bevy_render/view/visibility/range.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
//! Specific distances from the camera in which entities are visible, also known
//! as *hierarchical levels of detail* or *HLOD*s.
use std::{
hash::{Hash, Hasher},
ops::Range,
};
use bevy_app::{App, Plugin, PostUpdate};
use bevy_ecs::{
component::Component,
entity::Entity,
query::{Changed, With},
schedule::IntoSystemConfigs as _,
system::{Query, Res, ResMut, Resource},
};
use bevy_math::{vec4, FloatOrd, Vec4};
use bevy_reflect::Reflect;
use bevy_transform::components::GlobalTransform;
use bevy_utils::{prelude::default, EntityHashMap, HashMap};
use nonmax::NonMaxU16;
use wgpu::{BufferBindingType, BufferUsages};
use crate::{
camera::Camera,
render_resource::BufferVec,
renderer::{RenderDevice, RenderQueue},
Extract, ExtractSchedule, Render, RenderApp, RenderSet,
};
use super::{check_visibility, VisibilitySystems, WithMesh};
/// We need at least 4 storage buffer bindings available to enable the
/// visibility range buffer.
///
/// Even though we only use one storage buffer, the first 3 available storage
/// buffers will go to various light-related buffers. We will grab the fourth
/// buffer slot.
pub const VISIBILITY_RANGES_STORAGE_BUFFER_COUNT: u32 = 4;
/// The size of the visibility ranges buffer in elements (not bytes) when fewer
/// than 6 storage buffers are available and we're forced to use a uniform
/// buffer instead (most notably, on WebGL 2).
const VISIBILITY_RANGE_UNIFORM_BUFFER_SIZE: usize = 64;
/// A plugin that enables [`VisibilityRange`]s, which allow entities to be
/// hidden or shown based on distance to the camera.
pub struct VisibilityRangePlugin;
impl Plugin for VisibilityRangePlugin {
fn build(&self, app: &mut App) {
app.register_type::<VisibilityRange>()
.init_resource::<VisibleEntityRanges>()
.add_systems(
PostUpdate,
check_visibility_ranges
.in_set(VisibilitySystems::CheckVisibility)
.before(check_visibility::<WithMesh>),
);
let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
return;
};
render_app
.init_resource::<RenderVisibilityRanges>()
.add_systems(ExtractSchedule, extract_visibility_ranges)
.add_systems(
Render,
write_render_visibility_ranges.in_set(RenderSet::PrepareResourcesFlush),
);
}
}
/// Specifies the range of distances that this entity must be from the camera in
/// order to be rendered.
///
/// This is also known as *hierarchical level of detail* or *HLOD*.
///
/// Use this component when you want to render a high-polygon mesh when the
/// camera is close and a lower-polygon mesh when the camera is far away. This
/// is a common technique for improving performance, because fine details are
/// hard to see in a mesh at a distance. To avoid an artifact known as *popping*
/// between levels, each level has a *margin*, within which the object
/// transitions gradually from invisible to visible using a dithering effect.
///
/// You can also use this feature to replace multiple meshes with a single mesh
/// when the camera is distant. This is the reason for the term "*hierarchical*
/// level of detail". Reducing the number of meshes can be useful for reducing
/// drawcall count. Note that you must place the [`VisibilityRange`] component
/// on each entity you want to be part of a LOD group, as [`VisibilityRange`]
/// isn't automatically propagated down to children.
///
/// A typical use of this feature might look like this:
///
/// | Entity | `start_margin` | `end_margin` |
/// |-------------------------|----------------|--------------|
/// | Root | N/A | N/A |
/// | ├─ High-poly mesh | [0, 0) | [20, 25) |
/// | ├─ Low-poly mesh | [20, 25) | [70, 75) |
/// | └─ Billboard *imposter* | [70, 75) | [150, 160) |
///
/// With this setup, the user will see a high-poly mesh when the camera is
/// closer than 20 units. As the camera zooms out, between 20 units to 25 units,
/// the high-poly mesh will gradually fade to a low-poly mesh. When the camera
/// is 70 to 75 units away, the low-poly mesh will fade to a single textured
/// quad. And between 150 and 160 units, the object fades away entirely. Note
/// that the `end_margin` of a higher LOD is always identical to the
/// `start_margin` of the next lower LOD; this is important for the crossfade
/// effect to function properly.
