bevy_time/virt.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::Reflect;
use bevy_utils::{tracing::debug, Duration};
use crate::{real::Real, time::Time};
/// The virtual game clock representing game time.
///
/// A specialization of the [`Time`] structure. **For method documentation, see
/// [`Time<Virtual>#impl-Time<Virtual>`].**
///
/// Normally used as `Time<Virtual>`. It is automatically inserted as a resource
/// by [`TimePlugin`](crate::TimePlugin) and updated based on
/// [`Time<Real>`](Real). The virtual clock is automatically set as the default
/// generic [`Time`] resource for the update.
///
/// The virtual clock differs from real time clock in that it can be paused, sped up
/// and slowed down. It also limits how much it can advance in a single update
/// in order to prevent unexpected behavior in cases where updates do not happen
/// at regular intervals (e.g. coming back after the program was suspended a long time).
///
/// The virtual clock can be paused by calling [`pause()`](Time::pause) and
/// unpaused by calling [`unpause()`](Time::unpause). When the game clock is
/// paused [`delta()`](Time::delta) will be zero on each update, and
/// [`elapsed()`](Time::elapsed) will not grow.
/// [`effective_speed()`](Time::effective_speed) will return `0.0`. Calling
/// [`pause()`](Time::pause) will not affect value the [`delta()`](Time::delta)
/// value for the update currently being processed.
///
/// The speed of the virtual clock can be changed by calling
/// [`set_relative_speed()`](Time::set_relative_speed). A value of `2.0` means
/// that virtual clock should advance twice as fast as real time, meaning that
/// [`delta()`](Time::delta) values will be double of what
/// [`Time<Real>::delta()`](Time::delta) reports and
/// [`elapsed()`](Time::elapsed) will go twice as fast as
/// [`Time<Real>::elapsed()`](Time::elapsed). Calling
/// [`set_relative_speed()`](Time::set_relative_speed) will not affect the
/// [`delta()`](Time::delta) value for the update currently being processed.
///
/// The maximum amount of delta time that can be added by a single update can be
/// set by [`set_max_delta()`](Time::set_max_delta). This value serves a dual
/// purpose in the virtual clock.
///
/// If the game temporarily freezes due to any reason, such as disk access, a
/// blocking system call, or operating system level suspend, reporting the full
/// elapsed delta time is likely to cause bugs in game logic. Usually if a
/// laptop is suspended for an hour, it doesn't make sense to try to simulate
/// the game logic for the elapsed hour when resuming. Instead it is better to
/// lose the extra time and pretend a shorter duration of time passed. Setting
/// [`max_delta()`](Time::max_delta) to a relatively short time means that the
/// impact on game logic will be minimal.
///
/// If the game lags for some reason, meaning that it will take a longer time to
/// compute a frame than the real time that passes during the computation, then
/// we would fall behind in processing virtual time. If this situation persists,
/// and computing a frame takes longer depending on how much virtual time has
/// passed, the game would enter a "death spiral" where computing each frame
/// takes longer and longer and the game will appear to freeze. By limiting the
/// maximum time that can be added at once, we also limit the amount of virtual
/// time the game needs to compute for each frame. This means that the game will
/// run slow, and it will run slower than real time, but it will not freeze and
/// it will recover as soon as computation becomes fast again.
///
/// You should set [`max_delta()`](Time::max_delta) to a value that is
/// approximately the minimum FPS your game should have even if heavily lagged
/// for a moment. The actual FPS when lagged will be somewhat lower than this,
/// depending on how much more time it takes to compute a frame compared to real
/// time. You should also consider how stable your FPS is, as the limit will
/// also dictate how big of an FPS drop you can accept without losing time and
/// falling behind real time.
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
pub struct Virtual {
max_delta: Duration,
paused: bool,
relative_speed: f64,
effective_speed: f64,
}
impl Time<Virtual> {
/// The default amount of time that can added in a single update.
///
/// Equal to 250 milliseconds.
const DEFAULT_MAX_DELTA: Duration = Duration::from_millis(250);
/// Create new virtual clock with given maximum delta step [`Duration`]
///
/// # Panics
///
/// Panics if `max_delta` is zero.
pub fn from_max_delta(max_delta: Duration) -> Self {
let mut ret = Self::default();
ret.set_max_delta(max_delta);
ret
}
/// Returns the maximum amount of time that can be added to this clock by a
/// single update, as [`Duration`].
///
/// This is the maximum value [`Self::delta()`] will return and also to
/// maximum time [`Self::elapsed()`] will be increased by in a single
/// update.
///
/// This ensures that even if no updates happen for an extended amount of time,
/// the clock will not have a sudden, huge advance all at once. This also indirectly
/// limits the maximum number of fixed update steps that can run in a single update.
///
/// The default value is 250 milliseconds.
#[inline]
pub fn max_delta(&self) -> Duration {
self.context().max_delta
}
/// Sets the maximum amount of time that can be added to this clock by a
/// single update, as [`Duration`].
///
/// This is the maximum value [`Self::delta()`] will return and also to
/// maximum time [`Self::elapsed()`] will be increased by in a single
/// update.
