦ ⎣ -0.002 0.049 0.953 ⎦ ⎣ Z ⎦
654 //
655 // The following formula is just a simplification of the above.
656
657 let white_point_lms = vec3(0.701634, 1.15856, -0.904175)
658 + (vec3(-0.051461, 0.045854, 0.953127)
659 + vec3(0.452749, -0.296122, -0.955206) * white_point_xy.x)
660 / white_point_xy.y;
661
662 // Now that we're in LMS space, perform the white point scaling.
663 let white_point_adjustment = Mat3::from_diagonal(D65_LMS / white_point_lms);
664
665 // Finally, combine the RGB → LMS → corrected LMS → corrected RGB
666 // pipeline into a single 3×3 matrix.
667 let balance = LMS_TO_RGB * white_point_adjustment * RGB_TO_LMS;
668
669 Self {
670 balance,
671 saturation: vec3(
672 component.shadows.saturation,
673 component.midtones.saturation,
674 component.highlights.saturation,
675 ),
676 contrast: vec3(
677 component.shadows.contrast,
678 component.midtones.contrast,
679 component.highlights.contrast,
680 ),
681 gamma: vec3(
682 component.shadows.gamma,
683 component.midtones.gamma,
684 component.highlights.gamma,
685 ),
686 gain: vec3(
687 component.shadows.gain,
688 component.midtones.gain,
689 component.highlights.gain,
690 ),
691 lift: vec3(
692 component.shadows.lift,
693 component.midtones.lift,
694 component.highlights.lift,
695 ),
696 midtone_range: vec2(
697 component.global.midtones_range.start,
698 component.global.midtones_range.end,
699 ),
700 exposure: component.global.exposure,
701 hue: component.global.hue,
702 post_saturation: component.global.post_saturation,
703 }
704 }
705}
706
707/// Add this component to a camera to disable *indirect mode*.
708///
709/// Indirect mode, automatically enabled on supported hardware, allows Bevy to
710/// offload transform and cull operations to the GPU, reducing CPU overhead.
711/// Doing this, however, reduces the amount of control that your app has over
712/// instancing decisions. In certain circumstances, you may want to disable
713/// indirect drawing so that your app can manually instance meshes as it sees
714/// fit. See the `custom_shader_instancing` example.
715///
716/// The vast majority of applications will not need to use this component, as it
717/// generally reduces rendering performance.
718///
719/// Note: This component should only be added when initially spawning a camera. Adding
720/// or removing after spawn can result in unspecified behavior.
721#[derive(Component, Default)]
722pub struct NoIndirectDrawing;
723
724#[derive(Component, Default)]
725pub struct NoCpuCulling;
726
727impl ViewTarget {
728 pub const TEXTURE_FORMAT_HDR: TextureFormat = TextureFormat::Rgba16Float;
729
730 /// Retrieve this target's main texture's color attachment.
731 pub fn get_color_attachment(&self) -> RenderPassColorAttachment {
732 if self.main_texture.load(Ordering::SeqCst) == 0 {
733 self.main_textures.a.get_attachment()
734 } else {
735 self.main_textures.b.get_attachment()
736 }
737 }
738
739 /// Retrieve this target's "unsampled" main texture's color attachment.
740 pub fn get_unsampled_color_attachment(&self) -> RenderPassColorAttachment {
741 if self.main_texture.load(Ordering::SeqCst) == 0 {
742 self.main_textures.a.get_unsampled_attachment()
743 } else {
744 self.main_textures.b.get_unsampled_attachment()
745 }
746 }
747
748 /// The "main" unsampled texture.
749 pub fn main_texture(&self) -> &Texture {
750 if self.main_texture.load(Ordering::SeqCst) == 0 {
751 &self.main_textures.a.texture.texture
752 } else {
753 &self.main_textures.b.texture.texture
754 }
755 }
756
757 /// The _other_ "main" unsampled texture.
758 /// In most cases you should use [`Self::main_texture`] instead and never this.
759 /// The textures will naturally be swapped when [`Self::post_process_write`] is called.
760 ///
761 /// A use case for this is to be able to prepare a bind group for all main textures
762 /// ahead of time.
763 pub fn main_texture_other(&self) -> &Texture {
764 if self.main_texture.load(Ordering::SeqCst) == 0 {
765 &self.main_textures.b.texture.texture
766 } else {
767 &self.main_textures.a.texture.texture
768 }
769 }
770
771 /// The "main" unsampled texture.
