bevy_utils/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![allow(unsafe_code)]
#![doc(
    html_logo_url = "https://bevyengine.org/assets/icon.png",
    html_favicon_url = "https://bevyengine.org/assets/icon.png"
)]

//! General utilities for first-party [Bevy] engine crates.
//!
//! [Bevy]: https://bevyengine.org/
//!

#[allow(missing_docs)]
pub mod prelude {
    pub use crate::default;
}

pub mod futures;
mod short_names;
pub use short_names::get_short_name;
pub mod synccell;
pub mod syncunsafecell;

mod cow_arc;
mod default;
mod once;
mod parallel_queue;

pub use ahash::{AHasher, RandomState};
pub use bevy_utils_proc_macros::*;
pub use cow_arc::*;
pub use default::default;
pub use hashbrown;
pub use parallel_queue::*;
pub use tracing;
pub use web_time::{Duration, Instant, SystemTime, SystemTimeError, TryFromFloatSecsError};

use hashbrown::hash_map::RawEntryMut;
use std::{
    any::TypeId,
    fmt::Debug,
    hash::{BuildHasher, BuildHasherDefault, Hash, Hasher},
    marker::PhantomData,
    mem::ManuallyDrop,
    ops::Deref,
};

#[cfg(not(target_arch = "wasm32"))]
mod conditional_send {
    /// Use [`ConditionalSend`] to mark an optional Send trait bound. Useful as on certain platforms (eg. WASM),
    /// futures aren't Send.
    pub trait ConditionalSend: Send {}
    impl<T: Send> ConditionalSend for T {}
}

#[cfg(target_arch = "wasm32")]
#[allow(missing_docs)]
mod conditional_send {
    pub trait ConditionalSend {}
    impl<T> ConditionalSend for T {}
}

pub use conditional_send::*;

/// Use [`ConditionalSendFuture`] for a future with an optional Send trait bound, as on certain platforms (eg. WASM),
/// futures aren't Send.
pub trait ConditionalSendFuture: std::future::Future + ConditionalSend {}
impl<T: std::future::Future + ConditionalSend> ConditionalSendFuture for T {}

/// An owned and dynamically typed Future used when you can't statically type your result or need to add some indirection.
pub type BoxedFuture<'a, T> = std::pin::Pin<Box<dyn ConditionalSendFuture<Output = T> + 'a>>;

/// A shortcut alias for [`hashbrown::hash_map::Entry`].
pub type Entry<'a, K, V, S = BuildHasherDefault<AHasher>> = hashbrown::hash_map::Entry<'a, K, V, S>;

/// A hasher builder that will create a fixed hasher.
#[derive(Debug, Clone, Default)]
pub struct FixedState;

impl BuildHasher for FixedState {
    type Hasher = AHasher;

    #[inline]
    fn build_hasher(&self) -> AHasher {
        RandomState::with_seeds(
            0b10010101111011100000010011000100,
            0b00000011001001101011001001111000,
            0b11001111011010110111100010110101,
            0b00000100001111100011010011010101,
        )
        .build_hasher()
    }
}

/// A [`HashMap`][hashbrown::HashMap] implementing aHash, a high
/// speed keyed hashing algorithm intended for use in in-memory hashmaps.
///
/// aHash is designed for performance and is NOT cryptographically secure.
///
/// Within the same execution of the program iteration order of different
/// `HashMap`s only depends on the order of insertions and deletions,
/// but it will not be stable between multiple executions of the program.
pub type HashMap<K, V> = hashbrown::HashMap<K, V, BuildHasherDefault<AHasher>>;

/// A stable hash map implementing aHash, a high speed keyed hashing algorithm
/// intended for use in in-memory hashmaps.
///
/// Unlike [`HashMap`] the iteration order stability extends between executions
/// using the same Bevy version on the same device.
///
/// aHash is designed for performance and is NOT cryptographically secure.
#[deprecated(
    note = "Will be required to use the hash library of your choice. Alias for: hashbrown::HashMap<K, V, FixedState>"
)]
pub type StableHashMap<K, V> = hashbrown::HashMap<K, V, FixedState>;

/// A [`HashSet`][hashbrown::HashSet] implementing aHash, a high
/// speed keyed hashing algorithm intended for use in in-memory hashmaps.
///
/// aHash is designed for performance and is NOT cryptographically secure.
///
/// Within the same execution of the program iteration order of different
/// `HashSet`s only depends on the order of insertions and deletions,
/// but it will not be stable between multiple executions of the program.
pub type HashSet<K> = hashbrown::HashSet<K, BuildHasherDefault<AHasher>>;

