bevy_render/view/visibility/
render_layers.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
use bevy_ecs::prelude::{Component, ReflectComponent};
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
use smallvec::SmallVec;

pub const DEFAULT_LAYERS: &RenderLayers = &RenderLayers::layer(0);

/// An identifier for a rendering layer.
pub type Layer = usize;

/// Describes which rendering layers an entity belongs to.
///
/// Cameras with this component will only render entities with intersecting
/// layers.
///
/// Entities may belong to one or more layers, or no layer at all.
///
/// The [`Default`] instance of `RenderLayers` contains layer `0`, the first layer.
///
/// An entity with this component without any layers is invisible.
///
/// Entities without this component belong to layer `0`.
#[derive(Component, Clone, Reflect, PartialEq, Eq, PartialOrd, Ord)]
#[reflect(Component, Default, PartialEq, Debug)]
pub struct RenderLayers(SmallVec<[u64; INLINE_BLOCKS]>);

/// The number of memory blocks stored inline
const INLINE_BLOCKS: usize = 1;

impl Default for &RenderLayers {
    fn default() -> Self {
        DEFAULT_LAYERS
    }
}

impl core::fmt::Debug for RenderLayers {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.debug_tuple("RenderLayers")
            .field(&self.iter().collect::<Vec<_>>())
            .finish()
    }
}

impl FromIterator<Layer> for RenderLayers {
    fn from_iter<T: IntoIterator<Item = Layer>>(i: T) -> Self {
        i.into_iter().fold(Self::none(), RenderLayers::with)
    }
}

impl Default for RenderLayers {
    /// By default, this structure includes layer `0`, which represents the first layer.
    ///
    /// This is distinct from [`RenderLayers::none`], which doesn't belong to any layers.
    fn default() -> Self {
        const { Self::layer(0) }
    }
}

impl RenderLayers {
    /// Create a new `RenderLayers` belonging to the given layer.
    ///
    /// This `const` constructor is limited to `size_of::<usize>()` layers.
    /// If you need to support an arbitrary number of layers, use [`with`](RenderLayers::with)
    /// or [`from_layers`](RenderLayers::from_layers).
    pub const fn layer(n: Layer) -> Self {
        let (buffer_index, bit) = Self::layer_info(n);
        assert!(
            buffer_index < INLINE_BLOCKS,
            "layer is out of bounds for const construction"
        );
        let mut buffer = [0; INLINE_BLOCKS];
        buffer[buffer_index] = bit;
        RenderLayers(SmallVec::from_const(buffer))
    }

    /// Create a new `RenderLayers` that belongs to no layers.
    ///
    /// This is distinct from [`RenderLayers::default`], which belongs to the first layer.
    pub const fn none() -> Self {
        RenderLayers(SmallVec::from_const([0; INLINE_BLOCKS]))
    }

    /// Create a `RenderLayers` from a list of layers.
    pub fn from_layers(layers: &[Layer]) -> Self {
        layers.iter().copied().collect()
    }

    /// Add the given layer.
    ///
    /// This may be called multiple times to allow an entity to belong
    /// to multiple rendering layers.
    #[must_use]
    pub fn with(mut self, layer: Layer) -> Self {
        let (buffer_index, bit) = Self::layer_info(layer);
        self.extend_buffer(buffer_index + 1);
        self.0[buffer_index] |= bit;
        self
    }

    /// Removes the given rendering layer.
    #[must_use]
    pub fn without(mut self, layer: Layer) -> Self {
        let (buffer_index, bit) = Self::layer_info(layer);
        if buffer_index < self.0.len() {
            self.0[buffer_index] &= !bit;
            // Drop trailing zero memory blocks.
            // NOTE: This is not just an optimization, it is necessary for the derived PartialEq impl to be correct.
            if buffer_index == self.0.len() - 1 {
                self = self.shrink();
            }
        }
        self
    }

    /// Get an iterator of the layers.
    pub fn iter(&self) -> impl Iterator<Item = Layer> + '_ {
        self.0.iter().copied().zip(0..).flat_map(Self::iter_layers)
    }

