bit_set/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! # Description
//!
//! An implementation of a set using a bit vector as an underlying
//! representation for holding unsigned numerical elements.
//!
//! It should also be noted that the amount of storage necessary for holding a
//! set of objects is proportional to the maximum of the objects when viewed
//! as a `usize`.
//!
//! # Examples
//!
//! ```
//! use bit_set::BitSet;
//!
//! // It's a regular set
//! let mut s = BitSet::new();
//! s.insert(0);
//! s.insert(3);
//! s.insert(7);
//!
//! s.remove(7);
//!
//! if !s.contains(7) {
//!     println!("There is no 7");
//! }
//!
//! // Can initialize from a `BitVec`
//! let other = BitSet::from_bytes(&[0b11010000]);
//!
//! s.union_with(&other);
//!
//! // Print 0, 1, 3 in some order
//! for x in s.iter() {
//!     println!("{}", x);
//! }
//!
//! // Can convert back to a `BitVec`
//! let bv = s.into_bit_vec();
//! assert!(bv[3]);
//! ```
#![doc(html_root_url = "https://docs.rs/bit-set/0.8.0")]
#![no_std]

extern crate bit_vec;

#[cfg(feature = "serde")]
extern crate serde;

#[cfg(any(test, feature = "std"))]
extern crate std;

use bit_vec::{BitBlock, BitVec, Blocks};
use core::cmp;
use core::cmp::Ordering;
use core::fmt;
use core::hash;
use core::iter::{self, Chain, Enumerate, FromIterator, Repeat, Skip, Take};

type MatchWords<'a, B> = Chain<Enumerate<Blocks<'a, B>>, Skip<Take<Enumerate<Repeat<B>>>>>;

/// Computes how many blocks are needed to store that many bits
fn blocks_for_bits<B: BitBlock>(bits: usize) -> usize {
    // If we want 17 bits, dividing by 32 will produce 0. So we add 1 to make sure we
    // reserve enough. But if we want exactly a multiple of 32, this will actually allocate
    // one too many. So we need to check if that's the case. We can do that by computing if
    // bitwise AND by `32 - 1` is 0. But LLVM should be able to optimize the semantically
    // superior modulo operator on a power of two to this.
    //
    // Note that we can technically avoid this branch with the expression
    // `(nbits + BITS - 1) / 32::BITS`, but if nbits is almost usize::MAX this will overflow.
    if bits % B::bits() == 0 {
        bits / B::bits()
    } else {
        bits / B::bits() + 1
    }
}

#[allow(clippy::iter_skip_zero)]
// Take two BitVec's, and return iterators of their words, where the shorter one
// has been padded with 0's
fn match_words<'a, 'b, B: BitBlock>(
    a: &'a BitVec<B>,
    b: &'b BitVec<B>,
) -> (MatchWords<'a, B>, MatchWords<'b, B>) {
    let a_len = a.storage().len();
    let b_len = b.storage().len();

    // have to uselessly pretend to pad the longer one for type matching
    if a_len < b_len {
        (
            a.blocks()
                .enumerate()
                .chain(iter::repeat(B::zero()).enumerate().take(b_len).skip(a_len)),
            b.blocks()
                .enumerate()
                .chain(iter::repeat(B::zero()).enumerate().take(0).skip(0)),
        )
    } else {
        (
            a.blocks()
                .enumerate()
                .chain(iter::repeat(B::zero()).enumerate().take(0).skip(0)),
            b.blocks()
                .enumerate()
                .chain(iter::repeat(B::zero()).enumerate().take(a_len).skip(b_len)),
        )
    }
}

#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct BitSet<B = u32> {
    bit_vec: BitVec<B>,
}

impl<B: BitBlock> Clone for BitSet<B> {
    fn clone(&self) -> Self {
        BitSet {
            bit_vec: self.bit_vec.clone(),
        }
    }

    fn clone_from(&mut self, other: &Self) {
        self.bit_vec.clone_from(&other.bit_vec);
    }
}

impl<B: BitBlock> Default for BitSet<B> {
    #[inline]
    fn default() -> Self {
        BitSet {
            bit_vec: Default::default(),
        }
    }
}

impl<B: BitBlock> FromIterator<usize> for BitSet<B> {
    fn from_iter<I: IntoIterator<Item = usize>>(iter: I) -> Self {
        let mut ret = Self::default();
        ret.extend(iter);
        ret
    }
}

impl<B: BitBlock> Extend<usize> for BitSet<B> {
    #[inline]
    fn extend<I: IntoIterator<Item = usize>>(&mut self, iter: I) {
        for i in iter {
            self.insert(i);
        }
    }
}

impl<B: BitBlock> PartialOrd for BitSet<B> {
    #[inline]
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl<B: BitBlock> Ord for BitSet<B> {
    #[inline]
    fn cmp(&self, other: &Self) -> Ordering {
        self.iter().cmp(other)
    }
}

impl<B: BitBlock> PartialEq for BitSet<B> {
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        self.iter().eq(other)
    }
}

impl<B: BitBlock> Eq for BitSet<B> {}

impl BitSet<u32> {
    /// Creates a new empty `BitSet`.
    ///
    /// # Examples
    ///
    /// ```
    /// use bit_set::BitSet;
    ///
    /// let mut s = BitSet::new();
    /// ```
    #[inline]
    pub fn new() -> Self {
        Self::default()
    }

    /// Creates a new `BitSet` with initially no contents, able to
    /// hold `nbits` elements without resizing.
    ///
    /// # Examples
    ///
    /// ```
    /// use bit_set::BitSet;
    ///
    /// let mut s = BitSet::with_capacity(100);
    /// assert!(s.capacity() >= 100);
    /// ```
    #[inline]
    pub fn with_capacity(nbits: usize) -> Self {
        let bit_vec = BitVec::from_elem(nbits, false);
        Self::from_bit_vec(bit_vec)
    }