#[derive(Component, Clone, PartialEq, Reflect)]
pub struct VisibilityRange {
/// The range of distances, in world units, between which this entity will
/// smoothly fade into view as the camera zooms out.
///
/// If the start and end of this range are identical, the transition will be
/// abrupt, with no crossfading.
///
/// `start_margin.end` must be less than or equal to `end_margin.start`.
pub start_margin: Range<f32>,
/// The range of distances, in world units, between which this entity will
/// smoothly fade out of view as the camera zooms out.
///
/// If the start and end of this range are identical, the transition will be
/// abrupt, with no crossfading.
///
/// `end_margin.start` must be greater than or equal to `start_margin.end`.
pub end_margin: Range<f32>,
}
impl Eq for VisibilityRange {}
impl Hash for VisibilityRange {
fn hash<H>(&self, state: &mut H)
where
H: Hasher,
{
FloatOrd(self.start_margin.start).hash(state);
FloatOrd(self.start_margin.end).hash(state);
FloatOrd(self.end_margin.start).hash(state);
FloatOrd(self.end_margin.end).hash(state);
}
}
impl VisibilityRange {
/// Creates a new *abrupt* visibility range, with no crossfade.
///
/// There will be no crossfade; the object will immediately vanish if the
/// camera is closer than `start` units or farther than `end` units from the
/// model.
///
/// The `start` value must be less than or equal to the `end` value.
#[inline]
pub fn abrupt(start: f32, end: f32) -> Self {
Self {
start_margin: start..start,
end_margin: end..end,
}
}
/// Returns true if both the start and end transitions for this range are
/// abrupt: that is, there is no crossfading.
#[inline]
pub fn is_abrupt(&self) -> bool {
self.start_margin.start == self.start_margin.end
&& self.end_margin.start == self.end_margin.end
}
/// Returns true if the object will be visible at all, given a camera
/// `camera_distance` units away.
///
/// Any amount of visibility, even with the heaviest dithering applied, is
/// considered visible according to this check.
#[inline]
pub fn is_visible_at_all(&self, camera_distance: f32) -> bool {
camera_distance >= self.start_margin.start && camera_distance < self.end_margin.end
}
/// Returns true if the object is completely invisible, given a camera
/// `camera_distance` units away.
///
/// This is equivalent to `!VisibilityRange::is_visible_at_all()`.
#[inline]
pub fn is_culled(&self, camera_distance: f32) -> bool {
!self.is_visible_at_all(camera_distance)
}
}
/// Stores information related to [`VisibilityRange`]s in the render world.
#[derive(Resource)]
pub struct RenderVisibilityRanges {
/// Information corresponding to each entity.
entities: EntityHashMap<Entity, RenderVisibilityEntityInfo>,
/// Maps a [`VisibilityRange`] to its index within the `buffer`.
///
/// This map allows us to deduplicate identical visibility ranges, which
/// saves GPU memory.
range_to_index: HashMap<VisibilityRange, NonMaxU16>,
/// The GPU buffer that stores [`VisibilityRange`]s.
///
/// Each [`Vec4`] contains the start margin start, start margin end, end
/// margin start, and end margin end distances, in that order.
buffer: BufferVec<Vec4>,
/// True if the buffer has been changed since the last frame and needs to be
/// reuploaded to the GPU.
buffer_dirty: bool,
}
/// Per-entity information related to [`VisibilityRange`]s.
struct RenderVisibilityEntityInfo {
/// The index of the range within the GPU buffer.
buffer_index: NonMaxU16,
/// True if the range is abrupt: i.e. has no crossfade.
is_abrupt: bool,
}
impl Default for RenderVisibilityRanges {
fn default() -> Self {
Self {
entities: default(),
range_to_index: default(),
buffer: BufferVec::new(
BufferUsages::STORAGE | BufferUsages::UNIFORM | BufferUsages::VERTEX,
),
buffer_dirty: true,
}
}
}
impl RenderVisibilityRanges {
/// Clears out the [`RenderVisibilityRanges`] in preparation for a new
/// frame.
