bevy_render/view/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
pub mod visibility;
pub mod window;
use bevy_asset::{load_internal_asset, Handle};
pub use visibility::*;
pub use window::*;
use crate::{
camera::{
CameraMainTextureUsages, ClearColor, ClearColorConfig, Exposure, ExtractedCamera,
ManualTextureViews, MipBias, NormalizedRenderTarget, TemporalJitter,
},
extract_component::ExtractComponentPlugin,
prelude::Shader,
primitives::Frustum,
render_asset::RenderAssets,
render_phase::ViewRangefinder3d,
render_resource::{DynamicUniformBuffer, ShaderType, Texture, TextureView},
renderer::{RenderDevice, RenderQueue},
texture::{
CachedTexture, ColorAttachment, DepthAttachment, GpuImage, OutputColorAttachment,
TextureCache,
},
Render, RenderApp, RenderSet,
};
use alloc::sync::Arc;
use bevy_app::{App, Plugin};
use bevy_color::LinearRgba;
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::prelude::*;
use bevy_image::BevyDefault as _;
use bevy_math::{mat3, vec2, vec3, Mat3, Mat4, UVec4, Vec2, Vec3, Vec4, Vec4Swizzles};
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
use bevy_render_macros::ExtractComponent;
use bevy_transform::components::GlobalTransform;
use bevy_utils::{hashbrown::hash_map::Entry, HashMap};
use core::{
ops::Range,
sync::atomic::{AtomicUsize, Ordering},
};
use wgpu::{
BufferUsages, Extent3d, RenderPassColorAttachment, RenderPassDepthStencilAttachment, StoreOp,
TextureDescriptor, TextureDimension, TextureFormat, TextureUsages,
};
pub const VIEW_TYPE_HANDLE: Handle<Shader> = Handle::weak_from_u128(15421373904451797197);
/// The matrix that converts from the RGB to the LMS color space.
///
/// To derive this, first we convert from RGB to [CIE 1931 XYZ]:
///
/// ```text
/// ⎡ X ⎤ ⎡ 0.490 0.310 0.200 ⎤ ⎡ R ⎤
/// ⎢ Y ⎥ = ⎢ 0.177 0.812 0.011 ⎥ ⎢ G ⎥
/// ⎣ Z ⎦ ⎣ 0.000 0.010 0.990 ⎦ ⎣ B ⎦
/// ```
///
/// Then we convert to LMS according to the [CAM16 standard matrix]:
///
/// ```text
/// ⎡ L ⎤ ⎡ 0.401 0.650 -0.051 ⎤ ⎡ X ⎤
/// ⎢ M ⎥ = ⎢ -0.250 1.204 0.046 ⎥ ⎢ Y ⎥
/// ⎣ S ⎦ ⎣ -0.002 0.049 0.953 ⎦ ⎣ Z ⎦
/// ```
///
/// The resulting matrix is just the concatenation of these two matrices, to do
/// the conversion in one step.
///
/// [CIE 1931 XYZ]: https://en.wikipedia.org/wiki/CIE_1931_color_space
/// [CAM16 standard matrix]: https://en.wikipedia.org/wiki/LMS_color_space
static RGB_TO_LMS: Mat3 = mat3(
vec3(0.311692, 0.0905138, 0.00764433),
vec3(0.652085, 0.901341, 0.0486554),
vec3(0.0362225, 0.00814478, 0.943700),
);
/// The inverse of the [`RGB_TO_LMS`] matrix, converting from the LMS color
/// space back to RGB.
static LMS_TO_RGB: Mat3 = mat3(
vec3(4.06305, -0.40791, -0.0118812),
vec3(-2.93241, 1.40437, -0.0486532),
vec3(-0.130646, 0.00353630, 1.0605344),
);
/// The [CIE 1931] *xy* chromaticity coordinates of the [D65 white point].
