bevy_render/view/visibility/
range.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
//! Specific distances from the camera in which entities are visible, also known
//! as *hierarchical levels of detail* or *HLOD*s.

use core::{
    hash::{Hash, Hasher},
    ops::Range,
};

use bevy_app::{App, Plugin, PostUpdate};
use bevy_ecs::{
    component::Component,
    entity::{Entity, EntityHashMap},
    query::{Changed, With},
    reflect::ReflectComponent,
    removal_detection::RemovedComponents,
    schedule::IntoSystemConfigs as _,
    system::{Query, Res, ResMut, Resource},
};
use bevy_math::{vec4, FloatOrd, Vec4};
use bevy_reflect::Reflect;
use bevy_transform::components::GlobalTransform;
use bevy_utils::{prelude::default, HashMap};
use nonmax::NonMaxU16;
use wgpu::{BufferBindingType, BufferUsages};

use super::{check_visibility, VisibilitySystems};
use crate::sync_world::{MainEntity, MainEntityHashMap};
use crate::{
    camera::Camera,
    mesh::Mesh3d,
    primitives::Aabb,
    render_resource::BufferVec,
    renderer::{RenderDevice, RenderQueue},
    Extract, ExtractSchedule, Render, RenderApp, RenderSet,
};

/// We need at least 4 storage buffer bindings available to enable the
/// visibility range buffer.
///
/// Even though we only use one storage buffer, the first 3 available storage
/// buffers will go to various light-related buffers. We will grab the fourth
/// buffer slot.
pub const VISIBILITY_RANGES_STORAGE_BUFFER_COUNT: u32 = 4;

/// The size of the visibility ranges buffer in elements (not bytes) when fewer
/// than 6 storage buffers are available and we're forced to use a uniform
/// buffer instead (most notably, on WebGL 2).
const VISIBILITY_RANGE_UNIFORM_BUFFER_SIZE: usize = 64;

/// A plugin that enables [`VisibilityRange`]s, which allow entities to be
/// hidden or shown based on distance to the camera.
pub struct VisibilityRangePlugin;

impl Plugin for VisibilityRangePlugin {
    fn build(&self, app: &mut App) {
        app.register_type::<VisibilityRange>()
            .init_resource::<VisibleEntityRanges>()
            .add_systems(
                PostUpdate,
                check_visibility_ranges
                    .in_set(VisibilitySystems::CheckVisibility)
                    .before(check_visibility::<With<Mesh3d>>),
            );

        let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
            return;
        };

        render_app
            .init_resource::<RenderVisibilityRanges>()
            .add_systems(ExtractSchedule, extract_visibility_ranges)
            .add_systems(
                Render,
                write_render_visibility_ranges.in_set(RenderSet::PrepareResourcesFlush),
            );
    }
}

/// Specifies the range of distances that this entity must be from the camera in
/// order to be rendered.
///
/// This is also known as *hierarchical level of detail* or *HLOD*.
///
/// Use this component when you want to render a high-polygon mesh when the
/// camera is close and a lower-polygon mesh when the camera is far away. This
/// is a common technique for improving performance, because fine details are
/// hard to see in a mesh at a distance. To avoid an artifact known as *popping*
/// between levels, each level has a *margin*, within which the object
/// transitions gradually from invisible to visible using a dithering effect.
///
/// You can also use this feature to replace multiple meshes with a single mesh
/// when the camera is distant. This is the reason for the term "*hierarchical*
/// level of detail". Reducing the number of meshes can be useful for reducing
/// drawcall count. Note that you must place the [`VisibilityRange`] component
/// on each entity you want to be part of a LOD group, as [`VisibilityRange`]
/// isn't automatically propagated down to children.
///
/// A typical use of this feature might look like this:
///
/// | Entity                  | `start_margin` | `end_margin` |
/// |-------------------------|----------------|--------------|
/// | Root                    | N/A            | N/A          |
/// | ├─ High-poly mesh       | [0, 0)         | [20, 25)     |
/// | ├─ Low-poly mesh        | [20, 25)       | [70, 75)     |
/// | └─ Billboard *imposter* | [70, 75)       | [150, 160)   |
///
/// With this setup, the user will see a high-poly mesh when the camera is
/// closer than 20 units. As the camera zooms out, between 20 units to 25 units,
/// the high-poly mesh will gradually fade to a low-poly mesh. When the camera
/// is 70 to 75 units away, the low-poly mesh will fade to a single textured
/// quad. And between 150 and 160 units, the object fades away entirely. Note
/// that the `end_margin` of a higher LOD is always identical to the
/// `start_margin` of the next lower LOD; this is important for the crossfade
/// effect to function properly.
#[derive(Component, Clone, PartialEq, Default, Reflect)]
#[reflect(Component, PartialEq, Hash)]
pub struct VisibilityRange {
    /// The range of distances, in world units, between which this entity will
    /// smoothly fade into view as the camera zooms out.
    ///
    /// If the start and end of this range are identical, the transition will be
    /// abrupt, with no crossfading.
    ///
    /// `start_margin.end` must be less than or equal to `end_margin.start`.
    pub start_margin: Range<f32>,