    /// Creates a new `BitSet` from the given bit vector.
    ///
    /// # Examples
    ///
    /// ```
    /// extern crate bit_vec;
    /// extern crate bit_set;
    ///
    /// fn main() {
    ///     use bit_vec::BitVec;
    ///     use bit_set::BitSet;
    ///
    ///     let bv = BitVec::from_bytes(&[0b01100000]);
    ///     let s = BitSet::from_bit_vec(bv);
    ///
    ///     // Print 1, 2 in arbitrary order
    ///     for x in s.iter() {
    ///         println!("{}", x);
    ///     }
    /// }
    /// ```
    #[inline]
    pub fn from_bit_vec(bit_vec: BitVec) -> Self {
        BitSet { bit_vec }
    }

    pub fn from_bytes(bytes: &[u8]) -> Self {
        BitSet {
            bit_vec: BitVec::from_bytes(bytes),
        }
    }
}

impl<B: BitBlock> BitSet<B> {
    /// Returns the capacity in bits for this bit vector. Inserting any
    /// element less than this amount will not trigger a resizing.
    ///
    /// # Examples
    ///
    /// ```
    /// use bit_set::BitSet;
    ///
    /// let mut s = BitSet::with_capacity(100);
    /// assert!(s.capacity() >= 100);
    /// ```
    #[inline]
    pub fn capacity(&self) -> usize {
        self.bit_vec.capacity()
    }

    /// Reserves capacity for the given `BitSet` to contain `len` distinct elements. In the case
    /// of `BitSet` this means reallocations will not occur as long as all inserted elements
    /// are less than `len`.
    ///
    /// The collection may reserve more space to avoid frequent reallocations.
    ///
    ///
    /// # Examples
    ///
    /// ```
    /// use bit_set::BitSet;
    ///
    /// let mut s = BitSet::new();
    /// s.reserve_len(10);
    /// assert!(s.capacity() >= 10);
    /// ```
    pub fn reserve_len(&mut self, len: usize) {
        let cur_len = self.bit_vec.len();
        if len >= cur_len {
            self.bit_vec.reserve(len - cur_len);
        }
    }

    /// Reserves the minimum capacity for the given `BitSet` to contain `len` distinct elements.
    /// In the case of `BitSet` this means reallocations will not occur as long as all inserted
    /// elements are less than `len`.
    ///
    /// Note that the allocator may give the collection more space than it requests. Therefore
    /// capacity can not be relied upon to be precisely minimal. Prefer `reserve_len` if future
    /// insertions are expected.
    ///
    ///
    /// # Examples
    ///
    /// ```
    /// use bit_set::BitSet;
    ///
    /// let mut s = BitSet::new();
    /// s.reserve_len_exact(10);
    /// assert!(s.capacity() >= 10);
    /// ```
    pub fn reserve_len_exact(&mut self, len: usize) {
        let cur_len = self.bit_vec.len();
        if len >= cur_len {
            self.bit_vec.reserve_exact(len - cur_len);
        }
    }

    /// Consumes this set to return the underlying bit vector.
    ///
    /// # Examples
    ///
    /// ```
    /// use bit_set::BitSet;
    ///
    /// let mut s = BitSet::new();
    /// s.insert(0);
    /// s.insert(3);
    ///
    /// let bv = s.into_bit_vec();
    /// assert!(bv[0]);
    /// assert!(bv[3]);
    /// ```
    #[inline]
    pub fn into_bit_vec(self) -> BitVec<B> {
        self.bit_vec
    }

    /// Returns a reference to the underlying bit vector.
    ///
    /// # Examples
    ///
    /// ```
    /// use bit_set::BitSet;
    ///
    /// let mut set = BitSet::new();
    /// set.insert(0);
    ///
    /// let bv = set.get_ref();
    /// assert_eq!(bv[0], true);
    /// ```
    #[inline]
    pub fn get_ref(&self) -> &BitVec<B> {
        &self.bit_vec
    }

    /// Returns a mutable reference to the underlying bit vector.
    ///
    /// # Examples
    ///
    /// ```
    /// use bit_set::BitSet;
    ///
    /// let mut set = BitSet::new();
    /// set.insert(0);
    /// set.insert(3);
    ///
    /// {
    ///     let bv = set.get_mut();
    ///     bv.set(1, true);
    /// }
    ///
    /// assert!(set.contains(0));
    /// assert!(set.contains(1));
    /// assert!(set.contains(3));
    /// ```
    #[inline]
    pub fn get_mut(&mut self) -> &mut BitVec<B> {
        &mut self.bit_vec
    }

    #[inline]
    fn other_op<F>(&mut self, other: &Self, mut f: F)
    where
        F: FnMut(B, B) -> B,
    {
        // Unwrap BitVecs
        let self_bit_vec = &mut self.bit_vec;
        let other_bit_vec = &other.bit_vec;

        let self_len = self_bit_vec.len();
        let other_len = other_bit_vec.len();

        // Expand the vector if necessary
        if self_len < other_len {
            self_bit_vec.grow(other_len - self_len, false);
        }

        // virtually pad other with 0's for equal lengths
        let other_words = {
            let (_, result) = match_words(self_bit_vec, other_bit_vec);
            result
        };

        // Apply values found in other
        for (i, w) in other_words {
            let old = self_bit_vec.storage()[i];
            let new = f(old, w);
            unsafe {
                self_bit_vec.storage_mut()[i] = new;
            }
        }
    }

    /// Truncates the underlying vector to the least length required.
    ///
    /// # Examples
    ///
    /// ```
    /// use bit_set::BitSet;
    ///
    /// let mut s = BitSet::new();
    /// s.insert(3231);
    /// s.remove(3231);
    ///
    /// // Internal storage will probably be bigger than necessary
    /// println!("old capacity: {}", s.capacity());
    /// assert!(s.capacity() >= 3231);
    ///
    /// // Now should be smaller
    /// s.shrink_to_fit();
    /// println!("new capacity: {}", s.capacity());
    /// ```
    #[inline]
    pub fn shrink_to_fit(&mut self) {
        let bit_vec = &mut self.bit_vec;
        // Obtain original length
        let old_len = bit_vec.storage().len();
        // Obtain coarse trailing zero length
        let n = bit_vec
            .storage()
            .iter()
            .rev()
            .take_while(|&&n| n == B::zero())
            .count();
        // Truncate away all empty trailing blocks, then shrink_to_fit
        let trunc_len = old_len - n;
        unsafe {
            bit_vec.storage_mut().truncate(trunc_len);
            bit_vec.set_len(trunc_len * B::bits());
        }
        bit_vec.shrink_to_fit();
    }

