bevy_tasks/single_threaded_task_pool.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
use std::sync::Arc;
use std::{cell::RefCell, future::Future, marker::PhantomData, mem, rc::Rc};
thread_local! {
static LOCAL_EXECUTOR: async_executor::LocalExecutor<'static> = const { async_executor::LocalExecutor::new() };
}
/// Used to create a [`TaskPool`].
#[derive(Debug, Default, Clone)]
pub struct TaskPoolBuilder {}
/// This is a dummy struct for wasm support to provide the same api as with the multithreaded
/// task pool. In the case of the multithreaded task pool this struct is used to spawn
/// tasks on a specific thread. But the wasm task pool just calls
/// `wasm_bindgen_futures::spawn_local` for spawning which just runs tasks on the main thread
/// and so the [`ThreadExecutor`] does nothing.
#[derive(Default)]
pub struct ThreadExecutor<'a>(PhantomData<&'a ()>);
impl<'a> ThreadExecutor<'a> {
/// Creates a new `ThreadExecutor`
pub fn new() -> Self {
Self::default()
}
}
impl TaskPoolBuilder {
/// Creates a new `TaskPoolBuilder` instance
pub fn new() -> Self {
Self::default()
}
/// No op on the single threaded task pool
pub fn num_threads(self, _num_threads: usize) -> Self {
self
}
/// No op on the single threaded task pool
pub fn stack_size(self, _stack_size: usize) -> Self {
self
}
/// No op on the single threaded task pool
pub fn thread_name(self, _thread_name: String) -> Self {
self
}
/// Creates a new [`TaskPool`]
pub fn build(self) -> TaskPool {
TaskPool::new_internal()
}
}
/// A thread pool for executing tasks. Tasks are futures that are being automatically driven by
/// the pool on threads owned by the pool. In this case - main thread only.
#[derive(Debug, Default, Clone)]
pub struct TaskPool {}
impl TaskPool {
/// Just create a new `ThreadExecutor` for wasm
pub fn get_thread_executor() -> Arc<ThreadExecutor<'static>> {
Arc::new(ThreadExecutor::new())
}
/// Create a `TaskPool` with the default configuration.
pub fn new() -> Self {
TaskPoolBuilder::new().build()
}
#[allow(unused_variables)]
fn new_internal() -> Self {
Self {}
}
/// Return the number of threads owned by the task pool
pub fn thread_num(&self) -> usize {
1
}
/// Allows spawning non-`'static` futures on the thread pool. The function takes a callback,
/// passing a scope object into it. The scope object provided to the callback can be used
/// to spawn tasks. This function will await the completion of all tasks before returning.
///
/// This is similar to `rayon::scope` and `crossbeam::scope`
pub fn scope<'env, F, T>(&self, f: F) -> Vec<T>
where
F: for<'scope> FnOnce(&'env mut Scope<'scope, 'env, T>),
T: Send + 'static,
{
self.scope_with_executor(false, None, f)
}
/// Allows spawning non-`'static` futures on the thread pool. The function takes a callback,
/// passing a scope object into it. The scope object provided to the callback can be used
/// to spawn tasks. This function will await the completion of all tasks before returning.
///
/// This is similar to `rayon::scope` and `crossbeam::scope`
#[allow(unsafe_code)]
pub fn scope_with_executor<'env, F, T>(
&self,
_tick_task_pool_executor: bool,
_thread_executor: Option<&ThreadExecutor>,
f: F,
) -> Vec<T>
where
F: for<'scope> FnOnce(&'env mut Scope<'scope, 'env, T>),
T: Send + 'static,
{
// SAFETY: This safety comment applies to all references transmuted to 'env.
// Any futures spawned with these references need to return before this function completes.
// This is guaranteed because we drive all the futures spawned onto the Scope
// to completion in this function. However, rust has no way of knowing this so we
// transmute the lifetimes to 'env here to appease the compiler as it is unable to validate safety.