///
/// [CIE 1931]: https://en.wikipedia.org/wiki/CIE_1931_color_space
/// [D65 white point]: https://en.wikipedia.org/wiki/Standard_illuminant#D65_values
static D65_XY: Vec2 = vec2(0.31272, 0.32903);
/// The [D65 white point] in [LMS color space].
///
/// [LMS color space]: https://en.wikipedia.org/wiki/LMS_color_space
/// [D65 white point]: https://en.wikipedia.org/wiki/Standard_illuminant#D65_values
static D65_LMS: Vec3 = vec3(0.975538, 1.01648, 1.08475);
pub struct ViewPlugin;
impl Plugin for ViewPlugin {
fn build(&self, app: &mut App) {
load_internal_asset!(app, VIEW_TYPE_HANDLE, "view.wgsl", Shader::from_wgsl);
app.register_type::<InheritedVisibility>()
.register_type::<ViewVisibility>()
.register_type::<Msaa>()
.register_type::<NoFrustumCulling>()
.register_type::<RenderLayers>()
.register_type::<Visibility>()
.register_type::<VisibleEntities>()
.register_type::<ColorGrading>()
// NOTE: windows.is_changed() handles cases where a window was resized
.add_plugins((
ExtractComponentPlugin::<Msaa>::default(),
VisibilityPlugin,
VisibilityRangePlugin,
));
if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
render_app.add_systems(
Render,
(
// `TextureView`s need to be dropped before reconfiguring window surfaces.
clear_view_attachments
.in_set(RenderSet::ManageViews)
.before(create_surfaces),
prepare_view_attachments
.in_set(RenderSet::ManageViews)
.before(prepare_view_targets)
.after(prepare_windows),
prepare_view_targets
.in_set(RenderSet::ManageViews)
.after(prepare_windows)
.after(crate::render_asset::prepare_assets::<GpuImage>)
.ambiguous_with(crate::camera::sort_cameras), // doesn't use `sorted_camera_index_for_target`
prepare_view_uniforms.in_set(RenderSet::PrepareResources),
),
);
}
}
fn finish(&self, app: &mut App) {
if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
render_app
.init_resource::<ViewUniforms>()
.init_resource::<ViewTargetAttachments>();
}
}
}
/// Component for configuring the number of samples for [Multi-Sample Anti-Aliasing](https://en.wikipedia.org/wiki/Multisample_anti-aliasing)
/// for a [`Camera`](crate::camera::Camera).
///
/// Defaults to 4 samples. A higher number of samples results in smoother edges.
///
/// Some advanced rendering features may require that MSAA is disabled.
///
/// Note that the web currently only supports 1 or 4 samples.
#[derive(
Component,
Default,
Clone,
Copy,
ExtractComponent,
Reflect,
PartialEq,
PartialOrd,
Eq,
Hash,
Debug,
)]
#[reflect(Component, Default, PartialEq, Hash, Debug)]
pub enum Msaa {
Off = 1,
Sample2 = 2,
#[default]
Sample4 = 4,
Sample8 = 8,
}
impl Msaa {
#[inline]
pub fn samples(&self) -> u32 {
*self as u32
}
}
#[derive(Component)]
pub struct ExtractedView {
pub clip_from_view: Mat4,
pub world_from_view: GlobalTransform,
// The view-projection matrix. When provided it is used instead of deriving it from
// `projection` and `transform` fields, which can be helpful in cases where numerical
// stability matters and there is a more direct way to derive the view-projection matrix.
pub clip_from_world: Option<Mat4>,
pub hdr: bool,
// uvec4(origin.x, origin.y, width, height)
pub viewport: UVec4,
pub color_grading: ColorGrading,
}
impl ExtractedView {
/// Creates a 3D rangefinder for a view
pub fn rangefinder3d(&self) -> ViewRangefinder3d {
ViewRangefinder3d::from_world_from_view(&self.world_from_view.compute_matrix())
}
}
/// Configures filmic color grading parameters to adjust the image appearance.
///
/// Color grading is applied just before tonemapping for a given
/// [`Camera`](crate::camera::Camera) entity, with the sole exception of the
/// `post_saturation` value in [`ColorGradingGlobal`], which is applied after
/// tonemapping.