/// A stable hash set implementing aHash, a high speed keyed hashing algorithm
/// intended for use in in-memory hashmaps.
///
/// Unlike [`HashMap`] the iteration order stability extends between executions
/// using the same Bevy version on the same device.
///
/// aHash is designed for performance and is NOT cryptographically secure.
#[deprecated(
    note = "Will be required to use the hash library of your choice. Alias for: hashbrown::HashSet<K, FixedState>"
)]
pub type StableHashSet<K> = hashbrown::HashSet<K, FixedState>;

/// A pre-hashed value of a specific type. Pre-hashing enables memoization of hashes that are expensive to compute.
/// It also enables faster [`PartialEq`] comparisons by short circuiting on hash equality.
/// See [`PassHash`] and [`PassHasher`] for a "pass through" [`BuildHasher`] and [`Hasher`] implementation
/// designed to work with [`Hashed`]
/// See [`PreHashMap`] for a hashmap pre-configured to use [`Hashed`] keys.
pub struct Hashed<V, H = FixedState> {
    hash: u64,
    value: V,
    marker: PhantomData<H>,
}

impl<V: Hash, H: BuildHasher + Default> Hashed<V, H> {
    /// Pre-hashes the given value using the [`BuildHasher`] configured in the [`Hashed`] type.
    pub fn new(value: V) -> Self {
        Self {
            hash: H::default().hash_one(&value),
            value,
            marker: PhantomData,
        }
    }

    /// The pre-computed hash.
    #[inline]
    pub fn hash(&self) -> u64 {
        self.hash
    }
}

impl<V, H> Hash for Hashed<V, H> {
    #[inline]
    fn hash<R: Hasher>(&self, state: &mut R) {
        state.write_u64(self.hash);
    }
}

impl<V, H> Deref for Hashed<V, H> {
    type Target = V;

    #[inline]
    fn deref(&self) -> &Self::Target {
        &self.value
    }
}

impl<V: PartialEq, H> PartialEq for Hashed<V, H> {
    /// A fast impl of [`PartialEq`] that first checks that `other`'s pre-computed hash
    /// matches this value's pre-computed hash.
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        self.hash == other.hash && self.value.eq(&other.value)
    }
}

impl<V: Debug, H> Debug for Hashed<V, H> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("Hashed")
            .field("hash", &self.hash)
            .field("value", &self.value)
            .finish()
    }
}

impl<V: Clone, H> Clone for Hashed<V, H> {
    #[inline]
    fn clone(&self) -> Self {
        Self {
            hash: self.hash,
            value: self.value.clone(),
            marker: PhantomData,
        }
    }
}

impl<V: Eq, H> Eq for Hashed<V, H> {}

/// A [`BuildHasher`] that results in a [`PassHasher`].
#[derive(Default, Clone)]
pub struct PassHash;

impl BuildHasher for PassHash {
    type Hasher = PassHasher;

    fn build_hasher(&self) -> Self::Hasher {
        PassHasher::default()
    }
}

/// A no-op hash that only works on `u64`s. Will panic if attempting to
/// hash a type containing non-u64 fields.
#[derive(Debug, Default)]
pub struct PassHasher {
    hash: u64,
}

impl Hasher for PassHasher {
    #[inline]
    fn finish(&self) -> u64 {
        self.hash
    }

    fn write(&mut self, _bytes: &[u8]) {
        panic!("can only hash u64 using PassHasher");
    }

    #[inline]
    fn write_u64(&mut self, i: u64) {
        self.hash = i;
    }
}

/// A [`HashMap`] pre-configured to use [`Hashed`] keys and [`PassHash`] passthrough hashing.
/// Iteration order only depends on the order of insertions and deletions.
pub type PreHashMap<K, V> = hashbrown::HashMap<Hashed<K>, V, PassHash>;

/// Extension methods intended to add functionality to [`PreHashMap`].
pub trait PreHashMapExt<K, V> {
    /// Tries to get or insert the value for the given `key` using the pre-computed hash first.
    /// If the [`PreHashMap`] does not already contain the `key`, it will clone it and insert
    /// the value returned by `func`.
    fn get_or_insert_with<F: FnOnce() -> V>(&mut self, key: &Hashed<K>, func: F) -> &mut V;
}

impl<K: Hash + Eq + PartialEq + Clone, V> PreHashMapExt<K, V> for PreHashMap<K, V> {
    #[inline]
    fn get_or_insert_with<F: FnOnce() -> V>(&mut self, key: &Hashed<K>, func: F) -> &mut V {
        let entry = self
            .raw_entry_mut()
            .from_key_hashed_nocheck(key.hash(), key);
        match entry {
            RawEntryMut::Occupied(entry) => entry.into_mut(),
            RawEntryMut::Vacant(entry) => {
                let (_, value) = entry.insert_hashed_nocheck(key.hash(), key.clone(), func());
                value
            }
        }
    }
}