fn clear(&mut self) {
self.entities.clear();
self.range_to_index.clear();
self.buffer.clear();
self.buffer_dirty = true;
}
/// Inserts a new entity into the [`RenderVisibilityRanges`].
fn insert(&mut self, entity: Entity, visibility_range: &VisibilityRange) {
// Grab a slot in the GPU buffer, or take the existing one if there
// already is one.
let buffer_index = *self
.range_to_index
.entry(visibility_range.clone())
.or_insert_with(|| {
NonMaxU16::try_from(self.buffer.push(vec4(
visibility_range.start_margin.start,
visibility_range.start_margin.end,
visibility_range.end_margin.start,
visibility_range.end_margin.end,
)) as u16)
.unwrap_or_default()
});
self.entities.insert(
entity,
RenderVisibilityEntityInfo {
buffer_index,
is_abrupt: visibility_range.is_abrupt(),
},
);
}
/// Returns the index in the GPU buffer corresponding to the visible range
/// for the given entity.
///
/// If the entity has no visible range, returns `None`.
#[inline]
pub fn lod_index_for_entity(&self, entity: Entity) -> Option<NonMaxU16> {
self.entities.get(&entity).map(|info| info.buffer_index)
}
/// Returns true if the entity has a visibility range and it isn't abrupt:
/// i.e. if it has a crossfade.
#[inline]
pub fn entity_has_crossfading_visibility_ranges(&self, entity: Entity) -> bool {
self.entities
.get(&entity)
.is_some_and(|info| !info.is_abrupt)
}
/// Returns a reference to the GPU buffer that stores visibility ranges.
#[inline]
pub fn buffer(&self) -> &BufferVec<Vec4> {
&self.buffer
}
}
/// Stores which entities are in within the [`VisibilityRange`]s of views.
///
/// This doesn't store the results of frustum or occlusion culling; use
/// [`super::ViewVisibility`] for that. Thus entities in this list may not
/// actually be visible.
///
/// For efficiency, these tables only store entities that have
/// [`VisibilityRange`] components. Entities without such a component won't be
/// in these tables at all.
///
/// The table is indexed by entity and stores a 32-bit bitmask with one bit for
/// each camera, where a 0 bit corresponds to "out of range" and a 1 bit
/// corresponds to "in range". Hence it's limited to storing information for 32
/// views.
#[derive(Resource, Default)]
pub struct VisibleEntityRanges {
/// Stores which bit index each view corresponds to.
views: EntityHashMap<Entity, u8>,
/// Stores a bitmask in which each view has a single bit.
///
/// A 0 bit for a view corresponds to "out of range"; a 1 bit corresponds to
/// "in range".
entities: EntityHashMap<Entity, u32>,
}
impl VisibleEntityRanges {
/// Clears out the [`VisibleEntityRanges`] in preparation for a new frame.
fn clear(&mut self) {
self.views.clear();
self.entities.clear();
}
/// Returns true if the entity is in range of the given camera.
///
/// This only checks [`VisibilityRange`]s and doesn't perform any frustum or
/// occlusion culling. Thus the entity might not *actually* be visible.
///
/// The entity is assumed to have a [`VisibilityRange`] component. If the
/// entity doesn't have that component, this method will return false.
#[inline]
pub fn entity_is_in_range_of_view(&self, entity: Entity, view: Entity) -> bool {
let Some(visibility_bitmask) = self.entities.get(&entity) else {
return false;
};
let Some(view_index) = self.views.get(&view) else {
return false;
};
(visibility_bitmask & (1 << view_index)) != 0
}
/// Returns true if the entity is in range of any view.
///
/// This only checks [`VisibilityRange`]s and doesn't perform any frustum or
/// occlusion culling. Thus the entity might not *actually* be visible.
///
/// The entity is assumed to have a [`VisibilityRange`] component. If the
/// entity doesn't have that component, this method will return false.