772 pub fn main_texture_view(&self) -> &TextureView {
773 if self.main_texture.load(Ordering::SeqCst) == 0 {
774 &self.main_textures.a.texture.default_view
775 } else {
776 &self.main_textures.b.texture.default_view
777 }
778 }
779
780 /// The _other_ "main" unsampled texture view.
781 /// In most cases you should use [`Self::main_texture_view`] instead and never this.
782 /// The textures will naturally be swapped when [`Self::post_process_write`] is called.
783 ///
784 /// A use case for this is to be able to prepare a bind group for all main textures
785 /// ahead of time.
786 pub fn main_texture_other_view(&self) -> &TextureView {
787 if self.main_texture.load(Ordering::SeqCst) == 0 {
788 &self.main_textures.b.texture.default_view
789 } else {
790 &self.main_textures.a.texture.default_view
791 }
792 }
793
794 /// The "main" sampled texture.
795 pub fn sampled_main_texture(&self) -> Option<&Texture> {
796 self.main_textures
797 .a
798 .resolve_target
799 .as_ref()
800 .map(|sampled| &sampled.texture)
801 }
802
803 /// The "main" sampled texture view.
804 pub fn sampled_main_texture_view(&self) -> Option<&TextureView> {
805 self.main_textures
806 .a
807 .resolve_target
808 .as_ref()
809 .map(|sampled| &sampled.default_view)
810 }
811
812 #[inline]
813 pub fn main_texture_format(&self) -> TextureFormat {
814 self.main_texture_format
815 }
816
817 /// Returns `true` if and only if the main texture is [`Self::TEXTURE_FORMAT_HDR`]
818 #[inline]
819 pub fn is_hdr(&self) -> bool {
820 self.main_texture_format == ViewTarget::TEXTURE_FORMAT_HDR
821 }
822
823 /// The final texture this view will render to.
824 #[inline]
825 pub fn out_texture(&self) -> &TextureView {
826 &self.out_texture.view
827 }
828
829 pub fn out_texture_color_attachment(
830 &self,
831 clear_color: Option<LinearRgba>,
832 ) -> RenderPassColorAttachment {
833 self.out_texture.get_attachment(clear_color)
834 }
835
836 /// The format of the final texture this view will render to
837 #[inline]
838 pub fn out_texture_format(&self) -> TextureFormat {
839 self.out_texture.format
840 }
841
842 /// This will start a new "post process write", which assumes that the caller
843 /// will write the [`PostProcessWrite`]'s `source` to the `destination`.
844 ///
845 /// `source` is the "current" main texture. This will internally flip this
846 /// [`ViewTarget`]'s main texture to the `destination` texture, so the caller
847 /// _must_ ensure `source` is copied to `destination`, with or without modifications.
848 /// Failing to do so will cause the current main texture information to be lost.
849 pub fn post_process_write(&self) -> PostProcessWrite {
850 let old_is_a_main_texture = self.main_texture.fetch_xor(1, Ordering::SeqCst);
851 // if the old main texture is a, then the post processing must write from a to b
852 if old_is_a_main_texture == 0 {
853 self.main_textures.b.mark_as_cleared();
854 PostProcessWrite {
855 source: &self.main_textures.a.texture.default_view,
856 source_texture: &self.main_textures.a.texture.texture,
857 destination: &self.main_textures.b.texture.default_view,
858 destination_texture: &self.main_textures.b.texture.texture,
859 }
860 } else {
861 self.main_textures.a.mark_as_cleared();
862 PostProcessWrite {
863 source: &self.main_textures.b.texture.default_view,
864 source_texture: &self.main_textures.b.texture.texture,
865 destination: &self.main_textures.a.texture.default_view,
866 destination_texture: &self.main_textures.a.texture.texture,
867 }
868 }
869 }
870}
871
872#[derive(Component)]
873pub struct ViewDepthTexture {
874 pub texture: Texture,
875 attachment: DepthAttachment,
876}
877
878impl ViewDepthTexture {
879 pub fn new(texture: CachedTexture, clear_value: Option<f32>) -> Self {
880 Self {
881 texture: texture.texture,
882 attachment: DepthAttachment::new(texture.default_view, clear_value),
883 }
884 }
885
