bytemuck_derive/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
//! Derive macros for [bytemuck](https://docs.rs/bytemuck) traits.
extern crate proc_macro;
mod traits;
use proc_macro2::TokenStream;
use quote::quote;
use syn::{parse_macro_input, DeriveInput, Result};
use crate::traits::{
bytemuck_crate_name, AnyBitPattern, CheckedBitPattern, Contiguous, Derivable,
NoUninit, Pod, TransparentWrapper, Zeroable,
};
/// Derive the `Pod` trait for a struct
///
/// The macro ensures that the struct follows all the the safety requirements
/// for the `Pod` trait.
///
/// The following constraints need to be satisfied for the macro to succeed
///
/// - All fields in the struct must implement `Pod`
/// - The struct must be `#[repr(C)]` or `#[repr(transparent)]`
/// - The struct must not contain any padding bytes
/// - The struct contains no generic parameters, if it is not
/// `#[repr(transparent)]`
///
/// ## Examples
///
/// ```rust
/// # use std::marker::PhantomData;
/// # use bytemuck_derive::{Pod, Zeroable};
/// #[derive(Copy, Clone, Pod, Zeroable)]
/// #[repr(C)]
/// struct Test {
/// a: u16,
/// b: u16,
/// }
///
/// #[derive(Copy, Clone, Pod, Zeroable)]
/// #[repr(transparent)]
/// struct Generic<A, B> {
/// a: A,
/// b: PhantomData<B>,
/// }
/// ```
///
/// If the struct is generic, it must be `#[repr(transparent)]` also.
///
/// ```compile_fail
/// # use bytemuck::{Pod, Zeroable};
/// # use std::marker::PhantomData;
/// #[derive(Copy, Clone, Pod, Zeroable)]
/// #[repr(C)] // must be `#[repr(transparent)]`
/// struct Generic<A> {
/// a: A,
/// }
/// ```
///
/// If the struct is generic and `#[repr(transparent)]`, then it is only `Pod`
/// when all of its generics are `Pod`, not just its fields.
///
/// ```
/// # use bytemuck::{Pod, Zeroable};
/// # use std::marker::PhantomData;
/// #[derive(Copy, Clone, Pod, Zeroable)]
/// #[repr(transparent)]
/// struct Generic<A, B> {
/// a: A,
/// b: PhantomData<B>,
/// }
///
/// let _: u32 = bytemuck::cast(Generic { a: 4u32, b: PhantomData::<u32> });
/// ```
///
/// ```compile_fail
/// # use bytemuck::{Pod, Zeroable};
/// # use std::marker::PhantomData;
/// # #[derive(Copy, Clone, Pod, Zeroable)]
/// # #[repr(transparent)]
/// # struct Generic<A, B> {
/// # a: A,
/// # b: PhantomData<B>,
/// # }
/// struct NotPod;
///
/// let _: u32 = bytemuck::cast(Generic { a: 4u32, b: PhantomData::<NotPod> });
/// ```
#[proc_macro_derive(Pod, attributes(bytemuck))]
pub fn derive_pod(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
let expanded =
derive_marker_trait::<Pod>(parse_macro_input!(input as DeriveInput));
proc_macro::TokenStream::from(expanded)
}
/// Derive the `AnyBitPattern` trait for a struct
///
/// The macro ensures that the struct follows all the the safety requirements
/// for the `AnyBitPattern` trait.
///
/// The following constraints need to be satisfied for the macro to succeed
///
/// - All fields in the struct must to implement `AnyBitPattern`
#[proc_macro_derive(AnyBitPattern, attributes(bytemuck))]
pub fn derive_anybitpattern(
input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
let expanded = derive_marker_trait::<AnyBitPattern>(parse_macro_input!(
input as DeriveInput
));
proc_macro::TokenStream::from(expanded)
}
/// Derive the `Zeroable` trait for a type.
///
/// The macro ensures that the type follows all the the safety requirements
/// for the `Zeroable` trait.
///
/// The following constraints need to be satisfied for the macro to succeed on a
/// struct:
///
/// - All fields in the struct must implement `Zeroable`
///
/// The following constraints need to be satisfied for the macro to succeed on
/// an enum:
///
/// - The enum has an explicit `#[repr(Int)]`, `#[repr(C)]`, or `#[repr(C,
/// Int)]`.
/// - The enum has a variant with discriminant 0 (explicitly or implicitly).
/// - All fields in the variant with discriminant 0 (if any) must implement
/// `Zeroable`
///
/// The macro always succeeds on unions.