///
/// This is used to ensure that even if the game freezes for a few seconds,
/// or is suspended for hours or even days, the virtual clock doesn't
/// suddenly jump forward for that full amount, which would likely cause
/// gameplay bugs or having to suddenly simulate all the intervening time.
///
/// If no updates happen for an extended amount of time, this limit prevents
/// having a sudden, huge advance all at once. This also indirectly limits
/// the maximum number of fixed update steps that can run in a single
/// update.
///
/// The default value is 250 milliseconds. If you want to disable this
/// feature, set the value to [`Duration::MAX`].
///
/// # Panics
///
/// Panics if `max_delta` is zero.
#[inline]
pub fn set_max_delta(&mut self, max_delta: Duration) {
assert_ne!(max_delta, Duration::ZERO, "tried to set max delta to zero");
self.context_mut().max_delta = max_delta;
}
/// Returns the speed the clock advances relative to your system clock, as [`f32`].
/// This is known as "time scaling" or "time dilation" in other engines.
#[inline]
pub fn relative_speed(&self) -> f32 {
self.relative_speed_f64() as f32
}
/// Returns the speed the clock advances relative to your system clock, as [`f64`].
/// This is known as "time scaling" or "time dilation" in other engines.
#[inline]
pub fn relative_speed_f64(&self) -> f64 {
self.context().relative_speed
}
/// Returns the speed the clock advanced relative to your system clock in
/// this update, as [`f32`].
///
/// Returns `0.0` if the game was paused or what the `relative_speed` value
/// was at the start of this update.
#[inline]
pub fn effective_speed(&self) -> f32 {
self.context().effective_speed as f32
}
/// Returns the speed the clock advanced relative to your system clock in
/// this update, as [`f64`].
///
/// Returns `0.0` if the game was paused or what the `relative_speed` value
/// was at the start of this update.
#[inline]
pub fn effective_speed_f64(&self) -> f64 {
self.context().effective_speed
}
/// Sets the speed the clock advances relative to your system clock, given as an [`f32`].
///
/// For example, setting this to `2.0` will make the clock advance twice as fast as your system
/// clock.
///
/// # Panics
///
/// Panics if `ratio` is negative or not finite.
#[inline]
pub fn set_relative_speed(&mut self, ratio: f32) {
self.set_relative_speed_f64(ratio as f64);
}
/// Sets the speed the clock advances relative to your system clock, given as an [`f64`].
///
/// For example, setting this to `2.0` will make the clock advance twice as fast as your system
/// clock.
///
/// # Panics
///
/// Panics if `ratio` is negative or not finite.
#[inline]
pub fn set_relative_speed_f64(&mut self, ratio: f64) {
assert!(ratio.is_finite(), "tried to go infinitely fast");
assert!(ratio >= 0.0, "tried to go back in time");
self.context_mut().relative_speed = ratio;
}
/// Stops the clock, preventing it from advancing until resumed.
#[inline]
pub fn pause(&mut self) {
self.context_mut().paused = true;
}
/// Resumes the clock if paused.
#[inline]
pub fn unpause(&mut self) {
self.context_mut().paused = false;
}
/// Returns `true` if the clock is currently paused.
#[inline]
pub fn is_paused(&self) -> bool {
self.context().paused
}
/// Returns `true` if the clock was paused at the start of this update.
#[inline]
pub fn was_paused(&self) -> bool {
self.context().effective_speed == 0.0
}
/// Updates the elapsed duration of `self` by `raw_delta`, up to the `max_delta`.
fn advance_with_raw_delta(&mut self, raw_delta: Duration) {
let max_delta = self.context().max_delta;
let clamped_delta = if raw_delta > max_delta {
debug!(
"delta time larger than maximum delta, clamping delta to {:?} and skipping {:?}",
max_delta,
raw_delta - max_delta
);
max_delta
} else {
raw_delta
};
let effective_speed = if self.context().paused {
0.0
} else {
self.context().relative_speed
};
let delta = if effective_speed != 1.0 {
clamped_delta.mul_f64(effective_speed)
} else {
// avoid rounding when at normal speed
clamped_delta
};
self.context_mut().effective_speed = effective_speed;
self.advance_by(delta);
}
}
impl Default for Virtual {
fn default() -> Self {
Self {
max_delta: Time::<Virtual>::DEFAULT_MAX_DELTA,
paused: false,
relative_speed: 1.0,
effective_speed: 1.0,
}
}
}
/// Advances [`Time<Virtual>`] and [`Time`] based on the elapsed [`Time<Real>`].