    /// Iterator over each usize stored in the `BitSet`.
    ///
    /// # Examples
    ///
    /// ```
    /// use bit_set::BitSet;
    ///
    /// let s = BitSet::from_bytes(&[0b01001010]);
    ///
    /// // Print 1, 4, 6 in arbitrary order
    /// for x in s.iter() {
    ///     println!("{}", x);
    /// }
    /// ```
    #[inline]
    pub fn iter(&self) -> Iter<B> {
        Iter(BlockIter::from_blocks(self.bit_vec.blocks()))
    }

    /// Iterator over each usize stored in `self` union `other`.
    /// See [`union_with`] for an efficient in-place version.
    ///
    /// # Examples
    ///
    /// ```
    /// use bit_set::BitSet;
    ///
    /// let a = BitSet::from_bytes(&[0b01101000]);
    /// let b = BitSet::from_bytes(&[0b10100000]);
    ///
    /// // Print 0, 1, 2, 4 in arbitrary order
    /// for x in a.union(&b) {
    ///     println!("{}", x);
    /// }
    /// ```
    ///
    /// [`union_with`]: Self::union_with
    #[inline]
    pub fn union<'a>(&'a self, other: &'a Self) -> Union<'a, B> {
        fn or<B: BitBlock>(w1: B, w2: B) -> B {
            w1 | w2
        }

        Union(BlockIter::from_blocks(TwoBitPositions {
            set: self.bit_vec.blocks(),
            other: other.bit_vec.blocks(),
            merge: or,
        }))
    }

    /// Iterator over each usize stored in `self` intersect `other`.
    /// See [`intersect_with`] for an efficient in-place version.
    ///
    /// # Examples
    ///
    /// ```
    /// use bit_set::BitSet;
    ///
    /// let a = BitSet::from_bytes(&[0b01101000]);
    /// let b = BitSet::from_bytes(&[0b10100000]);
    ///
    /// // Print 2
    /// for x in a.intersection(&b) {
    ///     println!("{}", x);
    /// }
    /// ```
    ///
    /// [`intersect_with`]: Self::intersect_with
    #[inline]
    pub fn intersection<'a>(&'a self, other: &'a Self) -> Intersection<'a, B> {
        fn bitand<B: BitBlock>(w1: B, w2: B) -> B {
            w1 & w2
        }
        let min = cmp::min(self.bit_vec.len(), other.bit_vec.len());

        Intersection {
            iter: BlockIter::from_blocks(TwoBitPositions {
                set: self.bit_vec.blocks(),
                other: other.bit_vec.blocks(),
                merge: bitand,
            }),
            n: min,
        }
    }

    /// Iterator over each usize stored in the `self` setminus `other`.
    /// See [`difference_with`] for an efficient in-place version.
    ///
    /// # Examples
    ///
    /// ```
    /// use bit_set::BitSet;
    ///
    /// let a = BitSet::from_bytes(&[0b01101000]);
    /// let b = BitSet::from_bytes(&[0b10100000]);
    ///
    /// // Print 1, 4 in arbitrary order
    /// for x in a.difference(&b) {
    ///     println!("{}", x);
    /// }
    ///
    /// // Note that difference is not symmetric,
    /// // and `b - a` means something else.
    /// // This prints 0
    /// for x in b.difference(&a) {
    ///     println!("{}", x);
    /// }
    /// ```
    ///
    /// [`difference_with`]: Self::difference_with
    #[inline]
    pub fn difference<'a>(&'a self, other: &'a Self) -> Difference<'a, B> {
        fn diff<B: BitBlock>(w1: B, w2: B) -> B {
            w1 & !w2
        }

        Difference(BlockIter::from_blocks(TwoBitPositions {
            set: self.bit_vec.blocks(),
            other: other.bit_vec.blocks(),
            merge: diff,
        }))
    }

    /// Iterator over each usize stored in the symmetric difference of `self` and `other`.
    /// See [`symmetric_difference_with`] for an efficient in-place version.
    ///
    /// # Examples
    ///
    /// ```
    /// use bit_set::BitSet;
    ///
    /// let a = BitSet::from_bytes(&[0b01101000]);
    /// let b = BitSet::from_bytes(&[0b10100000]);
    ///
    /// // Print 0, 1, 4 in arbitrary order
    /// for x in a.symmetric_difference(&b) {
    ///     println!("{}", x);
    /// }
    /// ```
    ///
    /// [`symmetric_difference_with`]: Self::symmetric_difference_with
    #[inline]
    pub fn symmetric_difference<'a>(&'a self, other: &'a Self) -> SymmetricDifference<'a, B> {
        fn bitxor<B: BitBlock>(w1: B, w2: B) -> B {
            w1 ^ w2
        }

        SymmetricDifference(BlockIter::from_blocks(TwoBitPositions {
            set: self.bit_vec.blocks(),
            other: other.bit_vec.blocks(),
            merge: bitxor,
        }))
    }

    /// Unions in-place with the specified other bit vector.
    ///
    /// # Examples
    ///
    /// ```
    /// use bit_set::BitSet;
    ///
    /// let a   = 0b01101000;
    /// let b   = 0b10100000;
    /// let res = 0b11101000;
    ///
    /// let mut a = BitSet::from_bytes(&[a]);
    /// let b = BitSet::from_bytes(&[b]);
    /// let res = BitSet::from_bytes(&[res]);
    ///
    /// a.union_with(&b);
    /// assert_eq!(a, res);
    /// ```
    #[inline]
    pub fn union_with(&mut self, other: &Self) {
        self.other_op(other, |w1, w2| w1 | w2);
    }

    /// Intersects in-place with the specified other bit vector.
    ///
    /// # Examples
    ///
    /// ```
    /// use bit_set::BitSet;
    ///
    /// let a   = 0b01101000;
    /// let b   = 0b10100000;
    /// let res = 0b00100000;
    ///
    /// let mut a = BitSet::from_bytes(&[a]);
    /// let b = BitSet::from_bytes(&[b]);
    /// let res = BitSet::from_bytes(&[res]);
    ///
    /// a.intersect_with(&b);
    /// assert_eq!(a, res);
    /// ```
    #[inline]
    pub fn intersect_with(&mut self, other: &Self) {
        self.other_op(other, |w1, w2| w1 & w2);
    }