#[derive(Component, Reflect, Debug, Default, Clone)]
#[reflect(Component, Default, Debug)]
pub struct ColorGrading {
/// Filmic color grading values applied to the image as a whole (as opposed
/// to individual sections, like shadows and highlights).
pub global: ColorGradingGlobal,
/// Color grading values that are applied to the darker parts of the image.
///
/// The cutoff points can be customized with the
/// [`ColorGradingGlobal::midtones_range`] field.
pub shadows: ColorGradingSection,
/// Color grading values that are applied to the parts of the image with
/// intermediate brightness.
///
/// The cutoff points can be customized with the
/// [`ColorGradingGlobal::midtones_range`] field.
pub midtones: ColorGradingSection,
/// Color grading values that are applied to the lighter parts of the image.
///
/// The cutoff points can be customized with the
/// [`ColorGradingGlobal::midtones_range`] field.
pub highlights: ColorGradingSection,
}
/// Filmic color grading values applied to the image as a whole (as opposed to
/// individual sections, like shadows and highlights).
#[derive(Clone, Debug, Reflect)]
#[reflect(Default)]
pub struct ColorGradingGlobal {
/// Exposure value (EV) offset, measured in stops.
pub exposure: f32,
/// An adjustment made to the [CIE 1931] chromaticity *x* value.
///
/// Positive values make the colors redder. Negative values make the colors
/// bluer. This has no effect on luminance (brightness).
///
/// [CIE 1931]: https://en.wikipedia.org/wiki/CIE_1931_color_space#CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space
pub temperature: f32,
/// An adjustment made to the [CIE 1931] chromaticity *y* value.
///
/// Positive values make the colors more magenta. Negative values make the
/// colors greener. This has no effect on luminance (brightness).
///
/// [CIE 1931]: https://en.wikipedia.org/wiki/CIE_1931_color_space#CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space
pub tint: f32,
/// An adjustment to the [hue], in radians.
///
/// Adjusting this value changes the perceived colors in the image: red to
/// yellow to green to blue, etc. It has no effect on the saturation or
/// brightness of the colors.
///
/// [hue]: https://en.wikipedia.org/wiki/HSL_and_HSV#Formal_derivation
pub hue: f32,
/// Saturation adjustment applied after tonemapping.
/// Values below 1.0 desaturate, with a value of 0.0 resulting in a grayscale image
/// with luminance defined by ITU-R BT.709
/// Values above 1.0 increase saturation.
pub post_saturation: f32,
/// The luminance (brightness) ranges that are considered part of the
/// "midtones" of the image.
///
/// This affects which [`ColorGradingSection`]s apply to which colors. Note
/// that the sections smoothly blend into one another, to avoid abrupt
/// transitions.
///
/// The default value is 0.2 to 0.7.
pub midtones_range: Range<f32>,
}
/// The [`ColorGrading`] structure, packed into the most efficient form for the
/// GPU.
#[derive(Clone, Copy, Debug, ShaderType)]
pub struct ColorGradingUniform {
pub balance: Mat3,
pub saturation: Vec3,
pub contrast: Vec3,
pub gamma: Vec3,
pub gain: Vec3,
pub lift: Vec3,
pub midtone_range: Vec2,
pub exposure: f32,
pub hue: f32,
pub post_saturation: f32,
}
/// A section of color grading values that can be selectively applied to
/// shadows, midtones, and highlights.
#[derive(Reflect, Debug, Copy, Clone, PartialEq)]
pub struct ColorGradingSection {
/// Values below 1.0 desaturate, with a value of 0.0 resulting in a grayscale image
/// with luminance defined by ITU-R BT.709.
/// Values above 1.0 increase saturation.
pub saturation: f32,
/// Adjusts the range of colors.