///
/// ## Example
///
/// ```rust
/// # use bytemuck_derive::{Zeroable};
/// #[derive(Copy, Clone, Zeroable)]
/// #[repr(C)]
/// struct Test {
/// a: u16,
/// b: u16,
/// }
/// ```
/// ```rust
/// # use bytemuck_derive::{Zeroable};
/// #[derive(Copy, Clone, Zeroable)]
/// #[repr(i32)]
/// enum Values {
/// A = 0,
/// B = 1,
/// C = 2,
/// }
/// #[derive(Clone, Zeroable)]
/// #[repr(C)]
/// enum Implicit {
/// A(bool, u8, char),
/// B(String),
/// C(std::num::NonZeroU8),
/// }
/// ```
///
/// # Custom bounds
///
/// Custom bounds for the derived `Zeroable` impl can be given using the
/// `#[zeroable(bound = "")]` helper attribute.
///
/// Using this attribute additionally opts-in to "perfect derive" semantics,
/// where instead of adding bounds for each generic type parameter, bounds are
/// added for each field's type.
///
/// ## Examples
///
/// ```rust
/// # use bytemuck::Zeroable;
/// # use std::marker::PhantomData;
/// #[derive(Clone, Zeroable)]
/// #[zeroable(bound = "")]
/// struct AlwaysZeroable<T> {
/// a: PhantomData<T>,
/// }
///
/// AlwaysZeroable::<std::num::NonZeroU8>::zeroed();
/// ```
/// ```rust
/// # use bytemuck::{Zeroable};
/// #[derive(Copy, Clone, Zeroable)]
/// #[repr(u8)]
/// #[zeroable(bound = "")]
/// enum MyOption<T> {
/// None,
/// Some(T),
/// }
///
/// assert!(matches!(MyOption::<std::num::NonZeroU8>::zeroed(), MyOption::None));
/// ```
///
/// ```rust,compile_fail
/// # use bytemuck::Zeroable;
/// # use std::marker::PhantomData;
/// #[derive(Clone, Zeroable)]
/// #[zeroable(bound = "T: Copy")]
/// struct ZeroableWhenTIsCopy<T> {
/// a: PhantomData<T>,
/// }
///
/// ZeroableWhenTIsCopy::<String>::zeroed();
/// ```
///
/// The restriction that all fields must be Zeroable is still applied, and this
/// is enforced using the mentioned "perfect derive" semantics.
///
/// ```rust
/// # use bytemuck::Zeroable;
/// #[derive(Clone, Zeroable)]
/// #[zeroable(bound = "")]
/// struct ZeroableWhenTIsZeroable<T> {
/// a: T,
/// }
/// ZeroableWhenTIsZeroable::<u32>::zeroed();
/// ```
///
/// ```rust,compile_fail
/// # use bytemuck::Zeroable;
/// # #[derive(Clone, Zeroable)]
/// # #[zeroable(bound = "")]
/// # struct ZeroableWhenTIsZeroable<T> {
/// # a: T,
/// # }
/// ZeroableWhenTIsZeroable::<String>::zeroed();
/// ```
#[proc_macro_derive(Zeroable, attributes(bytemuck, zeroable))]
pub fn derive_zeroable(
input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
let expanded =
derive_marker_trait::<Zeroable>(parse_macro_input!(input as DeriveInput));
proc_macro::TokenStream::from(expanded)
}
/// Derive the `NoUninit` trait for a struct or enum
///
/// The macro ensures that the type follows all the the safety requirements
/// for the `NoUninit` trait.
///
/// The following constraints need to be satisfied for the macro to succeed
/// (the rest of the constraints are guaranteed by the `NoUninit` subtrait
/// bounds, i.e. the type must be `Sized + Copy + 'static`):
///
/// If applied to a struct:
/// - All fields in the struct must implement `NoUninit`
/// - The struct must be `#[repr(C)]` or `#[repr(transparent)]`
/// - The struct must not contain any padding bytes
/// - The struct must contain no generic parameters
///
/// If applied to an enum:
/// - The enum must be explicit `#[repr(Int)]`, `#[repr(C)]`, or both
/// - All variants must be fieldless
/// - The enum must contain no generic parameters
#[proc_macro_derive(NoUninit, attributes(bytemuck))]
pub fn derive_no_uninit(
input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
let expanded =
derive_marker_trait::<NoUninit>(parse_macro_input!(input as DeriveInput));
proc_macro::TokenStream::from(expanded)
}
/// Derive the `CheckedBitPattern` trait for a struct or enum.
///
/// The macro ensures that the type follows all the the safety requirements
/// for the `CheckedBitPattern` trait and derives the required `Bits` type
/// definition and `is_valid_bit_pattern` method for the type automatically.