#[inline]
pub fn entity_is_in_range_of_any_view(&self, entity: Entity) -> bool {
self.entities.contains_key(&entity)
}
}
/// Checks all entities against all views in order to determine which entities
/// with [`VisibilityRange`]s are potentially visible.
///
/// This only checks distance from the camera and doesn't frustum or occlusion
/// cull.
pub fn check_visibility_ranges(
mut visible_entity_ranges: ResMut<VisibleEntityRanges>,
view_query: Query<(Entity, &GlobalTransform), With<Camera>>,
mut entity_query: Query<(Entity, &GlobalTransform, &VisibilityRange)>,
) {
visible_entity_ranges.clear();
// Early out if the visibility range feature isn't in use.
if entity_query.is_empty() {
return;
}
// Assign an index to each view.
let mut views = vec![];
for (view, view_transform) in view_query.iter().take(32) {
let view_index = views.len() as u8;
visible_entity_ranges.views.insert(view, view_index);
views.push((view, view_transform.translation_vec3a()));
}
// Check each entity/view pair. Only consider entities with
// [`VisibilityRange`] components.
for (entity, entity_transform, visibility_range) in entity_query.iter_mut() {
let mut visibility = 0;
for (view_index, &(_, view_position)) in views.iter().enumerate() {
if visibility_range
.is_visible_at_all((view_position - entity_transform.translation_vec3a()).length())
{
visibility |= 1 << view_index;
}
}
// Invisible entities have no entry at all in the hash map. This speeds
// up checks slightly in this common case.
if visibility != 0 {
visible_entity_ranges.entities.insert(entity, visibility);
}
}
}
/// Extracts all [`VisibilityRange`] components from the main world to the
/// render world and inserts them into [`RenderVisibilityRanges`].
pub fn extract_visibility_ranges(
mut render_visibility_ranges: ResMut<RenderVisibilityRanges>,
visibility_ranges_query: Extract<Query<(Entity, &VisibilityRange)>>,
changed_ranges_query: Extract<Query<Entity, Changed<VisibilityRange>>>,
) {
if changed_ranges_query.is_empty() {
return;
}
render_visibility_ranges.clear();
for (entity, visibility_range) in visibility_ranges_query.iter() {
render_visibility_ranges.insert(entity, visibility_range);
}
}
/// Writes the [`RenderVisibilityRanges`] table to the GPU.
pub fn write_render_visibility_ranges(
render_device: Res<RenderDevice>,
render_queue: Res<RenderQueue>,
mut render_visibility_ranges: ResMut<RenderVisibilityRanges>,
) {
// If there haven't been any changes, early out.
if !render_visibility_ranges.buffer_dirty {
return;
}
// Mess with the length of the buffer to meet API requirements if necessary.
match render_device.get_supported_read_only_binding_type(VISIBILITY_RANGES_STORAGE_BUFFER_COUNT)
{
// If we're using a uniform buffer, we must have *exactly*
// `VISIBILITY_RANGE_UNIFORM_BUFFER_SIZE` elements.
BufferBindingType::Uniform
if render_visibility_ranges.buffer.len() > VISIBILITY_RANGE_UNIFORM_BUFFER_SIZE =>
{
render_visibility_ranges
.buffer
.truncate(VISIBILITY_RANGE_UNIFORM_BUFFER_SIZE);
}
BufferBindingType::Uniform
if render_visibility_ranges.buffer.len() < VISIBILITY_RANGE_UNIFORM_BUFFER_SIZE =>
{
while render_visibility_ranges.buffer.len() < VISIBILITY_RANGE_UNIFORM_BUFFER_SIZE {
render_visibility_ranges.buffer.push(default());
}
}
// Otherwise, if we're using a storage buffer, just ensure there's
// something in the buffer, or else it won't get allocated.
BufferBindingType::Storage { .. } if render_visibility_ranges.buffer.is_empty() => {
render_visibility_ranges.buffer.push(default());
}
_ => {}
}
// Schedule the write.
render_visibility_ranges
.buffer
.write_buffer(&render_device, &render_queue);
render_visibility_ranges.buffer_dirty = false;
}