///
/// A value of 1.0 applies no changes. Values below 1.0 move the colors more
/// toward a neutral gray. Values above 1.0 spread the colors out away from
/// the neutral gray.
pub contrast: f32,
/// A nonlinear luminance adjustment, mainly affecting the high end of the
/// range.
///
/// This is the *n* exponent in the standard [ASC CDL] formula for color
/// correction:
///
/// ```text
/// out = (i × s + o)ⁿ
/// ```
///
/// [ASC CDL]: https://en.wikipedia.org/wiki/ASC_CDL#Combined_Function
pub gamma: f32,
/// A linear luminance adjustment, mainly affecting the middle part of the
/// range.
///
/// This is the *s* factor in the standard [ASC CDL] formula for color
/// correction:
///
/// ```text
/// out = (i × s + o)ⁿ
/// ```
///
/// [ASC CDL]: https://en.wikipedia.org/wiki/ASC_CDL#Combined_Function
pub gain: f32,
/// A fixed luminance adjustment, mainly affecting the lower part of the
/// range.
///
/// This is the *o* term in the standard [ASC CDL] formula for color
/// correction:
///
/// ```text
/// out = (i × s + o)ⁿ
/// ```
///
/// [ASC CDL]: https://en.wikipedia.org/wiki/ASC_CDL#Combined_Function
pub lift: f32,
}
impl Default for ColorGradingGlobal {
fn default() -> Self {
Self {
exposure: 0.0,
temperature: 0.0,
tint: 0.0,
hue: 0.0,
post_saturation: 1.0,
midtones_range: 0.2..0.7,
}
}
}
impl Default for ColorGradingSection {
fn default() -> Self {
Self {
saturation: 1.0,
contrast: 1.0,
gamma: 1.0,
gain: 1.0,
lift: 0.0,
}
}
}
impl ColorGrading {
/// Creates a new [`ColorGrading`] instance in which shadows, midtones, and
/// highlights all have the same set of color grading values.
pub fn with_identical_sections(
global: ColorGradingGlobal,
section: ColorGradingSection,
) -> ColorGrading {
ColorGrading {
global,
highlights: section,
midtones: section,
shadows: section,
}
}
/// Returns an iterator that visits the shadows, midtones, and highlights
/// sections, in that order.
pub fn all_sections(&self) -> impl Iterator<Item = &ColorGradingSection> {
[&self.shadows, &self.midtones, &self.highlights].into_iter()
}
/// Applies the given mutating function to the shadows, midtones, and
/// highlights sections, in that order.
///
/// Returns an array composed of the results of such evaluation, in that
/// order.
pub fn all_sections_mut(&mut self) -> impl Iterator<Item = &mut ColorGradingSection> {
[&mut self.shadows, &mut self.midtones, &mut self.highlights].into_iter()
}
}
#[derive(Clone, ShaderType)]
pub struct ViewUniform {
pub clip_from_world: Mat4,
pub unjittered_clip_from_world: Mat4,
pub world_from_clip: Mat4,
pub world_from_view: Mat4,
pub view_from_world: Mat4,
pub clip_from_view: Mat4,
pub view_from_clip: Mat4,
pub world_position: Vec3,
pub exposure: f32,
// viewport(x_origin, y_origin, width, height)
pub viewport: Vec4,
pub frustum: [Vec4; 6],
pub color_grading: ColorGradingUniform,
pub mip_bias: f32,
}
#[derive(Resource)]
pub struct ViewUniforms {
pub uniforms: DynamicUniformBuffer<ViewUniform>,
}
impl FromWorld for ViewUniforms {
fn from_world(world: &mut World) -> Self {
let mut uniforms = DynamicUniformBuffer::default();
uniforms.set_label(Some("view_uniforms_buffer"));
let render_device = world.resource::<RenderDevice>();
if render_device.limits().max_storage_buffers_per_shader_stage > 0 {
uniforms.add_usages(BufferUsages::STORAGE);
}
Self { uniforms }
}
}
#[derive(Component)]
pub struct ViewUniformOffset {
pub offset: u32,
}
#[derive(Component)]
pub struct ViewTarget {
main_textures: MainTargetTextures,
main_texture_format: TextureFormat,
/// 0 represents `main_textures.a`, 1 represents `main_textures.b`
/// This is shared across view targets with the same render target
main_texture: Arc<AtomicUsize>,
out_texture: OutputColorAttachment,
}
/// Contains [`OutputColorAttachment`] used for each target present on any view in the current
/// frame, after being prepared by [`prepare_view_attachments`]. Users that want to override
/// the default output color attachment for a specific target can do so by adding a
/// [`OutputColorAttachment`] to this resource before [`prepare_view_targets`] is called.