///
/// The following constraints need to be satisfied for the macro to succeed:
///
/// If applied to a struct:
/// - All fields must implement `CheckedBitPattern`
/// - The struct must be `#[repr(C)]` or `#[repr(transparent)]`
/// - The struct must contain no generic parameters
///
/// If applied to an enum:
/// - The enum must be explicit `#[repr(Int)]`
/// - All fields in variants must implement `CheckedBitPattern`
/// - The enum must contain no generic parameters
#[proc_macro_derive(CheckedBitPattern)]
pub fn derive_maybe_pod(
input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
let expanded = derive_marker_trait::<CheckedBitPattern>(parse_macro_input!(
input as DeriveInput
));
proc_macro::TokenStream::from(expanded)
}
/// Derive the `TransparentWrapper` trait for a struct
///
/// The macro ensures that the struct follows all the the safety requirements
/// for the `TransparentWrapper` trait.
///
/// The following constraints need to be satisfied for the macro to succeed
///
/// - The struct must be `#[repr(transparent)]`
/// - The struct must contain the `Wrapped` type
/// - Any ZST fields must be [`Zeroable`][derive@Zeroable].
///
/// If the struct only contains a single field, the `Wrapped` type will
/// automatically be determined. If there is more then one field in the struct,
/// you need to specify the `Wrapped` type using `#[transparent(T)]`
///
/// ## Examples
///
/// ```rust
/// # use bytemuck_derive::TransparentWrapper;
/// # use std::marker::PhantomData;
/// #[derive(Copy, Clone, TransparentWrapper)]
/// #[repr(transparent)]
/// #[transparent(u16)]
/// struct Test<T> {
/// inner: u16,
/// extra: PhantomData<T>,
/// }
/// ```
///
/// If the struct contains more than one field, the `Wrapped` type must be
/// explicitly specified.
///
/// ```rust,compile_fail
/// # use bytemuck_derive::TransparentWrapper;
/// # use std::marker::PhantomData;
/// #[derive(Copy, Clone, TransparentWrapper)]
/// #[repr(transparent)]
/// // missing `#[transparent(u16)]`
/// struct Test<T> {
/// inner: u16,
/// extra: PhantomData<T>,
/// }
/// ```
///
/// Any ZST fields must be `Zeroable`.
///
/// ```rust,compile_fail
/// # use bytemuck_derive::TransparentWrapper;
/// # use std::marker::PhantomData;
/// struct NonTransparentSafeZST;
///
/// #[derive(TransparentWrapper)]
/// #[repr(transparent)]
/// #[transparent(u16)]
/// struct Test<T> {
/// inner: u16,
/// extra: PhantomData<T>,
/// another_extra: NonTransparentSafeZST, // not `Zeroable`
/// }
/// ```
#[proc_macro_derive(TransparentWrapper, attributes(bytemuck, transparent))]
pub fn derive_transparent(
input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
let expanded = derive_marker_trait::<TransparentWrapper>(parse_macro_input!(
input as DeriveInput
));
proc_macro::TokenStream::from(expanded)
}
/// Derive the `Contiguous` trait for an enum
///
/// The macro ensures that the enum follows all the the safety requirements
/// for the `Contiguous` trait.
///
/// The following constraints need to be satisfied for the macro to succeed
///
/// - The enum must be `#[repr(Int)]`
/// - The enum must be fieldless
/// - The enum discriminants must form a contiguous range
///
/// ## Example
///
/// ```rust
/// # use bytemuck_derive::{Contiguous};
///
/// #[derive(Copy, Clone, Contiguous)]
/// #[repr(u8)]
/// enum Test {
/// A = 0,
/// B = 1,
/// C = 2,
/// }
/// ```
#[proc_macro_derive(Contiguous)]
pub fn derive_contiguous(
input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
let expanded =
derive_marker_trait::<Contiguous>(parse_macro_input!(input as DeriveInput));
proc_macro::TokenStream::from(expanded)
}
/// Derive the `PartialEq` and `Eq` trait for a type
///
/// The macro implements `PartialEq` and `Eq` by casting both sides of the
/// comparison to a byte slice and then compares those.
///
/// ## Warning
///
/// Since this implements a byte wise comparison, the behavior of floating point
/// numbers does not match their usual comparison behavior. Additionally other
/// custom comparison behaviors of the individual fields are also ignored. This
/// also does not implement `StructuralPartialEq` / `StructuralEq` like
/// `PartialEq` / `Eq` would. This means you can't pattern match on the values.