    /// Determine if a `RenderLayers` intersects another.
    ///
    /// `RenderLayers`s intersect if they share any common layers.
    ///
    /// A `RenderLayers` with no layers will not match any other
    /// `RenderLayers`, even another with no layers.
    pub fn intersects(&self, other: &RenderLayers) -> bool {
        // Check for the common case where the view layer and entity layer
        // both point towards our default layer.
        if self.0.as_ptr() == other.0.as_ptr() {
            return true;
        }

        for (self_layer, other_layer) in self.0.iter().zip(other.0.iter()) {
            if (*self_layer & *other_layer) != 0 {
                return true;
            }
        }

        false
    }

    /// Get the bitmask representation of the contained layers.
    pub fn bits(&self) -> &[u64] {
        self.0.as_slice()
    }

    const fn layer_info(layer: usize) -> (usize, u64) {
        let buffer_index = layer / 64;
        let bit_index = layer % 64;
        let bit = 1u64 << bit_index;

        (buffer_index, bit)
    }

    fn extend_buffer(&mut self, other_len: usize) {
        let new_size = core::cmp::max(self.0.len(), other_len);
        self.0.reserve_exact(new_size - self.0.len());
        self.0.resize(new_size, 0u64);
    }

    fn iter_layers(buffer_and_offset: (u64, usize)) -> impl Iterator<Item = Layer> + 'static {
        let (mut buffer, mut layer) = buffer_and_offset;
        layer *= 64;
        core::iter::from_fn(move || {
            if buffer == 0 {
                return None;
            }
            let next = buffer.trailing_zeros() + 1;
            buffer = buffer.checked_shr(next).unwrap_or(0);
            layer += next as usize;
            Some(layer - 1)
        })
    }

    /// Returns the set of [layers](Layer) shared by two instances of [`RenderLayers`].
    ///
    /// This corresponds to the `self & other` operation.
    pub fn intersection(&self, other: &Self) -> Self {
        self.combine_blocks(other, |a, b| a & b).shrink()
    }

    /// Returns all [layers](Layer) included in either instance of [`RenderLayers`].
    ///
    /// This corresponds to the `self | other` operation.
    pub fn union(&self, other: &Self) -> Self {
        self.combine_blocks(other, |a, b| a | b) // doesn't need to be shrunk, if the inputs are nonzero then the result will be too
    }

    /// Returns all [layers](Layer) included in exactly one of the instances of [`RenderLayers`].
    ///
    /// This corresponds to the "exclusive or" (XOR) operation: `self ^ other`.
    pub fn symmetric_difference(&self, other: &Self) -> Self {
        self.combine_blocks(other, |a, b| a ^ b).shrink()
    }

    /// Deallocates any trailing-zero memory blocks from this instance
    fn shrink(mut self) -> Self {
        let mut any_dropped = false;
        while self.0.len() > INLINE_BLOCKS && self.0.last() == Some(&0) {
            self.0.pop();
            any_dropped = true;
        }
        if any_dropped && self.0.len() <= INLINE_BLOCKS {
            self.0.shrink_to_fit();
        }
        self
    }

    /// Creates a new instance of [`RenderLayers`] by applying a function to the memory blocks
    /// of self and another instance.
    ///
    /// If the function `f` might return `0` for non-zero inputs, you should call [`Self::shrink`]
    /// on the output to ensure that there are no trailing zero memory blocks that would break
    /// this type's equality comparison.
    fn combine_blocks(&self, other: &Self, mut f: impl FnMut(u64, u64) -> u64) -> Self {
        let mut a = self.0.iter();
        let mut b = other.0.iter();
        let mask = core::iter::from_fn(|| {
            let a = a.next().copied();
            let b = b.next().copied();
            if a.is_none() && b.is_none() {
                return None;
            }
            Some(f(a.unwrap_or_default(), b.unwrap_or_default()))
        });
        Self(mask.collect())
    }
}

impl core::ops::BitAnd for RenderLayers {
    type Output = Self;
    fn bitand(self, rhs: Self) -> Self::Output {
        self.intersection(&rhs)
    }
}

impl core::ops::BitOr for RenderLayers {
    type Output = Self;
    fn bitor(self, rhs: Self) -> Self::Output {
        self.union(&rhs)
    }
}

impl core::ops::BitXor for RenderLayers {
    type Output = Self;
    fn bitxor(self, rhs: Self) -> Self::Output {
        self.symmetric_difference(&rhs)
    }
}

#[cfg(test)]
mod rendering_mask_tests {
    use super::{Layer, RenderLayers};
    use smallvec::SmallVec;