#[derive(Resource, Default, Deref, DerefMut)]
pub struct ViewTargetAttachments(HashMap<NormalizedRenderTarget, OutputColorAttachment>);
pub struct PostProcessWrite<'a> {
pub source: &'a TextureView,
pub destination: &'a TextureView,
}
impl From<ColorGrading> for ColorGradingUniform {
fn from(component: ColorGrading) -> Self {
// Compute the balance matrix that will be used to apply the white
// balance adjustment to an RGB color. Our general approach will be to
// convert both the color and the developer-supplied white point to the
// LMS color space, apply the conversion, and then convert back.
//
// First, we start with the CIE 1931 *xy* values of the standard D65
// illuminant:
// <https://en.wikipedia.org/wiki/Standard_illuminant#D65_values>
//
// We then adjust them based on the developer's requested white balance.
let white_point_xy = D65_XY + vec2(-component.global.temperature, component.global.tint);
// Convert the white point from CIE 1931 *xy* to LMS. First, we convert to XYZ:
//
// Y Y
// Y = 1 X = ─ x Z = ─ (1 - x - y)
// y y
//
// Then we convert from XYZ to LMS color space, using the CAM16 matrix
// from <https://en.wikipedia.org/wiki/LMS_color_space#Later_CIECAMs>:
//
// ⎡ L ⎤ ⎡ 0.401 0.650 -0.051 ⎤ ⎡ X ⎤
// ⎢ M ⎥ = ⎢ -0.250 1.204 0.046 ⎥ ⎢ Y ⎥
// ⎣ S ⎦ ⎣ -0.002 0.049 0.953 ⎦ ⎣ Z ⎦
//
// The following formula is just a simplification of the above.
let white_point_lms = vec3(0.701634, 1.15856, -0.904175)
+ (vec3(-0.051461, 0.045854, 0.953127)
+ vec3(0.452749, -0.296122, -0.955206) * white_point_xy.x)
/ white_point_xy.y;
// Now that we're in LMS space, perform the white point scaling.
let white_point_adjustment = Mat3::from_diagonal(D65_LMS / white_point_lms);
// Finally, combine the RGB → LMS → corrected LMS → corrected RGB
// pipeline into a single 3×3 matrix.
let balance = LMS_TO_RGB * white_point_adjustment * RGB_TO_LMS;
Self {
balance,
saturation: vec3(
component.shadows.saturation,
component.midtones.saturation,
component.highlights.saturation,
),
contrast: vec3(
component.shadows.contrast,
component.midtones.contrast,
component.highlights.contrast,
),
gamma: vec3(
component.shadows.gamma,
component.midtones.gamma,
component.highlights.gamma,
),
gain: vec3(
component.shadows.gain,
component.midtones.gain,
component.highlights.gain,
),
lift: vec3(
component.shadows.lift,
component.midtones.lift,
component.highlights.lift,
),
midtone_range: vec2(
component.global.midtones_range.start,
component.global.midtones_range.end,
),
exposure: component.global.exposure,
hue: component.global.hue,
post_saturation: component.global.post_saturation,
}
}
}
#[derive(Component)]
pub struct GpuCulling;
#[derive(Component)]
pub struct NoCpuCulling;
impl ViewTarget {
pub const TEXTURE_FORMAT_HDR: TextureFormat = TextureFormat::Rgba16Float;
/// Retrieve this target's main texture's color attachment.