886 pub fn get_attachment(&self, store: StoreOp) -> RenderPassDepthStencilAttachment {
887 self.attachment.get_attachment(store)
888 }
889
890 pub fn view(&self) -> &TextureView {
891 &self.attachment.view
892 }
893}
894
895pub fn prepare_view_uniforms(
896 mut commands: Commands,
897 render_device: Res<RenderDevice>,
898 render_queue: Res<RenderQueue>,
899 mut view_uniforms: ResMut<ViewUniforms>,
900 views: Query<(
901 Entity,
902 Option<&ExtractedCamera>,
903 &ExtractedView,
904 Option<&Frustum>,
905 Option<&TemporalJitter>,
906 Option<&MipBias>,
907 )>,
908 frame_count: Res<FrameCount>,
909) {
910 let view_iter = views.iter();
911 let view_count = view_iter.len();
912 let Some(mut writer) =
913 view_uniforms
914 .uniforms
915 .get_writer(view_count, &render_device, &render_queue)
916 else {
917 return;
918 };
919 for (entity, extracted_camera, extracted_view, frustum, temporal_jitter, mip_bias) in &views {
920 let viewport = extracted_view.viewport.as_vec4();
921 let unjittered_projection = extracted_view.clip_from_view;
922 let mut clip_from_view = unjittered_projection;
923
924 if let Some(temporal_jitter) = temporal_jitter {
925 temporal_jitter.jitter_projection(&mut clip_from_view, viewport.zw());
926 }
927
928 let view_from_clip = clip_from_view.inverse();
929 let world_from_view = extracted_view.world_from_view.compute_matrix();
930 let view_from_world = world_from_view.inverse();
931
932 let clip_from_world = if temporal_jitter.is_some() {
933 clip_from_view * view_from_world
934 } else {
935 extracted_view
936 .clip_from_world
937 .unwrap_or_else(|| clip_from_view * view_from_world)
938 };
939
940 // Map Frustum type to shader array<vec4<f32>, 6>
941 let frustum = frustum
942 .map(|frustum| frustum.half_spaces.map(|h| h.normal_d()))
943 .unwrap_or([Vec4::ZERO; 6]);
944
945 let view_uniforms = ViewUniformOffset {
946 offset: writer.write(&ViewUniform {
947 clip_from_world,
948 unjittered_clip_from_world: unjittered_projection * view_from_world,
949 world_from_clip: world_from_view * view_from_clip,
950 world_from_view,
951 view_from_world,
952 clip_from_view,
953 view_from_clip,
954 world_position: extracted_view.world_from_view.translation(),
955 exposure: extracted_camera
956 .map(|c| c.exposure)
957 .unwrap_or_else(|| Exposure::default().exposure()),
958 viewport,
959 frustum,
960 color_grading: extracted_view.color_grading.clone().into(),
961 mip_bias: mip_bias.unwrap_or(&MipBias(0.0)).0,
962 frame_count: frame_count.0,
963 }),
964 };
965
966 commands.entity(entity).insert(view_uniforms);
967 }
968}
969
970#[derive(Clone)]
971struct MainTargetTextures {
972 a: ColorAttachment,
973 b: ColorAttachment,
974 /// 0 represents `main_textures.a`, 1 represents `main_textures.b`
975 /// This is shared across view targets with the same render target
976 main_texture: Arc<AtomicUsize>,
977}
978
979/// Prepares the view target [`OutputColorAttachment`] for each view in the current frame.
980pub fn prepare_view_attachments(
981 windows: Res<ExtractedWindows>,
982 images: Res<RenderAssets<GpuImage>>,
983 manual_texture_views: Res<ManualTextureViews>,
984 cameras: Query<&ExtractedCamera>,
985 mut view_target_attachments: ResMut<ViewTargetAttachments>,
986) {
987 for camera in cameras.iter() {
988 let Some(target) = &camera.target else {
989 continue;
990 };
991
992 match view_target_attachments.entry(target.clone()) {
993 Entry::Occupied(_) => {}
994 Entry::Vacant(entry) => {
995 let Some(attachment) = target
996 .get_texture_view(&windows, &images, &manual_texture_views)
997 .cloned()
998 .zip(target.get_texture_format(&windows, &images, &manual_texture_views))
999 .map(|(view, format)| {
1000 OutputColorAttachment::new(view.clone(), format.add_srgb_suffix())
1001 })
1002 else {
1003 continue;
1004 };
1005 entry.insert(attachment);
1006 }
1007 };
1008 }
1009}
1010
1011/// Clears the view target [`OutputColorAttachment`]s.