    /// Makes this bit vector the difference with the specified other bit vector
    /// in-place.
    ///
    /// # Examples
    ///
    /// ```
    /// use bit_set::BitSet;
    ///
    /// let a   = 0b01101000;
    /// let b   = 0b10100000;
    /// let a_b = 0b01001000; // a - b
    /// let b_a = 0b10000000; // b - a
    ///
    /// let mut bva = BitSet::from_bytes(&[a]);
    /// let bvb = BitSet::from_bytes(&[b]);
    /// let bva_b = BitSet::from_bytes(&[a_b]);
    /// let bvb_a = BitSet::from_bytes(&[b_a]);
    ///
    /// bva.difference_with(&bvb);
    /// assert_eq!(bva, bva_b);
    ///
    /// let bva = BitSet::from_bytes(&[a]);
    /// let mut bvb = BitSet::from_bytes(&[b]);
    ///
    /// bvb.difference_with(&bva);
    /// assert_eq!(bvb, bvb_a);
    /// ```
    #[inline]
    pub fn difference_with(&mut self, other: &Self) {
        self.other_op(other, |w1, w2| w1 & !w2);
    }

    /// Makes this bit vector the symmetric difference with the specified other
    /// bit vector in-place.
    ///
    /// # Examples
    ///
    /// ```
    /// use bit_set::BitSet;
    ///
    /// let a   = 0b01101000;
    /// let b   = 0b10100000;
    /// let res = 0b11001000;
    ///
    /// let mut a = BitSet::from_bytes(&[a]);
    /// let b = BitSet::from_bytes(&[b]);
    /// let res = BitSet::from_bytes(&[res]);
    ///
    /// a.symmetric_difference_with(&b);
    /// assert_eq!(a, res);
    /// ```
    #[inline]
    pub fn symmetric_difference_with(&mut self, other: &Self) {
        self.other_op(other, |w1, w2| w1 ^ w2);
    }

    /*
        /// Moves all elements from `other` into `Self`, leaving `other` empty.
        ///
        /// # Examples
        ///
        /// ```
        /// use bit_set::BitSet;
        ///
        /// let mut a = BitSet::new();
        /// a.insert(2);
        /// a.insert(6);
        ///
        /// let mut b = BitSet::new();
        /// b.insert(1);
        /// b.insert(3);
        /// b.insert(6);
        ///
        /// a.append(&mut b);
        ///
        /// assert_eq!(a.len(), 4);
        /// assert_eq!(b.len(), 0);
        /// assert_eq!(a, BitSet::from_bytes(&[0b01110010]));
        /// ```
        pub fn append(&mut self, other: &mut Self) {
            self.union_with(other);
            other.clear();
        }

        /// Splits the `BitSet` into two at the given key including the key.
        /// Retains the first part in-place while returning the second part.
        ///
        /// # Examples
        ///
        /// ```
        /// use bit_set::BitSet;
        ///
        /// let mut a = BitSet::new();
        /// a.insert(2);
        /// a.insert(6);
        /// a.insert(1);
        /// a.insert(3);
        ///
        /// let b = a.split_off(3);
        ///
        /// assert_eq!(a.len(), 2);
        /// assert_eq!(b.len(), 2);
        /// assert_eq!(a, BitSet::from_bytes(&[0b01100000]));
        /// assert_eq!(b, BitSet::from_bytes(&[0b00010010]));
        /// ```
        pub fn split_off(&mut self, at: usize) -> Self {
            let mut other = BitSet::new();

            if at == 0 {
                swap(self, &mut other);
                return other;
            } else if at >= self.bit_vec.len() {
                return other;
            }

            // Calculate block and bit at which to split
            let w = at / BITS;
            let b = at % BITS;

            // Pad `other` with `w` zero blocks,
            // append `self`'s blocks in the range from `w` to the end to `other`
            other.bit_vec.storage_mut().extend(repeat(0u32).take(w)
                                         .chain(self.bit_vec.storage()[w..].iter().cloned()));
            other.bit_vec.nbits = self.bit_vec.nbits;

            if b > 0 {
                other.bit_vec.storage_mut()[w] &= !0 << b;
            }

            // Sets `bit_vec.len()` and fixes the last block as well
            self.bit_vec.truncate(at);

            other
        }
    */

    /// Returns the number of set bits in this set.
    #[inline]
    pub fn len(&self) -> usize {
        self.bit_vec.blocks().fold(0, |acc, n| acc + n.count_ones())
    }

    /// Returns whether there are no bits set in this set
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.bit_vec.none()
    }

    /// Clears all bits in this set
    #[inline]
    pub fn clear(&mut self) {
        self.bit_vec.clear();
    }

    /// Returns `true` if this set contains the specified integer.
    #[inline]
    pub fn contains(&self, value: usize) -> bool {
        let bit_vec = &self.bit_vec;
        value < bit_vec.len() && bit_vec[value]
    }

    /// Returns `true` if the set has no elements in common with `other`.
    /// This is equivalent to checking for an empty intersection.
    #[inline]
    pub fn is_disjoint(&self, other: &Self) -> bool {
        self.intersection(other).next().is_none()
    }

    /// Returns `true` if the set is a subset of another.
    #[inline]
    pub fn is_subset(&self, other: &Self) -> bool {
        let self_bit_vec = &self.bit_vec;
        let other_bit_vec = &other.bit_vec;
        let other_blocks = blocks_for_bits::<B>(other_bit_vec.len());

        // Check that `self` intersect `other` is self
        self_bit_vec.blocks().zip(other_bit_vec.blocks()).all(|(w1, w2)| w1 & w2 == w1) &&
        // Make sure if `self` has any more blocks than `other`, they're all 0
        self_bit_vec.blocks().skip(other_blocks).all(|w| w == B::zero())
    }

    /// Returns `true` if the set is a superset of another.
    #[inline]
    pub fn is_superset(&self, other: &Self) -> bool {
        other.is_subset(self)
    }

    /// Adds a value to the set. Returns `true` if the value was not already
    /// present in the set.
    pub fn insert(&mut self, value: usize) -> bool {
        if self.contains(value) {
            return false;
        }