/// A [`BuildHasher`] that results in a [`EntityHasher`].
#[derive(Default, Clone)]
pub struct EntityHash;

impl BuildHasher for EntityHash {
    type Hasher = EntityHasher;

    fn build_hasher(&self) -> Self::Hasher {
        EntityHasher::default()
    }
}

/// A very fast hash that is only designed to work on generational indices
/// like `Entity`. It will panic if attempting to hash a type containing
/// non-u64 fields.
///
/// This is heavily optimized for typical cases, where you have mostly live
/// entities, and works particularly well for contiguous indices.
///
/// If you have an unusual case -- say all your indices are multiples of 256
/// or most of the entities are dead generations -- then you might want also to
/// try [`AHasher`] for a slower hash computation but fewer lookup conflicts.
#[derive(Debug, Default)]
pub struct EntityHasher {
    hash: u64,
}

impl Hasher for EntityHasher {
    #[inline]
    fn finish(&self) -> u64 {
        self.hash
    }

    fn write(&mut self, _bytes: &[u8]) {
        panic!("can only hash u64 using EntityHasher");
    }

    #[inline]
    fn write_u64(&mut self, bits: u64) {
        // SwissTable (and thus `hashbrown`) cares about two things from the hash:
        // - H1: low bits (masked by `2ⁿ-1`) to pick the slot in which to store the item
        // - H2: high 7 bits are used to SIMD optimize hash collision probing
        // For more see <https://abseil.io/about/design/swisstables#metadata-layout>

        // This hash function assumes that the entity ids are still well-distributed,
        // so for H1 leaves the entity id alone in the low bits so that id locality
        // will also give memory locality for things spawned together.
        // For H2, take advantage of the fact that while multiplication doesn't
        // spread entropy to the low bits, it's incredibly good at spreading it
        // upward, which is exactly where we need it the most.

        // While this does include the generation in the output, it doesn't do so
        // *usefully*.  H1 won't care until you have over 3 billion entities in
        // the table, and H2 won't care until something hits generation 33 million.
        // Thus the comment suggesting that this is best for live entities,
        // where there won't be generation conflicts where it would matter.

        // The high 32 bits of this are ⅟φ for Fibonacci hashing.  That works
        // particularly well for hashing for the same reason as described in
        // <https://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/>
        // It loses no information because it has a modular inverse.
        // (Specifically, `0x144c_bc89_u32 * 0x9e37_79b9_u32 == 1`.)
        //
        // The low 32 bits make that part of the just product a pass-through.
        const UPPER_PHI: u64 = 0x9e37_79b9_0000_0001;

        // This is `(MAGIC * index + generation) << 32 + index`, in a single instruction.
        self.hash = bits.wrapping_mul(UPPER_PHI);
    }
}

/// A [`HashMap`] pre-configured to use [`EntityHash`] hashing.
/// Iteration order only depends on the order of insertions and deletions.
pub type EntityHashMap<K, V> = hashbrown::HashMap<K, V, EntityHash>;

/// A [`HashSet`] pre-configured to use [`EntityHash`] hashing.
/// Iteration order only depends on the order of insertions and deletions.
pub type EntityHashSet<T> = hashbrown::HashSet<T, EntityHash>;

/// A specialized hashmap type with Key of [`TypeId`]
/// Iteration order only depends on the order of insertions and deletions.
pub type TypeIdMap<V> = hashbrown::HashMap<TypeId, V, NoOpHash>;

/// [`BuildHasher`] for types that already contain a high-quality hash.
#[derive(Clone, Default)]
pub struct NoOpHash;

impl BuildHasher for NoOpHash {
    type Hasher = NoOpHasher;

    fn build_hasher(&self) -> Self::Hasher {
        NoOpHasher(0)
    }
}

#[doc(hidden)]
pub struct NoOpHasher(u64);

// This is for types that already contain a high-quality hash and want to skip
// re-hashing that hash.
impl std::hash::Hasher for NoOpHasher {
    fn finish(&self) -> u64 {
        self.0
    }

    fn write(&mut self, bytes: &[u8]) {
        // This should never be called by consumers. Prefer to call `write_u64` instead.
        // Don't break applications (slower fallback, just check in test):
        self.0 = bytes.iter().fold(self.0, |hash, b| {
            hash.rotate_left(8).wrapping_add(*b as u64)
        });
    }