pub fn get_color_attachment(&self) -> RenderPassColorAttachment {
if self.main_texture.load(Ordering::SeqCst) == 0 {
self.main_textures.a.get_attachment()
} else {
self.main_textures.b.get_attachment()
}
}
/// Retrieve this target's "unsampled" main texture's color attachment.
pub fn get_unsampled_color_attachment(&self) -> RenderPassColorAttachment {
if self.main_texture.load(Ordering::SeqCst) == 0 {
self.main_textures.a.get_unsampled_attachment()
} else {
self.main_textures.b.get_unsampled_attachment()
}
}
/// The "main" unsampled texture.
pub fn main_texture(&self) -> &Texture {
if self.main_texture.load(Ordering::SeqCst) == 0 {
&self.main_textures.a.texture.texture
} else {
&self.main_textures.b.texture.texture
}
}
/// The _other_ "main" unsampled texture.
/// In most cases you should use [`Self::main_texture`] instead and never this.
/// The textures will naturally be swapped when [`Self::post_process_write`] is called.
///
/// A use case for this is to be able to prepare a bind group for all main textures
/// ahead of time.
pub fn main_texture_other(&self) -> &Texture {
if self.main_texture.load(Ordering::SeqCst) == 0 {
&self.main_textures.b.texture.texture
} else {
&self.main_textures.a.texture.texture
}
}
/// The "main" unsampled texture.
pub fn main_texture_view(&self) -> &TextureView {
if self.main_texture.load(Ordering::SeqCst) == 0 {
&self.main_textures.a.texture.default_view
} else {
&self.main_textures.b.texture.default_view
}
}
/// The _other_ "main" unsampled texture view.
/// In most cases you should use [`Self::main_texture_view`] instead and never this.
/// The textures will naturally be swapped when [`Self::post_process_write`] is called.
///
/// A use case for this is to be able to prepare a bind group for all main textures
/// ahead of time.
pub fn main_texture_other_view(&self) -> &TextureView {
if self.main_texture.load(Ordering::SeqCst) == 0 {
&self.main_textures.b.texture.default_view
} else {
&self.main_textures.a.texture.default_view
}
}
/// The "main" sampled texture.
pub fn sampled_main_texture(&self) -> Option<&Texture> {
self.main_textures
.a
.resolve_target
.as_ref()
.map(|sampled| &sampled.texture)
}
/// The "main" sampled texture view.
pub fn sampled_main_texture_view(&self) -> Option<&TextureView> {
self.main_textures
.a
.resolve_target
.as_ref()
.map(|sampled| &sampled.default_view)
}
#[inline]
pub fn main_texture_format(&self) -> TextureFormat {
self.main_texture_format
}
/// Returns `true` if and only if the main texture is [`Self::TEXTURE_FORMAT_HDR`]
#[inline]
pub fn is_hdr(&self) -> bool {
self.main_texture_format == ViewTarget::TEXTURE_FORMAT_HDR
}
/// The final texture this view will render to.
#[inline]
pub fn out_texture(&self) -> &TextureView {
&self.out_texture.view
}
pub fn out_texture_color_attachment(
&self,
clear_color: Option<LinearRgba>,
) -> RenderPassColorAttachment {
self.out_texture.get_attachment(clear_color)
}
/// The format of the final texture this view will render to
#[inline]
pub fn out_texture_format(&self) -> TextureFormat {
self.out_texture.format
}
/// This will start a new "post process write", which assumes that the caller
/// will write the [`PostProcessWrite`]'s `source` to the `destination`.
///
/// `source` is the "current" main texture. This will internally flip this
/// [`ViewTarget`]'s main texture to the `destination` texture, so the caller
/// _must_ ensure `source` is copied to `destination`, with or without modifications.