        // Ensure we have enough space to hold the new element
        let len = self.bit_vec.len();
        if value >= len {
            self.bit_vec.grow(value - len + 1, false);
        }

        self.bit_vec.set(value, true);
        true
    }

    /// Removes a value from the set. Returns `true` if the value was
    /// present in the set.
    pub fn remove(&mut self, value: usize) -> bool {
        if !self.contains(value) {
            return false;
        }

        self.bit_vec.set(value, false);

        true
    }

    /// Excludes `element` and all greater elements from the `BitSet`.
    pub fn truncate(&mut self, element: usize) {
        self.bit_vec.truncate(element);
    }
}

impl<B: BitBlock> fmt::Debug for BitSet<B> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt.debug_set().entries(self).finish()
    }
}

impl<B: BitBlock> hash::Hash for BitSet<B> {
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        for pos in self {
            pos.hash(state);
        }
    }
}

#[derive(Clone)]
struct BlockIter<T, B> {
    head: B,
    head_offset: usize,
    tail: T,
}

impl<T, B: BitBlock> BlockIter<T, B>
where
    T: Iterator<Item = B>,
{
    fn from_blocks(mut blocks: T) -> BlockIter<T, B> {
        let h = blocks.next().unwrap_or_else(B::zero);
        BlockIter {
            tail: blocks,
            head: h,
            head_offset: 0,
        }
    }
}

/// An iterator combining two `BitSet` iterators.
#[derive(Clone)]
struct TwoBitPositions<'a, B: 'a> {
    set: Blocks<'a, B>,
    other: Blocks<'a, B>,
    merge: fn(B, B) -> B,
}

/// An iterator for `BitSet`.
#[derive(Clone)]
pub struct Iter<'a, B: 'a>(BlockIter<Blocks<'a, B>, B>);
#[derive(Clone)]
pub struct Union<'a, B: 'a>(BlockIter<TwoBitPositions<'a, B>, B>);
#[derive(Clone)]
pub struct Intersection<'a, B: 'a> {
    iter: BlockIter<TwoBitPositions<'a, B>, B>,
    // as an optimization, we compute the maximum possible
    // number of elements in the intersection, and count it
    // down as we return elements. If we reach zero, we can
    // stop.
    n: usize,
}
#[derive(Clone)]
pub struct Difference<'a, B: 'a>(BlockIter<TwoBitPositions<'a, B>, B>);
#[derive(Clone)]
pub struct SymmetricDifference<'a, B: 'a>(BlockIter<TwoBitPositions<'a, B>, B>);

impl<T, B: BitBlock> Iterator for BlockIter<T, B>
where
    T: Iterator<Item = B>,
{
    type Item = usize;

    fn next(&mut self) -> Option<usize> {
        while self.head == B::zero() {
            match self.tail.next() {
                Some(w) => self.head = w,
                None => return None,
            }
            self.head_offset += B::bits();
        }

        // from the current block, isolate the
        // LSB and subtract 1, producing k:
        // a block with a number of set bits
        // equal to the index of the LSB
        let k = (self.head & (!self.head + B::one())) - B::one();
        // update block, removing the LSB
        self.head = self.head & (self.head - B::one());
        // return offset + (index of LSB)
        Some(self.head_offset + (B::count_ones(k)))
    }

    fn count(self) -> usize {
        self.head.count_ones() + self.tail.map(|block| block.count_ones()).sum::<usize>()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        match self.tail.size_hint() {
            (_, Some(h)) => (0, Some((1 + h) * B::bits())),
            _ => (0, None),
        }
    }
}

impl<'a, B: BitBlock> Iterator for TwoBitPositions<'a, B> {
    type Item = B;

    fn next(&mut self) -> Option<B> {
        match (self.set.next(), self.other.next()) {
            (Some(a), Some(b)) => Some((self.merge)(a, b)),
            (Some(a), None) => Some((self.merge)(a, B::zero())),
            (None, Some(b)) => Some((self.merge)(B::zero(), b)),
            _ => None,
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let (a, au) = self.set.size_hint();
        let (b, bu) = self.other.size_hint();

        let upper = match (au, bu) {
            (Some(au), Some(bu)) => Some(cmp::max(au, bu)),
            _ => None,
        };

        (cmp::max(a, b), upper)
    }
}

impl<'a, B: BitBlock> Iterator for Iter<'a, B> {
    type Item = usize;

    #[inline]
    fn next(&mut self) -> Option<usize> {
        self.0.next()
    }
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.0.size_hint()
    }
    #[inline]
    fn count(self) -> usize {
        self.0.count()
    }
}

impl<'a, B: BitBlock> Iterator for Union<'a, B> {
    type Item = usize;

    #[inline]
    fn next(&mut self) -> Option<usize> {
        self.0.next()
    }
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.0.size_hint()
    }
    #[inline]
    fn count(self) -> usize {
        self.0.count()
    }
}

impl<'a, B: BitBlock> Iterator for Intersection<'a, B> {
    type Item = usize;

    #[inline]
    fn next(&mut self) -> Option<usize> {
        if self.n != 0 {
            self.n -= 1;
            self.iter.next()
        } else {
            None
        }
    }
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        // We could invoke self.iter.size_hint() and incorporate that into the hint.
        // In practice, that does not seem worthwhile because the lower bound will
        // always be zero and the upper bound could only possibly less then n in a
        // partially iterated iterator. However, it makes little sense ask for size_hint
        // in a partially iterated iterator, so it did not seem worthwhile.
        (0, Some(self.n))
    }
    #[inline]
    fn count(self) -> usize {
        self.iter.count()
    }
}

impl<'a, B: BitBlock> Iterator for Difference<'a, B> {
    type Item = usize;

    #[inline]
    fn next(&mut self) -> Option<usize> {
        self.0.next()
    }
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.0.size_hint()
    }
    #[inline]
    fn count(self) -> usize {
        self.0.count()
    }
}

impl<'a, B: BitBlock> Iterator for SymmetricDifference<'a, B> {
    type Item = usize;

    #[inline]
    fn next(&mut self) -> Option<usize> {
        self.0.next()
    }
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.0.size_hint()
    }
    #[inline]
    fn count(self) -> usize {
        self.0.count()
    }
}

impl<'a, B: BitBlock> IntoIterator for &'a BitSet<B> {
    type Item = usize;
    type IntoIter = Iter<'a, B>;

    fn into_iter(self) -> Iter<'a, B> {
        self.iter()
    }
}

#[cfg(test)]
mod tests {
    use super::BitSet;
    use bit_vec::BitVec;
    use std::cmp::Ordering::{Equal, Greater, Less};
    use std::vec::Vec;
    use std::{format, vec};