///
/// The virtual time will be advanced up to the provided [`Time::max_delta`].
pub fn update_virtual_time(current: &mut Time, virt: &mut Time<Virtual>, real: &Time<Real>) {
let raw_delta = real.delta();
virt.advance_with_raw_delta(raw_delta);
*current = virt.as_generic();
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_default() {
let time = Time::<Virtual>::default();
assert!(!time.is_paused()); // false
assert_eq!(time.relative_speed(), 1.0);
assert_eq!(time.max_delta(), Time::<Virtual>::DEFAULT_MAX_DELTA);
assert_eq!(time.delta(), Duration::ZERO);
assert_eq!(time.elapsed(), Duration::ZERO);
}
#[test]
fn test_advance() {
let mut time = Time::<Virtual>::default();
time.advance_with_raw_delta(Duration::from_millis(125));
assert_eq!(time.delta(), Duration::from_millis(125));
assert_eq!(time.elapsed(), Duration::from_millis(125));
time.advance_with_raw_delta(Duration::from_millis(125));
assert_eq!(time.delta(), Duration::from_millis(125));
assert_eq!(time.elapsed(), Duration::from_millis(250));
time.advance_with_raw_delta(Duration::from_millis(125));
assert_eq!(time.delta(), Duration::from_millis(125));
assert_eq!(time.elapsed(), Duration::from_millis(375));
time.advance_with_raw_delta(Duration::from_millis(125));
assert_eq!(time.delta(), Duration::from_millis(125));
assert_eq!(time.elapsed(), Duration::from_millis(500));
}
#[test]
fn test_relative_speed() {
let mut time = Time::<Virtual>::default();
time.advance_with_raw_delta(Duration::from_millis(250));
assert_eq!(time.relative_speed(), 1.0);
assert_eq!(time.effective_speed(), 1.0);
assert_eq!(time.delta(), Duration::from_millis(250));
assert_eq!(time.elapsed(), Duration::from_millis(250));
time.set_relative_speed_f64(2.0);
assert_eq!(time.relative_speed(), 2.0);
assert_eq!(time.effective_speed(), 1.0);
time.advance_with_raw_delta(Duration::from_millis(250));
assert_eq!(time.relative_speed(), 2.0);
assert_eq!(time.effective_speed(), 2.0);
assert_eq!(time.delta(), Duration::from_millis(500));
assert_eq!(time.elapsed(), Duration::from_millis(750));
time.set_relative_speed_f64(0.5);
assert_eq!(time.relative_speed(), 0.5);
assert_eq!(time.effective_speed(), 2.0);
time.advance_with_raw_delta(Duration::from_millis(250));
assert_eq!(time.relative_speed(), 0.5);
assert_eq!(time.effective_speed(), 0.5);
assert_eq!(time.delta(), Duration::from_millis(125));
assert_eq!(time.elapsed(), Duration::from_millis(875));
}
#[test]
fn test_pause() {
let mut time = Time::<Virtual>::default();
time.advance_with_raw_delta(Duration::from_millis(250));
assert!(!time.is_paused()); // false
assert!(!time.was_paused()); // false
assert_eq!(time.relative_speed(), 1.0);
assert_eq!(time.effective_speed(), 1.0);
assert_eq!(time.delta(), Duration::from_millis(250));
assert_eq!(time.elapsed(), Duration::from_millis(250));
time.pause();
assert!(time.is_paused()); // true
assert!(!time.was_paused()); // false
assert_eq!(time.relative_speed(), 1.0);
assert_eq!(time.effective_speed(), 1.0);
time.advance_with_raw_delta(Duration::from_millis(250));
assert!(time.is_paused()); // true
assert!(time.was_paused()); // true
assert_eq!(time.relative_speed(), 1.0);
assert_eq!(time.effective_speed(), 0.0);
assert_eq!(time.delta(), Duration::ZERO);
assert_eq!(time.elapsed(), Duration::from_millis(250));
time.unpause();
assert!(!time.is_paused()); // false
assert!(time.was_paused()); // true
assert_eq!(time.relative_speed(), 1.0);
assert_eq!(time.effective_speed(), 0.0);
time.advance_with_raw_delta(Duration::from_millis(250));
assert!(!time.is_paused()); // false
assert!(!time.was_paused()); // false
assert_eq!(time.relative_speed(), 1.0);
assert_eq!(time.effective_speed(), 1.0);
assert_eq!(time.delta(), Duration::from_millis(250));
assert_eq!(time.elapsed(), Duration::from_millis(500));
}
#[test]
fn test_max_delta() {
let mut time = Time::<Virtual>::default();
time.set_max_delta(Duration::from_millis(500));
time.advance_with_raw_delta(Duration::from_millis(250));
assert_eq!(time.delta(), Duration::from_millis(250));
assert_eq!(time.elapsed(), Duration::from_millis(250));
time.advance_with_raw_delta(Duration::from_millis(500));
assert_eq!(time.delta(), Duration::from_millis(500));
assert_eq!(time.elapsed(), Duration::from_millis(750));
time.advance_with_raw_delta(Duration::from_millis(750));
assert_eq!(time.delta(), Duration::from_millis(500));
assert_eq!(time.elapsed(), Duration::from_millis(1250));
time.set_max_delta(Duration::from_secs(1));
assert_eq!(time.max_delta(), Duration::from_secs(1));
time.advance_with_raw_delta(Duration::from_millis(750));
assert_eq!(time.delta(), Duration::from_millis(750));
assert_eq!(time.elapsed(), Duration::from_millis(2000));
time.advance_with_raw_delta(Duration::from_millis(1250));
assert_eq!(time.delta(), Duration::from_millis(1000));
assert_eq!(time.elapsed(), Duration::from_millis(3000));
}
}