    #[inline]
    fn write_u64(&mut self, i: u64) {
        self.0 = i;
    }
}

/// A type which calls a function when dropped.
/// This can be used to ensure that cleanup code is run even in case of a panic.
///
/// Note that this only works for panics that [unwind](https://doc.rust-lang.org/nomicon/unwinding.html)
/// -- any code within `OnDrop` will be skipped if a panic does not unwind.
/// In most cases, this will just work.
///
/// # Examples
///
/// ```
/// # use bevy_utils::OnDrop;
/// # fn test_panic(do_panic: bool, log: impl FnOnce(&str)) {
/// // This will print a message when the variable `_catch` gets dropped,
/// // even if a panic occurs before we reach the end of this scope.
/// // This is similar to a `try ... catch` block in languages such as C++.
/// let _catch = OnDrop::new(|| log("Oops, a panic occurred and this function didn't complete!"));
///
/// // Some code that may panic...
/// // ...
/// # if do_panic { panic!() }
///
/// // Make sure the message only gets printed if a panic occurs.
/// // If we remove this line, then the message will be printed regardless of whether a panic occurs
/// // -- similar to a `try ... finally` block.
/// std::mem::forget(_catch);
/// # }
/// #
/// # test_panic(false, |_| unreachable!());
/// # let mut did_log = false;
/// # std::panic::catch_unwind(std::panic::AssertUnwindSafe(|| {
/// #   test_panic(true, |_| did_log = true);
/// # }));
/// # assert!(did_log);
/// ```
pub struct OnDrop<F: FnOnce()> {
    callback: ManuallyDrop<F>,
}

impl<F: FnOnce()> OnDrop<F> {
    /// Returns an object that will invoke the specified callback when dropped.
    pub fn new(callback: F) -> Self {
        Self {
            callback: ManuallyDrop::new(callback),
        }
    }
}

impl<F: FnOnce()> Drop for OnDrop<F> {
    fn drop(&mut self) {
        // SAFETY: We may move out of `self`, since this instance can never be observed after it's dropped.
        let callback = unsafe { ManuallyDrop::take(&mut self.callback) };
        callback();
    }
}

/// Calls the [`tracing::info!`] macro on a value.
pub fn info<T: Debug>(data: T) {
    tracing::info!("{:?}", data);
}

/// Calls the [`tracing::debug!`] macro on a value.
pub fn dbg<T: Debug>(data: T) {
    tracing::debug!("{:?}", data);
}

/// Processes a [`Result`] by calling the [`tracing::warn!`] macro in case of an [`Err`] value.
pub fn warn<E: Debug>(result: Result<(), E>) {
    if let Err(warn) = result {
        tracing::warn!("{:?}", warn);
    }
}

/// Processes a [`Result`] by calling the [`tracing::error!`] macro in case of an [`Err`] value.
pub fn error<E: Debug>(result: Result<(), E>) {
    if let Err(error) = result {
        tracing::error!("{:?}", error);
    }
}

/// Like [`tracing::trace`], but conditional on cargo feature `detailed_trace`.
#[macro_export]
macro_rules! detailed_trace {
    ($($tts:tt)*) => {
        if cfg!(detailed_trace) {
            bevy_utils::tracing::trace!($($tts)*);
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use static_assertions::assert_impl_all;

    // Check that the HashMaps are Clone if the key/values are Clone
    assert_impl_all!(PreHashMap::<u64, usize>: Clone);

    #[test]
    fn fast_typeid_hash() {
        struct Hasher;

        impl std::hash::Hasher for Hasher {
            fn finish(&self) -> u64 {
                0
            }
            fn write(&mut self, _: &[u8]) {
                panic!("Hashing of std::any::TypeId changed");
            }
            fn write_u64(&mut self, _: u64) {}
        }

        std::hash::Hash::hash(&TypeId::of::<()>(), &mut Hasher);
    }

    #[test]
    fn stable_hash_within_same_program_execution() {
        let mut map_1 = HashMap::new();
        let mut map_2 = HashMap::new();
        for i in 1..10 {
            map_1.insert(i, i);
            map_2.insert(i, i);
        }
        assert_eq!(
            map_1.iter().collect::<Vec<_>>(),
            map_2.iter().collect::<Vec<_>>()
        );
    }
}