    #[test]
    fn test_bit_set_show() {
        let mut s = BitSet::new();
        s.insert(1);
        s.insert(10);
        s.insert(50);
        s.insert(2);
        assert_eq!("{1, 2, 10, 50}", format!("{:?}", s));
    }

    #[test]
    fn test_bit_set_from_usizes() {
        let usizes = vec![0, 2, 2, 3];
        let a: BitSet = usizes.into_iter().collect();
        let mut b = BitSet::new();
        b.insert(0);
        b.insert(2);
        b.insert(3);
        assert_eq!(a, b);
    }

    #[test]
    fn test_bit_set_iterator() {
        let usizes = vec![0, 2, 2, 3];
        let bit_vec: BitSet = usizes.into_iter().collect();

        let idxs: Vec<_> = bit_vec.iter().collect();
        assert_eq!(idxs, [0, 2, 3]);
        assert_eq!(bit_vec.iter().count(), 3);

        let long: BitSet = (0..10000).filter(|&n| n % 2 == 0).collect();
        let real: Vec<_> = (0..10000 / 2).map(|x| x * 2).collect();

        let idxs: Vec<_> = long.iter().collect();
        assert_eq!(idxs, real);
        assert_eq!(long.iter().count(), real.len());
    }

    #[test]
    fn test_bit_set_frombit_vec_init() {
        let bools = [true, false];
        let lengths = [10, 64, 100];
        for &b in &bools {
            for &l in &lengths {
                let bitset = BitSet::from_bit_vec(BitVec::from_elem(l, b));
                assert_eq!(bitset.contains(1), b);
                assert_eq!(bitset.contains(l - 1), b);
                assert!(!bitset.contains(l));
            }
        }
    }

    #[test]
    fn test_bit_vec_masking() {
        let b = BitVec::from_elem(140, true);
        let mut bs = BitSet::from_bit_vec(b);
        assert!(bs.contains(139));
        assert!(!bs.contains(140));
        assert!(bs.insert(150));
        assert!(!bs.contains(140));
        assert!(!bs.contains(149));
        assert!(bs.contains(150));
        assert!(!bs.contains(151));
    }

    #[test]
    fn test_bit_set_basic() {
        let mut b = BitSet::new();
        assert!(b.insert(3));
        assert!(!b.insert(3));
        assert!(b.contains(3));
        assert!(b.insert(4));
        assert!(!b.insert(4));
        assert!(b.contains(3));
        assert!(b.insert(400));
        assert!(!b.insert(400));
        assert!(b.contains(400));
        assert_eq!(b.len(), 3);
    }

    #[test]
    fn test_bit_set_intersection() {
        let mut a = BitSet::new();
        let mut b = BitSet::new();

        assert!(a.insert(11));
        assert!(a.insert(1));
        assert!(a.insert(3));
        assert!(a.insert(77));
        assert!(a.insert(103));
        assert!(a.insert(5));

        assert!(b.insert(2));
        assert!(b.insert(11));
        assert!(b.insert(77));
        assert!(b.insert(5));
        assert!(b.insert(3));

        let expected = [3, 5, 11, 77];
        let actual: Vec<_> = a.intersection(&b).collect();
        assert_eq!(actual, expected);
        assert_eq!(a.intersection(&b).count(), expected.len());
    }

    #[test]
    fn test_bit_set_difference() {
        let mut a = BitSet::new();
        let mut b = BitSet::new();

        assert!(a.insert(1));
        assert!(a.insert(3));
        assert!(a.insert(5));
        assert!(a.insert(200));
        assert!(a.insert(500));

        assert!(b.insert(3));
        assert!(b.insert(200));

        let expected = [1, 5, 500];
        let actual: Vec<_> = a.difference(&b).collect();
        assert_eq!(actual, expected);
        assert_eq!(a.difference(&b).count(), expected.len());
    }

    #[test]
    fn test_bit_set_symmetric_difference() {
        let mut a = BitSet::new();
        let mut b = BitSet::new();

        assert!(a.insert(1));
        assert!(a.insert(3));
        assert!(a.insert(5));
        assert!(a.insert(9));
        assert!(a.insert(11));

        assert!(b.insert(3));
        assert!(b.insert(9));
        assert!(b.insert(14));
        assert!(b.insert(220));

        let expected = [1, 5, 11, 14, 220];
        let actual: Vec<_> = a.symmetric_difference(&b).collect();
        assert_eq!(actual, expected);
        assert_eq!(a.symmetric_difference(&b).count(), expected.len());
    }

    #[test]
    fn test_bit_set_union() {
        let mut a = BitSet::new();
        let mut b = BitSet::new();
        assert!(a.insert(1));
        assert!(a.insert(3));
        assert!(a.insert(5));
        assert!(a.insert(9));
        assert!(a.insert(11));
        assert!(a.insert(160));
        assert!(a.insert(19));
        assert!(a.insert(24));
        assert!(a.insert(200));

        assert!(b.insert(1));
        assert!(b.insert(5));
        assert!(b.insert(9));
        assert!(b.insert(13));
        assert!(b.insert(19));

        let expected = [1, 3, 5, 9, 11, 13, 19, 24, 160, 200];
        let actual: Vec<_> = a.union(&b).collect();
        assert_eq!(actual, expected);
        assert_eq!(a.union(&b).count(), expected.len());
    }

    #[test]
    fn test_bit_set_subset() {
        let mut set1 = BitSet::new();
        let mut set2 = BitSet::new();

        assert!(set1.is_subset(&set2)); //  {}  {}
        set2.insert(100);
        assert!(set1.is_subset(&set2)); //  {}  { 1 }
        set2.insert(200);
        assert!(set1.is_subset(&set2)); //  {}  { 1, 2 }
        set1.insert(200);
        assert!(set1.is_subset(&set2)); //  { 2 }  { 1, 2 }
        set1.insert(300);
        assert!(!set1.is_subset(&set2)); // { 2, 3 }  { 1, 2 }
        set2.insert(300);
        assert!(set1.is_subset(&set2)); // { 2, 3 }  { 1, 2, 3 }
        set2.insert(400);
        assert!(set1.is_subset(&set2)); // { 2, 3 }  { 1, 2, 3, 4 }
        set2.remove(100);
        assert!(set1.is_subset(&set2)); // { 2, 3 }  { 2, 3, 4 }
        set2.remove(300);
        assert!(!set1.is_subset(&set2)); // { 2, 3 }  { 2, 4 }
        set1.remove(300);
        assert!(set1.is_subset(&set2)); // { 2 }  { 2, 4 }
    }