///
/// ## Examples
///
/// ```rust
/// # use bytemuck_derive::{ByteEq, NoUninit};
/// #[derive(Copy, Clone, NoUninit, ByteEq)]
/// #[repr(C)]
/// struct Test {
/// a: u32,
/// b: char,
/// c: f32,
/// }
/// ```
///
/// ```rust
/// # use bytemuck_derive::ByteEq;
/// # use bytemuck::NoUninit;
/// #[derive(Copy, Clone, ByteEq)]
/// #[repr(C)]
/// struct Test<const N: usize> {
/// a: [u32; N],
/// }
/// unsafe impl<const N: usize> NoUninit for Test<N> {}
/// ```
#[proc_macro_derive(ByteEq)]
pub fn derive_byte_eq(
input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
let input = parse_macro_input!(input as DeriveInput);
let crate_name = bytemuck_crate_name(&input);
let ident = input.ident;
let (impl_generics, ty_generics, where_clause) =
input.generics.split_for_impl();
proc_macro::TokenStream::from(quote! {
impl #impl_generics ::core::cmp::PartialEq for #ident #ty_generics #where_clause {
#[inline]
#[must_use]
fn eq(&self, other: &Self) -> bool {
#crate_name::bytes_of(self) == #crate_name::bytes_of(other)
}
}
impl #impl_generics ::core::cmp::Eq for #ident #ty_generics #where_clause { }
})
}
/// Derive the `Hash` trait for a type
///
/// The macro implements `Hash` by casting the value to a byte slice and hashing
/// that.
///
/// ## Warning
///
/// The hash does not match the standard library's `Hash` derive.
///
/// ## Examples
///
/// ```rust
/// # use bytemuck_derive::{ByteHash, NoUninit};
/// #[derive(Copy, Clone, NoUninit, ByteHash)]
/// #[repr(C)]
/// struct Test {
/// a: u32,
/// b: char,
/// c: f32,
/// }
/// ```
///
/// ```rust
/// # use bytemuck_derive::ByteHash;
/// # use bytemuck::NoUninit;
/// #[derive(Copy, Clone, ByteHash)]
/// #[repr(C)]
/// struct Test<const N: usize> {
/// a: [u32; N],
/// }
/// unsafe impl<const N: usize> NoUninit for Test<N> {}
/// ```
#[proc_macro_derive(ByteHash)]
pub fn derive_byte_hash(
input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
let input = parse_macro_input!(input as DeriveInput);
let crate_name = bytemuck_crate_name(&input);
let ident = input.ident;
let (impl_generics, ty_generics, where_clause) =
input.generics.split_for_impl();
proc_macro::TokenStream::from(quote! {
impl #impl_generics ::core::hash::Hash for #ident #ty_generics #where_clause {
#[inline]
fn hash<H: ::core::hash::Hasher>(&self, state: &mut H) {
::core::hash::Hash::hash_slice(#crate_name::bytes_of(self), state)
}
#[inline]
fn hash_slice<H: ::core::hash::Hasher>(data: &[Self], state: &mut H) {
::core::hash::Hash::hash_slice(#crate_name::cast_slice::<_, u8>(data), state)
}
}
})
}
/// Basic wrapper for error handling
fn derive_marker_trait<Trait: Derivable>(input: DeriveInput) -> TokenStream {
derive_marker_trait_inner::<Trait>(input)
.unwrap_or_else(|err| err.into_compile_error())
}
/// Find `#[name(key = "value")]` helper attributes on the struct, and return
/// their `"value"`s parsed with `parser`.
///
/// Returns an error if any attributes with the given `name` do not match the
/// expected format. Returns `Ok([])` if no attributes with `name` are found.
fn find_and_parse_helper_attributes<P: syn::parse::Parser + Copy>(
attributes: &[syn::Attribute], name: &str, key: &str, parser: P,
example_value: &str, invalid_value_msg: &str,
) -> Result<Vec<P::Output>> {
let invalid_format_msg =
format!("{name} attribute must be `{name}({key} = \"{example_value}\")`",);
let values_to_check = attributes.iter().filter_map(|attr| match &attr.meta {
// If a `Path` matches our `name`, return an error, else ignore it.
// e.g. `#[zeroable]`
syn::Meta::Path(path) => path
.is_ident(name)
.then(|| Err(syn::Error::new_spanned(path, &invalid_format_msg))),
// If a `NameValue` matches our `name`, return an error, else ignore it.