/// Failing to do so will cause the current main texture information to be lost.
pub fn post_process_write(&self) -> PostProcessWrite {
let old_is_a_main_texture = self.main_texture.fetch_xor(1, Ordering::SeqCst);
// if the old main texture is a, then the post processing must write from a to b
if old_is_a_main_texture == 0 {
self.main_textures.b.mark_as_cleared();
PostProcessWrite {
source: &self.main_textures.a.texture.default_view,
destination: &self.main_textures.b.texture.default_view,
}
} else {
self.main_textures.a.mark_as_cleared();
PostProcessWrite {
source: &self.main_textures.b.texture.default_view,
destination: &self.main_textures.a.texture.default_view,
}
}
}
}
#[derive(Component)]
pub struct ViewDepthTexture {
pub texture: Texture,
attachment: DepthAttachment,
}
impl ViewDepthTexture {
pub fn new(texture: CachedTexture, clear_value: Option<f32>) -> Self {
Self {
texture: texture.texture,
attachment: DepthAttachment::new(texture.default_view, clear_value),
}
}
pub fn get_attachment(&self, store: StoreOp) -> RenderPassDepthStencilAttachment {
self.attachment.get_attachment(store)
}
pub fn view(&self) -> &TextureView {
&self.attachment.view
}
}
pub fn prepare_view_uniforms(
mut commands: Commands,
render_device: Res<RenderDevice>,
render_queue: Res<RenderQueue>,
mut view_uniforms: ResMut<ViewUniforms>,
views: Query<(
Entity,
Option<&ExtractedCamera>,
&ExtractedView,
Option<&Frustum>,
Option<&TemporalJitter>,
Option<&MipBias>,
)>,
) {
let view_iter = views.iter();
let view_count = view_iter.len();
let Some(mut writer) =
view_uniforms
.uniforms
.get_writer(view_count, &render_device, &render_queue)
else {
return;
};
for (entity, extracted_camera, extracted_view, frustum, temporal_jitter, mip_bias) in &views {
let viewport = extracted_view.viewport.as_vec4();
let unjittered_projection = extracted_view.clip_from_view;
let mut clip_from_view = unjittered_projection;
if let Some(temporal_jitter) = temporal_jitter {
temporal_jitter.jitter_projection(&mut clip_from_view, viewport.zw());
}
let view_from_clip = clip_from_view.inverse();
let world_from_view = extracted_view.world_from_view.compute_matrix();
let view_from_world = world_from_view.inverse();
let clip_from_world = if temporal_jitter.is_some() {
clip_from_view * view_from_world
} else {
extracted_view
.clip_from_world
.unwrap_or_else(|| clip_from_view * view_from_world)
};
// Map Frustum type to shader array<vec4<f32>, 6>
let frustum = frustum
.map(|frustum| frustum.half_spaces.map(|h| h.normal_d()))
.unwrap_or([Vec4::ZERO; 6]);
let view_uniforms = ViewUniformOffset {
offset: writer.write(&ViewUniform {
clip_from_world,
unjittered_clip_from_world: unjittered_projection * view_from_world,
world_from_clip: world_from_view * view_from_clip,
world_from_view,
view_from_world,
clip_from_view,
view_from_clip,
world_position: extracted_view.world_from_view.translation(),
exposure: extracted_camera
.map(|c| c.exposure)
.unwrap_or_else(|| Exposure::default().exposure()),
viewport,
frustum,
color_grading: extracted_view.color_grading.clone().into(),
mip_bias: mip_bias.unwrap_or(&MipBias(0.0)).0,
}),
};
commands.entity(entity).insert(view_uniforms);
}
}
#[derive(Clone)]
struct MainTargetTextures {
a: ColorAttachment,
b: ColorAttachment,
/// 0 represents `main_textures.a`, 1 represents `main_textures.b`
/// This is shared across view targets with the same render target
main_texture: Arc<AtomicUsize>,
}
/// Prepares the view target [`OutputColorAttachment`] for each view in the current frame.