    #[test]
    fn test_bit_set_is_disjoint() {
        let a = BitSet::from_bytes(&[0b10100010]);
        let b = BitSet::from_bytes(&[0b01000000]);
        let c = BitSet::new();
        let d = BitSet::from_bytes(&[0b00110000]);

        assert!(!a.is_disjoint(&d));
        assert!(!d.is_disjoint(&a));

        assert!(a.is_disjoint(&b));
        assert!(a.is_disjoint(&c));
        assert!(b.is_disjoint(&a));
        assert!(b.is_disjoint(&c));
        assert!(c.is_disjoint(&a));
        assert!(c.is_disjoint(&b));
    }

    #[test]
    fn test_bit_set_union_with() {
        //a should grow to include larger elements
        let mut a = BitSet::new();
        a.insert(0);
        let mut b = BitSet::new();
        b.insert(5);
        let expected = BitSet::from_bytes(&[0b10000100]);
        a.union_with(&b);
        assert_eq!(a, expected);

        // Standard
        let mut a = BitSet::from_bytes(&[0b10100010]);
        let mut b = BitSet::from_bytes(&[0b01100010]);
        let c = a.clone();
        a.union_with(&b);
        b.union_with(&c);
        assert_eq!(a.len(), 4);
        assert_eq!(b.len(), 4);
    }

    #[test]
    fn test_bit_set_intersect_with() {
        // Explicitly 0'ed bits
        let mut a = BitSet::from_bytes(&[0b10100010]);
        let mut b = BitSet::from_bytes(&[0b00000000]);
        let c = a.clone();
        a.intersect_with(&b);
        b.intersect_with(&c);
        assert!(a.is_empty());
        assert!(b.is_empty());

        // Uninitialized bits should behave like 0's
        let mut a = BitSet::from_bytes(&[0b10100010]);
        let mut b = BitSet::new();
        let c = a.clone();
        a.intersect_with(&b);
        b.intersect_with(&c);
        assert!(a.is_empty());
        assert!(b.is_empty());

        // Standard
        let mut a = BitSet::from_bytes(&[0b10100010]);
        let mut b = BitSet::from_bytes(&[0b01100010]);
        let c = a.clone();
        a.intersect_with(&b);
        b.intersect_with(&c);
        assert_eq!(a.len(), 2);
        assert_eq!(b.len(), 2);
    }

    #[test]
    fn test_bit_set_difference_with() {
        // Explicitly 0'ed bits
        let mut a = BitSet::from_bytes(&[0b00000000]);
        let b = BitSet::from_bytes(&[0b10100010]);
        a.difference_with(&b);
        assert!(a.is_empty());

        // Uninitialized bits should behave like 0's
        let mut a = BitSet::new();
        let b = BitSet::from_bytes(&[0b11111111]);
        a.difference_with(&b);
        assert!(a.is_empty());

        // Standard
        let mut a = BitSet::from_bytes(&[0b10100010]);
        let mut b = BitSet::from_bytes(&[0b01100010]);
        let c = a.clone();
        a.difference_with(&b);
        b.difference_with(&c);
        assert_eq!(a.len(), 1);
        assert_eq!(b.len(), 1);
    }

    #[test]
    fn test_bit_set_symmetric_difference_with() {
        //a should grow to include larger elements
        let mut a = BitSet::new();
        a.insert(0);
        a.insert(1);
        let mut b = BitSet::new();
        b.insert(1);
        b.insert(5);
        let expected = BitSet::from_bytes(&[0b10000100]);
        a.symmetric_difference_with(&b);
        assert_eq!(a, expected);

        let mut a = BitSet::from_bytes(&[0b10100010]);
        let b = BitSet::new();
        let c = a.clone();
        a.symmetric_difference_with(&b);
        assert_eq!(a, c);

        // Standard
        let mut a = BitSet::from_bytes(&[0b11100010]);
        let mut b = BitSet::from_bytes(&[0b01101010]);
        let c = a.clone();
        a.symmetric_difference_with(&b);
        b.symmetric_difference_with(&c);
        assert_eq!(a.len(), 2);
        assert_eq!(b.len(), 2);
    }

    #[test]
    fn test_bit_set_eq() {
        let a = BitSet::from_bytes(&[0b10100010]);
        let b = BitSet::from_bytes(&[0b00000000]);
        let c = BitSet::new();

        assert!(a == a);
        assert!(a != b);
        assert!(a != c);
        assert!(b == b);
        assert!(b == c);
        assert!(c == c);
    }

    #[test]
    fn test_bit_set_cmp() {
        let a = BitSet::from_bytes(&[0b10100010]);
        let b = BitSet::from_bytes(&[0b00000000]);
        let c = BitSet::new();

        assert_eq!(a.cmp(&b), Greater);
        assert_eq!(a.cmp(&c), Greater);
        assert_eq!(b.cmp(&a), Less);
        assert_eq!(b.cmp(&c), Equal);
        assert_eq!(c.cmp(&a), Less);
        assert_eq!(c.cmp(&b), Equal);
    }

    #[test]
    fn test_bit_set_shrink_to_fit_new() {
        // There was a strange bug where we refused to truncate to 0
        // and this would end up actually growing the array in a way
        // that (safely corrupted the state).
        let mut a = BitSet::new();
        assert_eq!(a.len(), 0);
        assert_eq!(a.capacity(), 0);
        a.shrink_to_fit();
        assert_eq!(a.len(), 0);
        assert_eq!(a.capacity(), 0);
        assert!(!a.contains(1));
        a.insert(3);
        assert!(a.contains(3));
        assert_eq!(a.len(), 1);
        assert!(a.capacity() > 0);
        a.shrink_to_fit();
        assert!(a.contains(3));
        assert_eq!(a.len(), 1);
        assert!(a.capacity() > 0);
    }