    #[test]
    fn rendering_mask_sanity() {
        let layer_0 = RenderLayers::layer(0);
        assert_eq!(layer_0.0.len(), 1, "layer 0 is one buffer");
        assert_eq!(layer_0.0[0], 1, "layer 0 is mask 1");
        let layer_1 = RenderLayers::layer(1);
        assert_eq!(layer_1.0.len(), 1, "layer 1 is one buffer");
        assert_eq!(layer_1.0[0], 2, "layer 1 is mask 2");
        let layer_0_1 = RenderLayers::layer(0).with(1);
        assert_eq!(layer_0_1.0.len(), 1, "layer 0 + 1 is one buffer");
        assert_eq!(layer_0_1.0[0], 3, "layer 0 + 1 is mask 3");
        let layer_0_1_without_0 = layer_0_1.without(0);
        assert_eq!(
            layer_0_1_without_0.0.len(),
            1,
            "layer 0 + 1 - 0 is one buffer"
        );
        assert_eq!(layer_0_1_without_0.0[0], 2, "layer 0 + 1 - 0 is mask 2");
        let layer_0_2345 = RenderLayers::layer(0).with(2345);
        assert_eq!(layer_0_2345.0.len(), 37, "layer 0 + 2345 is 37 buffers");
        assert_eq!(layer_0_2345.0[0], 1, "layer 0 + 2345 is mask 1");
        assert_eq!(
            layer_0_2345.0[36], 2199023255552,
            "layer 0 + 2345 is mask 2199023255552"
        );
        assert!(
            layer_0_2345.intersects(&layer_0),
            "layer 0 + 2345 intersects 0"
        );
        assert!(
            RenderLayers::layer(1).intersects(&RenderLayers::layer(1)),
            "layers match like layers"
        );
        assert!(
            RenderLayers::layer(0).intersects(&RenderLayers(SmallVec::from_const([1]))),
            "a layer of 0 means the mask is just 1 bit"
        );

        assert!(
            RenderLayers::layer(0)
                .with(3)
                .intersects(&RenderLayers::layer(3)),
            "a mask will match another mask containing any similar layers"
        );

        assert!(
            RenderLayers::default().intersects(&RenderLayers::default()),
            "default masks match each other"
        );

        assert!(
            !RenderLayers::layer(0).intersects(&RenderLayers::layer(1)),
            "masks with differing layers do not match"
        );
        assert!(
            !RenderLayers::none().intersects(&RenderLayers::none()),
            "empty masks don't match"
        );
        assert_eq!(
            RenderLayers::from_layers(&[0, 2, 16, 30])
                .iter()
                .collect::<Vec<_>>(),
            vec![0, 2, 16, 30],
            "from_layers and get_layers should roundtrip"
        );
        assert_eq!(
            format!("{:?}", RenderLayers::from_layers(&[0, 1, 2, 3])).as_str(),
            "RenderLayers([0, 1, 2, 3])",
            "Debug instance shows layers"
        );
        assert_eq!(
            RenderLayers::from_layers(&[0, 1, 2]),
            <RenderLayers as FromIterator<Layer>>::from_iter(vec![0, 1, 2]),
            "from_layers and from_iter are equivalent"
        );

        let tricky_layers = vec![0, 5, 17, 55, 999, 1025, 1026];
        let layers = RenderLayers::from_layers(&tricky_layers);
        let out = layers.iter().collect::<Vec<_>>();
        assert_eq!(tricky_layers, out, "tricky layers roundtrip");
    }

    const MANY: RenderLayers = RenderLayers(SmallVec::from_const([u64::MAX]));

    #[test]
    fn render_layer_ops() {
        let a = RenderLayers::from_layers(&[2, 4, 6]);
        let b = RenderLayers::from_layers(&[1, 2, 3, 4, 5]);

        assert_eq!(
            a.clone() | b.clone(),
            RenderLayers::from_layers(&[1, 2, 3, 4, 5, 6])
        );
        assert_eq!(a.clone() & b.clone(), RenderLayers::from_layers(&[2, 4]));
        assert_eq!(a ^ b, RenderLayers::from_layers(&[1, 3, 5, 6]));

        assert_eq!(RenderLayers::none() & MANY, RenderLayers::none());
        assert_eq!(RenderLayers::none() | MANY, MANY);
        assert_eq!(RenderLayers::none() ^ MANY, MANY);
    }

    #[test]
    fn render_layer_shrink() {
        // Since it has layers greater than 64, the instance should take up two memory blocks
        let layers = RenderLayers::from_layers(&[1, 77]);
        assert!(layers.0.len() == 2);
        // When excluding that layer, it should drop the extra memory block
        let layers = layers.without(77);
        assert!(layers.0.len() == 1);
    }

    #[test]
    fn render_layer_iter_no_overflow() {
        let layers = RenderLayers::from_layers(&[63]);
        layers.iter().count();
    }
}