    /// The range of distances, in world units, between which this entity will
    /// smoothly fade out of view as the camera zooms out.
    ///
    /// If the start and end of this range are identical, the transition will be
    /// abrupt, with no crossfading.
    ///
    /// `end_margin.start` must be greater than or equal to `start_margin.end`.
    pub end_margin: Range<f32>,

    /// If set to true, Bevy will use the center of the axis-aligned bounding
    /// box ([`Aabb`]) as the position of the mesh for the purposes of
    /// visibility range computation.
    ///
    /// Otherwise, if this field is set to false, Bevy will use the origin of
    /// the mesh as the mesh's position.
    ///
    /// Usually you will want to leave this set to false, because different LODs
    /// may have different AABBs, and smooth crossfades between LOD levels
    /// require that all LODs of a mesh be at *precisely* the same position. If
    /// you aren't using crossfading, however, and your meshes aren't centered
    /// around their origins, then this flag may be useful.
    pub use_aabb: bool,
}

impl Eq for VisibilityRange {}

impl Hash for VisibilityRange {
    fn hash<H>(&self, state: &mut H)
    where
        H: Hasher,
    {
        FloatOrd(self.start_margin.start).hash(state);
        FloatOrd(self.start_margin.end).hash(state);
        FloatOrd(self.end_margin.start).hash(state);
        FloatOrd(self.end_margin.end).hash(state);
    }
}

impl VisibilityRange {
    /// Creates a new *abrupt* visibility range, with no crossfade.
    ///
    /// There will be no crossfade; the object will immediately vanish if the
    /// camera is closer than `start` units or farther than `end` units from the
    /// model.
    ///
    /// The `start` value must be less than or equal to the `end` value.
    #[inline]
    pub fn abrupt(start: f32, end: f32) -> Self {
        Self {
            start_margin: start..start,
            end_margin: end..end,
            use_aabb: false,
        }
    }

    /// Returns true if both the start and end transitions for this range are
    /// abrupt: that is, there is no crossfading.
    #[inline]
    pub fn is_abrupt(&self) -> bool {
        self.start_margin.start == self.start_margin.end
            && self.end_margin.start == self.end_margin.end
    }

    /// Returns true if the object will be visible at all, given a camera
    /// `camera_distance` units away.
    ///
    /// Any amount of visibility, even with the heaviest dithering applied, is
    /// considered visible according to this check.
    #[inline]
    pub fn is_visible_at_all(&self, camera_distance: f32) -> bool {
        camera_distance >= self.start_margin.start && camera_distance < self.end_margin.end
    }

    /// Returns true if the object is completely invisible, given a camera
    /// `camera_distance` units away.
    ///
    /// This is equivalent to `!VisibilityRange::is_visible_at_all()`.
    #[inline]
    pub fn is_culled(&self, camera_distance: f32) -> bool {
        !self.is_visible_at_all(camera_distance)
    }
}

/// Stores information related to [`VisibilityRange`]s in the render world.
#[derive(Resource)]
pub struct RenderVisibilityRanges {
    /// Information corresponding to each entity.
    entities: MainEntityHashMap<RenderVisibilityEntityInfo>,

    /// Maps a [`VisibilityRange`] to its index within the `buffer`.
    ///
    /// This map allows us to deduplicate identical visibility ranges, which
    /// saves GPU memory.
    range_to_index: HashMap<VisibilityRange, NonMaxU16>,

    /// The GPU buffer that stores [`VisibilityRange`]s.
    ///
    /// Each [`Vec4`] contains the start margin start, start margin end, end
    /// margin start, and end margin end distances, in that order.
    buffer: BufferVec<Vec4>,

    /// True if the buffer has been changed since the last frame and needs to be
    /// reuploaded to the GPU.
    buffer_dirty: bool,
}