pub fn prepare_view_attachments(
windows: Res<ExtractedWindows>,
images: Res<RenderAssets<GpuImage>>,
manual_texture_views: Res<ManualTextureViews>,
cameras: Query<&ExtractedCamera>,
mut view_target_attachments: ResMut<ViewTargetAttachments>,
) {
for camera in cameras.iter() {
let Some(target) = &camera.target else {
continue;
};
match view_target_attachments.entry(target.clone()) {
Entry::Occupied(_) => {}
Entry::Vacant(entry) => {
let Some(attachment) = target
.get_texture_view(&windows, &images, &manual_texture_views)
.cloned()
.zip(target.get_texture_format(&windows, &images, &manual_texture_views))
.map(|(view, format)| {
OutputColorAttachment::new(view.clone(), format.add_srgb_suffix())
})
else {
continue;
};
entry.insert(attachment);
}
};
}
}
/// Clears the view target [`OutputColorAttachment`]s.
pub fn clear_view_attachments(mut view_target_attachments: ResMut<ViewTargetAttachments>) {
view_target_attachments.clear();
}
pub fn prepare_view_targets(
mut commands: Commands,
clear_color_global: Res<ClearColor>,
render_device: Res<RenderDevice>,
mut texture_cache: ResMut<TextureCache>,
cameras: Query<(
Entity,
&ExtractedCamera,
&ExtractedView,
&CameraMainTextureUsages,
&Msaa,
)>,
view_target_attachments: Res<ViewTargetAttachments>,
) {
let mut textures = HashMap::default();
for (entity, camera, view, texture_usage, msaa) in cameras.iter() {
let (Some(target_size), Some(target)) = (camera.physical_target_size, &camera.target)
else {
continue;
};
let Some(out_attachment) = view_target_attachments.get(target) else {
continue;
};
let size = Extent3d {
width: target_size.x,
height: target_size.y,
depth_or_array_layers: 1,
};
let main_texture_format = if view.hdr {
ViewTarget::TEXTURE_FORMAT_HDR
} else {
TextureFormat::bevy_default()
};
let clear_color = match camera.clear_color {
ClearColorConfig::Custom(color) => Some(color),
ClearColorConfig::None => None,
_ => Some(clear_color_global.0),
};
let (a, b, sampled, main_texture) = textures
.entry((camera.target.clone(), view.hdr, msaa))
.or_insert_with(|| {
let descriptor = TextureDescriptor {
label: None,
size,
mip_level_count: 1,
sample_count: 1,
dimension: TextureDimension::D2,
format: main_texture_format,
usage: texture_usage.0,
view_formats: match main_texture_format {
TextureFormat::Bgra8Unorm => &[TextureFormat::Bgra8UnormSrgb],
TextureFormat::Rgba8Unorm => &[TextureFormat::Rgba8UnormSrgb],
_ => &[],
},
};
let a = texture_cache.get(
&render_device,
TextureDescriptor {
label: Some("main_texture_a"),
..descriptor
},
);
let b = texture_cache.get(
&render_device,
TextureDescriptor {
label: Some("main_texture_b"),
..descriptor
},
);
let sampled = if msaa.samples() > 1 {
let sampled = texture_cache.get(
&render_device,
TextureDescriptor {
label: Some("main_texture_sampled"),
size,
mip_level_count: 1,
sample_count: msaa.samples(),
dimension: TextureDimension::D2,
format: main_texture_format,
usage: TextureUsages::RENDER_ATTACHMENT,
view_formats: descriptor.view_formats,
},
);
Some(sampled)
} else {
None
};
let main_texture = Arc::new(AtomicUsize::new(0));
(a, b, sampled, main_texture)
});
let converted_clear_color = clear_color.map(Into::into);
let main_textures = MainTargetTextures {
a: ColorAttachment::new(a.clone(), sampled.clone(), converted_clear_color),
b: ColorAttachment::new(b.clone(), sampled.clone(), converted_clear_color),
main_texture: main_texture.clone(),
};
commands.entity(entity).insert(ViewTarget {
main_texture: main_textures.main_texture.clone(),
main_textures,
main_texture_format,
out_texture: out_attachment.clone(),
});
}
}