// e.g. `#[zeroable = "hello"]`
syn::Meta::NameValue(namevalue) => {
namevalue.path.is_ident(name).then(|| {
Err(syn::Error::new_spanned(&namevalue.path, &invalid_format_msg))
})
}
// If a `List` matches our `name`, match its contents to our format, else
// ignore it. If its contents match our format, return the value, else
// return an error.
syn::Meta::List(list) => list.path.is_ident(name).then(|| {
let namevalue: syn::MetaNameValue = syn::parse2(list.tokens.clone())
.map_err(|_| {
syn::Error::new_spanned(&list.tokens, &invalid_format_msg)
})?;
if namevalue.path.is_ident(key) {
match namevalue.value {
syn::Expr::Lit(syn::ExprLit {
lit: syn::Lit::Str(strlit), ..
}) => Ok(strlit),
_ => {
Err(syn::Error::new_spanned(&namevalue.path, &invalid_format_msg))
}
}
} else {
Err(syn::Error::new_spanned(&namevalue.path, &invalid_format_msg))
}
}),
});
// Parse each value found with the given parser, and return them if no errors
// occur.
values_to_check
.map(|lit| {
let lit = lit?;
lit.parse_with(parser).map_err(|err| {
syn::Error::new_spanned(&lit, format!("{invalid_value_msg}: {err}"))
})
})
.collect()
}
fn derive_marker_trait_inner<Trait: Derivable>(
mut input: DeriveInput,
) -> Result<TokenStream> {
let crate_name = bytemuck_crate_name(&input);
let trait_ = Trait::ident(&input, &crate_name)?;
// If this trait allows explicit bounds, and any explicit bounds were given,
// then use those explicit bounds. Else, apply the default bounds (bound
// each generic type on this trait).
if let Some(name) = Trait::explicit_bounds_attribute_name() {
// See if any explicit bounds were given in attributes.
let explicit_bounds = find_and_parse_helper_attributes(
&input.attrs,
name,
"bound",
<syn::punctuated::Punctuated<syn::WherePredicate, syn::Token![,]>>::parse_terminated,
"Type: Trait",
"invalid where predicate",
)?;
if !explicit_bounds.is_empty() {
// Explicit bounds were given.
// Enforce explicitly given bounds, and emit "perfect derive" (i.e. add
// bounds for each field's type).
let explicit_bounds = explicit_bounds
.into_iter()
.flatten()
.collect::<Vec<syn::WherePredicate>>();
let fields = match (Trait::perfect_derive_fields(&input), &input.data) {
(Some(fields), _) => fields,
(None, syn::Data::Struct(syn::DataStruct { fields, .. })) => {
fields.clone()
}
(None, syn::Data::Union(_)) => {
return Err(syn::Error::new_spanned(
trait_,
&"perfect derive is not supported for unions",
));
}
(None, syn::Data::Enum(_)) => {
return Err(syn::Error::new_spanned(
trait_,
&"perfect derive is not supported for enums",
));
}
};
let predicates = &mut input.generics.make_where_clause().predicates;
predicates.extend(explicit_bounds);
for field in fields {
let ty = field.ty;
predicates.push(syn::parse_quote!(
#ty: #trait_
));
}
} else {
// No explicit bounds were given.
// Enforce trait bound on all type generics.
add_trait_marker(&mut input.generics, &trait_);
}
} else {
// This trait does not allow explicit bounds.
// Enforce trait bound on all type generics.
add_trait_marker(&mut input.generics, &trait_);
}
let name = &input.ident;
let (impl_generics, ty_generics, where_clause) =
input.generics.split_for_impl();
Trait::check_attributes(&input.data, &input.attrs)?;
let asserts = Trait::asserts(&input, &crate_name)?;
let (trait_impl_extras, trait_impl) = Trait::trait_impl(&input, &crate_name)?;
let implies_trait = if let Some(implies_trait) =
Trait::implies_trait(&crate_name)
{
quote!(unsafe impl #impl_generics #implies_trait for #name #ty_generics #where_clause {})
} else {
quote!()
};
let where_clause =
if Trait::requires_where_clause() { where_clause } else { None };
Ok(quote! {
#asserts
#trait_impl_extras
unsafe impl #impl_generics #trait_ for #name #ty_generics #where_clause {
#trait_impl
}
#implies_trait
})
}
/// Add a trait marker to the generics if it is not already present
fn add_trait_marker(generics: &mut syn::Generics, trait_name: &syn::Path) {
// Get each generic type parameter.
let type_params = generics
.type_params()
.map(|param| ¶m.ident)
.map(|param| {
syn::parse_quote!(
#param: #trait_name
)
})
.collect::<Vec<syn::WherePredicate>>();
generics.make_where_clause().predicates.extend(type_params);
}