1012pub fn clear_view_attachments(mut view_target_attachments: ResMut<ViewTargetAttachments>) {
1013 view_target_attachments.clear();
1014}
1015
1016pub fn prepare_view_targets(
1017 mut commands: Commands,
1018 clear_color_global: Res<ClearColor>,
1019 render_device: Res<RenderDevice>,
1020 mut texture_cache: ResMut<TextureCache>,
1021 cameras: Query<(
1022 Entity,
1023 &ExtractedCamera,
1024 &ExtractedView,
1025 &CameraMainTextureUsages,
1026 &Msaa,
1027 )>,
1028 view_target_attachments: Res<ViewTargetAttachments>,
1029) {
1030 let mut textures = <HashMap<_, _>>::default();
1031 for (entity, camera, view, texture_usage, msaa) in cameras.iter() {
1032 let (Some(target_size), Some(target)) = (camera.physical_target_size, &camera.target)
1033 else {
1034 continue;
1035 };
1036
1037 let Some(out_attachment) = view_target_attachments.get(target) else {
1038 continue;
1039 };
1040
1041 let size = Extent3d {
1042 width: target_size.x,
1043 height: target_size.y,
1044 depth_or_array_layers: 1,
1045 };
1046
1047 let main_texture_format = if view.hdr {
1048 ViewTarget::TEXTURE_FORMAT_HDR
1049 } else {
1050 TextureFormat::bevy_default()
1051 };
1052
1053 let clear_color = match camera.clear_color {
1054 ClearColorConfig::Custom(color) => Some(color),
1055 ClearColorConfig::None => None,
1056 _ => Some(clear_color_global.0),
1057 };
1058
1059 let (a, b, sampled, main_texture) = textures
1060 .entry((camera.target.clone(), texture_usage.0, view.hdr, msaa))
1061 .or_insert_with(|| {
1062 let descriptor = TextureDescriptor {
1063 label: None,
1064 size,
1065 mip_level_count: 1,
1066 sample_count: 1,
1067 dimension: TextureDimension::D2,
1068 format: main_texture_format,
1069 usage: texture_usage.0,
1070 view_formats: match main_texture_format {
1071 TextureFormat::Bgra8Unorm => &[TextureFormat::Bgra8UnormSrgb],
1072 TextureFormat::Rgba8Unorm => &[TextureFormat::Rgba8UnormSrgb],
1073 _ => &[],
1074 },
1075 };
1076 let a = texture_cache.get(
1077 &render_device,
1078 TextureDescriptor {
1079 label: Some("main_texture_a"),
1080 ..descriptor
1081 },
1082 );
1083 let b = texture_cache.get(
1084 &render_device,
1085 TextureDescriptor {
1086 label: Some("main_texture_b"),
1087 ..descriptor
1088 },
1089 );
1090 let sampled = if msaa.samples() > 1 {
1091 let sampled = texture_cache.get(
1092 &render_device,
1093 TextureDescriptor {
1094 label: Some("main_texture_sampled"),
1095 size,
1096 mip_level_count: 1,
1097 sample_count: msaa.samples(),
1098 dimension: TextureDimension::D2,
1099 format: main_texture_format,
1100 usage: TextureUsages::RENDER_ATTACHMENT,
1101 view_formats: descriptor.view_formats,
1102 },
1103 );
1104 Some(sampled)
1105 } else {
1106 None
1107 };
1108 let main_texture = Arc::new(AtomicUsize::new(0));
1109 (a, b, sampled, main_texture)
1110 });
1111
1112 let converted_clear_color = clear_color.map(Into::into);
1113
1114 let main_textures = MainTargetTextures {
1115 a: ColorAttachment::new(a.clone(), sampled.clone(), converted_clear_color),
1116 b: ColorAttachment::new(b.clone(), sampled.clone(), converted_clear_color),
1117 main_texture: main_texture.clone(),
1118 };
1119
1120 commands.entity(entity).insert(ViewTarget {
1121 main_texture: main_textures.main_texture.clone(),
1122 main_textures,
1123 main_texture_format,
1124 out_texture: out_attachment.clone(),
1125 });
1126 }
1127}