// Any usages of the references passed into `Scope` must be accessed through
// the transmuted reference for the rest of this function.
let executor = &async_executor::LocalExecutor::new();
// SAFETY: As above, all futures must complete in this function so we can change the lifetime
let executor: &'env async_executor::LocalExecutor<'env> =
unsafe { mem::transmute(executor) };
let results: RefCell<Vec<Rc<RefCell<Option<T>>>>> = RefCell::new(Vec::new());
// SAFETY: As above, all futures must complete in this function so we can change the lifetime
let results: &'env RefCell<Vec<Rc<RefCell<Option<T>>>>> =
unsafe { mem::transmute(&results) };
let mut scope = Scope {
executor,
results,
scope: PhantomData,
env: PhantomData,
};
// SAFETY: As above, all futures must complete in this function so we can change the lifetime
let scope_ref: &'env mut Scope<'_, 'env, T> = unsafe { mem::transmute(&mut scope) };
f(scope_ref);
// Loop until all tasks are done
while executor.try_tick() {}
let results = scope.results.borrow();
results
.iter()
.map(|result| result.borrow_mut().take().unwrap())
.collect()
}
/// Spawns a static future onto the thread pool. The returned Task is a future. It can also be
/// cancelled and "detached" allowing it to continue running without having to be polled by the
/// end-user.
///
/// If the provided future is non-`Send`, [`TaskPool::spawn_local`] should be used instead.
pub fn spawn<T>(&self, future: impl Future<Output = T> + 'static) -> FakeTask
where
T: 'static,
{
#[cfg(target_arch = "wasm32")]
wasm_bindgen_futures::spawn_local(async move {
future.await;
});
#[cfg(not(target_arch = "wasm32"))]
{
LOCAL_EXECUTOR.with(|executor| {
let _task = executor.spawn(future);
// Loop until all tasks are done
while executor.try_tick() {}
});
}
FakeTask
}
/// Spawns a static future on the JS event loop. This is exactly the same as [`TaskPool::spawn`].
pub fn spawn_local<T>(&self, future: impl Future<Output = T> + 'static) -> FakeTask
where
T: 'static,
{
self.spawn(future)
}
/// Runs a function with the local executor. Typically used to tick
/// the local executor on the main thread as it needs to share time with
/// other things.
///
/// ```
/// use bevy_tasks::TaskPool;
///
/// TaskPool::new().with_local_executor(|local_executor| {
/// local_executor.try_tick();
/// });
/// ```
pub fn with_local_executor<F, R>(&self, f: F) -> R
where
F: FnOnce(&async_executor::LocalExecutor) -> R,
{
LOCAL_EXECUTOR.with(f)
}
}
/// An empty task used in single-threaded contexts.
///
/// This does nothing and is therefore safe, and recommended, to ignore.
#[derive(Debug)]
pub struct FakeTask;
impl FakeTask {
/// No op on the single threaded task pool
pub fn detach(self) {}
}
/// A `TaskPool` scope for running one or more non-`'static` futures.
///
/// For more information, see [`TaskPool::scope`].
#[derive(Debug)]
pub struct Scope<'scope, 'env: 'scope, T> {
executor: &'scope async_executor::LocalExecutor<'scope>,
// Vector to gather results of all futures spawned during scope run
results: &'env RefCell<Vec<Rc<RefCell<Option<T>>>>>,
// make `Scope` invariant over 'scope and 'env
scope: PhantomData<&'scope mut &'scope ()>,
env: PhantomData<&'env mut &'env ()>,
}
impl<'scope, 'env, T: Send + 'env> Scope<'scope, 'env, T> {
/// Spawns a scoped future onto the executor. The scope *must* outlive
/// the provided future. The results of the future will be returned as a part of
/// [`TaskPool::scope`]'s return value.
///
/// On the single threaded task pool, it just calls [`Scope::spawn_on_scope`].
///
/// For more information, see [`TaskPool::scope`].
pub fn spawn<Fut: Future<Output = T> + 'scope>(&self, f: Fut) {
self.spawn_on_scope(f);
}
/// Spawns a scoped future onto the executor. The scope *must* outlive
/// the provided future. The results of the future will be returned as a part of
/// [`TaskPool::scope`]'s return value.
///
/// On the single threaded task pool, it just calls [`Scope::spawn_on_scope`].
///
/// For more information, see [`TaskPool::scope`].
pub fn spawn_on_external<Fut: Future<Output = T> + 'scope>(&self, f: Fut) {
self.spawn_on_scope(f);
}
/// Spawns a scoped future that runs on the thread the scope called from. The
/// scope *must* outlive the provided future. The results of the future will be
/// returned as a part of [`TaskPool::scope`]'s return value.
///
/// For more information, see [`TaskPool::scope`].
pub fn spawn_on_scope<Fut: Future<Output = T> + 'scope>(&self, f: Fut) {
let result = Rc::new(RefCell::new(None));
self.results.borrow_mut().push(result.clone());
let f = async move {
let temp_result = f.await;
result.borrow_mut().replace(temp_result);
};
self.executor.spawn(f).detach();
}
}