/// Per-entity information related to [`VisibilityRange`]s.
struct RenderVisibilityEntityInfo {
    /// The index of the range within the GPU buffer.
    buffer_index: NonMaxU16,
    /// True if the range is abrupt: i.e. has no crossfade.
    is_abrupt: bool,
}

impl Default for RenderVisibilityRanges {
    fn default() -> Self {
        Self {
            entities: default(),
            range_to_index: default(),
            buffer: BufferVec::new(
                BufferUsages::STORAGE | BufferUsages::UNIFORM | BufferUsages::VERTEX,
            ),
            buffer_dirty: true,
        }
    }
}

impl RenderVisibilityRanges {
    /// Clears out the [`RenderVisibilityRanges`] in preparation for a new
    /// frame.
    fn clear(&mut self) {
        self.entities.clear();
        self.range_to_index.clear();
        self.buffer.clear();
        self.buffer_dirty = true;
    }

    /// Inserts a new entity into the [`RenderVisibilityRanges`].
    fn insert(&mut self, entity: MainEntity, visibility_range: &VisibilityRange) {
        // Grab a slot in the GPU buffer, or take the existing one if there
        // already is one.
        let buffer_index = *self
            .range_to_index
            .entry(visibility_range.clone())
            .or_insert_with(|| {
                NonMaxU16::try_from(self.buffer.push(vec4(
                    visibility_range.start_margin.start,
                    visibility_range.start_margin.end,
                    visibility_range.end_margin.start,
                    visibility_range.end_margin.end,
                )) as u16)
                .unwrap_or_default()
            });

        self.entities.insert(
            entity,
            RenderVisibilityEntityInfo {
                buffer_index,
                is_abrupt: visibility_range.is_abrupt(),
            },
        );
    }

    /// Returns the index in the GPU buffer corresponding to the visible range
    /// for the given entity.
    ///
    /// If the entity has no visible range, returns `None`.
    #[inline]
    pub fn lod_index_for_entity(&self, entity: MainEntity) -> Option<NonMaxU16> {
        self.entities.get(&entity).map(|info| info.buffer_index)
    }

    /// Returns true if the entity has a visibility range and it isn't abrupt:
    /// i.e. if it has a crossfade.
    #[inline]
    pub fn entity_has_crossfading_visibility_ranges(&self, entity: MainEntity) -> bool {
        self.entities
            .get(&entity)
            .is_some_and(|info| !info.is_abrupt)
    }

    /// Returns a reference to the GPU buffer that stores visibility ranges.
    #[inline]
    pub fn buffer(&self) -> &BufferVec<Vec4> {
        &self.buffer
    }
}

/// Stores which entities are in within the [`VisibilityRange`]s of views.
///
/// This doesn't store the results of frustum or occlusion culling; use
/// [`super::ViewVisibility`] for that. Thus entities in this list may not
/// actually be visible.
///
/// For efficiency, these tables only store entities that have
/// [`VisibilityRange`] components. Entities without such a component won't be
/// in these tables at all.
///
/// The table is indexed by entity and stores a 32-bit bitmask with one bit for
/// each camera, where a 0 bit corresponds to "out of range" and a 1 bit
/// corresponds to "in range". Hence it's limited to storing information for 32
/// views.
#[derive(Resource, Default)]
pub struct VisibleEntityRanges {
    /// Stores which bit index each view corresponds to.
    views: EntityHashMap<u8>,

    /// Stores a bitmask in which each view has a single bit.
    ///
    /// A 0 bit for a view corresponds to "out of range"; a 1 bit corresponds to
    /// "in range".
    entities: EntityHashMap<u32>,
}

impl VisibleEntityRanges {
    /// Clears out the [`VisibleEntityRanges`] in preparation for a new frame.
    fn clear(&mut self) {
        self.views.clear();
        self.entities.clear();
    }

    /// Returns true if the entity is in range of the given camera.
    ///
    /// This only checks [`VisibilityRange`]s and doesn't perform any frustum or
    /// occlusion culling. Thus the entity might not *actually* be visible.
    ///
    /// The entity is assumed to have a [`VisibilityRange`] component. If the
    /// entity doesn't have that component, this method will return false.
    #[inline]
    pub fn entity_is_in_range_of_view(&self, entity: Entity, view: Entity) -> bool {
        let Some(visibility_bitmask) = self.entities.get(&entity) else {
            return false;
        };
        let Some(view_index) = self.views.get(&view) else {
            return false;
        };
        (visibility_bitmask & (1 << view_index)) != 0
    }

    /// Returns true if the entity is in range of any view.
    ///
    /// This only checks [`VisibilityRange`]s and doesn't perform any frustum or
    /// occlusion culling. Thus the entity might not *actually* be visible.
    ///
    /// The entity is assumed to have a [`VisibilityRange`] component. If the
    /// entity doesn't have that component, this method will return false.
    #[inline]
    pub fn entity_is_in_range_of_any_view(&self, entity: Entity) -> bool {
        self.entities.contains_key(&entity)
    }
}