    #[test]
    fn test_bit_set_shrink_to_fit() {
        let mut a = BitSet::new();
        assert_eq!(a.len(), 0);
        assert_eq!(a.capacity(), 0);
        a.insert(259);
        a.insert(98);
        a.insert(3);
        assert_eq!(a.len(), 3);
        assert!(a.capacity() > 0);
        assert!(!a.contains(1));
        assert!(a.contains(259));
        assert!(a.contains(98));
        assert!(a.contains(3));

        a.shrink_to_fit();
        assert!(!a.contains(1));
        assert!(a.contains(259));
        assert!(a.contains(98));
        assert!(a.contains(3));
        assert_eq!(a.len(), 3);
        assert!(a.capacity() > 0);

        let old_cap = a.capacity();
        assert!(a.remove(259));
        a.shrink_to_fit();
        assert!(a.capacity() < old_cap, "{} {}", a.capacity(), old_cap);
        assert!(!a.contains(1));
        assert!(!a.contains(259));
        assert!(a.contains(98));
        assert!(a.contains(3));
        assert_eq!(a.len(), 2);

        let old_cap2 = a.capacity();
        a.clear();
        assert_eq!(a.capacity(), old_cap2);
        assert_eq!(a.len(), 0);
        assert!(!a.contains(1));
        assert!(!a.contains(259));
        assert!(!a.contains(98));
        assert!(!a.contains(3));

        a.insert(512);
        assert!(a.capacity() > 0);
        assert_eq!(a.len(), 1);
        assert!(a.contains(512));
        assert!(!a.contains(1));
        assert!(!a.contains(259));
        assert!(!a.contains(98));
        assert!(!a.contains(3));

        a.remove(512);
        a.shrink_to_fit();
        assert_eq!(a.capacity(), 0);
        assert_eq!(a.len(), 0);
        assert!(!a.contains(512));
        assert!(!a.contains(1));
        assert!(!a.contains(259));
        assert!(!a.contains(98));
        assert!(!a.contains(3));
        assert!(!a.contains(0));
    }

    #[test]
    fn test_bit_vec_remove() {
        let mut a = BitSet::new();

        assert!(a.insert(1));
        assert!(a.remove(1));

        assert!(a.insert(100));
        assert!(a.remove(100));

        assert!(a.insert(1000));
        assert!(a.remove(1000));
        a.shrink_to_fit();
    }

    #[test]
    fn test_bit_vec_clone() {
        let mut a = BitSet::new();

        assert!(a.insert(1));
        assert!(a.insert(100));
        assert!(a.insert(1000));

        let mut b = a.clone();

        assert!(a == b);

        assert!(b.remove(1));
        assert!(a.contains(1));

        assert!(a.remove(1000));
        assert!(b.contains(1000));
    }

    #[test]
    fn test_truncate() {
        let bytes = [0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF];

        let mut s = BitSet::from_bytes(&bytes);
        s.truncate(5 * 8);

        assert_eq!(s, BitSet::from_bytes(&bytes[..5]));
        assert_eq!(s.len(), 5 * 8);
        s.truncate(4 * 8);
        assert_eq!(s, BitSet::from_bytes(&bytes[..4]));
        assert_eq!(s.len(), 4 * 8);
        // Truncating to a size > s.len() should be a noop
        s.truncate(5 * 8);
        assert_eq!(s, BitSet::from_bytes(&bytes[..4]));
        assert_eq!(s.len(), 4 * 8);
        s.truncate(8);
        assert_eq!(s, BitSet::from_bytes(&bytes[..1]));
        assert_eq!(s.len(), 8);
        s.truncate(0);
        assert_eq!(s, BitSet::from_bytes(&[]));
        assert_eq!(s.len(), 0);
    }

    #[cfg(feature = "serde")]
    #[test]
    fn test_serialization() {
        let bset: BitSet = BitSet::new();
        let serialized = serde_json::to_string(&bset).unwrap();
        let unserialized: BitSet = serde_json::from_str(&serialized).unwrap();
        assert_eq!(bset, unserialized);

        let elems: Vec<usize> = vec![11, 42, 100, 101];
        let bset: BitSet = elems.iter().map(|n| *n).collect();
        let serialized = serde_json::to_string(&bset).unwrap();
        let unserialized = serde_json::from_str(&serialized).unwrap();
        assert_eq!(bset, unserialized);
    }

    /*
        #[test]
        fn test_bit_set_append() {
            let mut a = BitSet::new();
            a.insert(2);
            a.insert(6);

            let mut b = BitSet::new();
            b.insert(1);
            b.insert(3);
            b.insert(6);

            a.append(&mut b);

            assert_eq!(a.len(), 4);
            assert_eq!(b.len(), 0);
            assert!(b.capacity() >= 6);

            assert_eq!(a, BitSet::from_bytes(&[0b01110010]));
        }

        #[test]
        fn test_bit_set_split_off() {
            // Split at 0
            let mut a = BitSet::from_bytes(&[0b10100000, 0b00010010, 0b10010010,
                                             0b00110011, 0b01101011, 0b10101101]);

            let b = a.split_off(0);

            assert_eq!(a.len(), 0);
            assert_eq!(b.len(), 21);

            assert_eq!(b, BitSet::from_bytes(&[0b10100000, 0b00010010, 0b10010010,
                                               0b00110011, 0b01101011, 0b10101101]);

            // Split behind last element
            let mut a = BitSet::from_bytes(&[0b10100000, 0b00010010, 0b10010010,
                                             0b00110011, 0b01101011, 0b10101101]);

            let b = a.split_off(50);

            assert_eq!(a.len(), 21);
            assert_eq!(b.len(), 0);

            assert_eq!(a, BitSet::from_bytes(&[0b10100000, 0b00010010, 0b10010010,
                                               0b00110011, 0b01101011, 0b10101101]));

            // Split at arbitrary element
            let mut a = BitSet::from_bytes(&[0b10100000, 0b00010010, 0b10010010,
                                             0b00110011, 0b01101011, 0b10101101]);

            let b = a.split_off(34);

            assert_eq!(a.len(), 12);
            assert_eq!(b.len(), 9);

            assert_eq!(a, BitSet::from_bytes(&[0b10100000, 0b00010010, 0b10010010,
                                               0b00110011, 0b01000000]));
            assert_eq!(b, BitSet::from_bytes(&[0, 0, 0, 0,
                                               0b00101011, 0b10101101]));
        }
    */
}