/// Checks all entities against all views in order to determine which entities
/// with [`VisibilityRange`]s are potentially visible.
///
/// This only checks distance from the camera and doesn't frustum or occlusion
/// cull.
pub fn check_visibility_ranges(
    mut visible_entity_ranges: ResMut<VisibleEntityRanges>,
    view_query: Query<(Entity, &GlobalTransform), With<Camera>>,
    mut entity_query: Query<(Entity, &GlobalTransform, Option<&Aabb>, &VisibilityRange)>,
) {
    visible_entity_ranges.clear();

    // Early out if the visibility range feature isn't in use.
    if entity_query.is_empty() {
        return;
    }

    // Assign an index to each view.
    let mut views = vec![];
    for (view, view_transform) in view_query.iter().take(32) {
        let view_index = views.len() as u8;
        visible_entity_ranges.views.insert(view, view_index);
        views.push((view, view_transform.translation_vec3a()));
    }

    // Check each entity/view pair. Only consider entities with
    // [`VisibilityRange`] components.
    for (entity, entity_transform, maybe_model_aabb, visibility_range) in entity_query.iter_mut() {
        let mut visibility = 0;
        for (view_index, &(_, view_position)) in views.iter().enumerate() {
            // If instructed to use the AABB and the model has one, use its
            // center as the model position. Otherwise, use the model's
            // translation.
            let model_position = match (visibility_range.use_aabb, maybe_model_aabb) {
                (true, Some(model_aabb)) => entity_transform
                    .affine()
                    .transform_point3a(model_aabb.center),
                _ => entity_transform.translation_vec3a(),
            };

            if visibility_range.is_visible_at_all((view_position - model_position).length()) {
                visibility |= 1 << view_index;
            }
        }

        // Invisible entities have no entry at all in the hash map. This speeds
        // up checks slightly in this common case.
        if visibility != 0 {
            visible_entity_ranges.entities.insert(entity, visibility);
        }
    }
}

/// Extracts all [`VisibilityRange`] components from the main world to the
/// render world and inserts them into [`RenderVisibilityRanges`].
pub fn extract_visibility_ranges(
    mut render_visibility_ranges: ResMut<RenderVisibilityRanges>,
    visibility_ranges_query: Extract<Query<(Entity, &VisibilityRange)>>,
    changed_ranges_query: Extract<Query<Entity, Changed<VisibilityRange>>>,
    mut removed_visibility_ranges: Extract<RemovedComponents<VisibilityRange>>,
) {
    if changed_ranges_query.is_empty() && removed_visibility_ranges.read().next().is_none() {
        return;
    }

    render_visibility_ranges.clear();
    for (entity, visibility_range) in visibility_ranges_query.iter() {
        render_visibility_ranges.insert(entity.into(), visibility_range);
    }
}

/// Writes the [`RenderVisibilityRanges`] table to the GPU.
pub fn write_render_visibility_ranges(
    render_device: Res<RenderDevice>,
    render_queue: Res<RenderQueue>,
    mut render_visibility_ranges: ResMut<RenderVisibilityRanges>,
) {
    // If there haven't been any changes, early out.
    if !render_visibility_ranges.buffer_dirty {
        return;
    }

    // Mess with the length of the buffer to meet API requirements if necessary.
    match render_device.get_supported_read_only_binding_type(VISIBILITY_RANGES_STORAGE_BUFFER_COUNT)
    {
        // If we're using a uniform buffer, we must have *exactly*
        // `VISIBILITY_RANGE_UNIFORM_BUFFER_SIZE` elements.
        BufferBindingType::Uniform
            if render_visibility_ranges.buffer.len() > VISIBILITY_RANGE_UNIFORM_BUFFER_SIZE =>
        {
            render_visibility_ranges
                .buffer
                .truncate(VISIBILITY_RANGE_UNIFORM_BUFFER_SIZE);
        }
        BufferBindingType::Uniform
            if render_visibility_ranges.buffer.len() < VISIBILITY_RANGE_UNIFORM_BUFFER_SIZE =>
        {
            while render_visibility_ranges.buffer.len() < VISIBILITY_RANGE_UNIFORM_BUFFER_SIZE {
                render_visibility_ranges.buffer.push(default());
            }
        }

        // Otherwise, if we're using a storage buffer, just ensure there's
        // something in the buffer, or else it won't get allocated.
        BufferBindingType::Storage { .. } if render_visibility_ranges.buffer.is_empty() => {
            render_visibility_ranges.buffer.push(default());
        }

        _ => {}
    }

    // Schedule the write.
    render_visibility_ranges
        .buffer
        .write_buffer(&render_device, &render_queue);
    render_visibility_ranges.buffer_dirty = false;
}