bytemuck_derive/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
//! Derive macros for [bytemuck](https://docs.rs/bytemuck) traits.

extern crate proc_macro;

mod traits;

use proc_macro2::TokenStream;
use quote::quote;
use syn::{parse_macro_input, DeriveInput, Result};

use crate::traits::{
  bytemuck_crate_name, AnyBitPattern, CheckedBitPattern, Contiguous, Derivable,
  NoUninit, Pod, TransparentWrapper, Zeroable,
};

/// Derive the `Pod` trait for a struct
///
/// The macro ensures that the struct follows all the the safety requirements
/// for the `Pod` trait.
///
/// The following constraints need to be satisfied for the macro to succeed
///
/// - All fields in the struct must implement `Pod`
/// - The struct must be `#[repr(C)]` or `#[repr(transparent)]`
/// - The struct must not contain any padding bytes
/// - The struct contains no generic parameters, if it is not
///   `#[repr(transparent)]`
///
/// ## Examples
///
/// ```rust
/// # use std::marker::PhantomData;
/// # use bytemuck_derive::{Pod, Zeroable};
/// #[derive(Copy, Clone, Pod, Zeroable)]
/// #[repr(C)]
/// struct Test {
///   a: u16,
///   b: u16,
/// }
///
/// #[derive(Copy, Clone, Pod, Zeroable)]
/// #[repr(transparent)]
/// struct Generic<A, B> {
///   a: A,
///   b: PhantomData<B>,
/// }
/// ```
///
/// If the struct is generic, it must be `#[repr(transparent)]` also.
///
/// ```compile_fail
/// # use bytemuck::{Pod, Zeroable};
/// # use std::marker::PhantomData;
/// #[derive(Copy, Clone, Pod, Zeroable)]
/// #[repr(C)] // must be `#[repr(transparent)]`
/// struct Generic<A> {
///   a: A,
/// }
/// ```
///
/// If the struct is generic and `#[repr(transparent)]`, then it is only `Pod`
/// when all of its generics are `Pod`, not just its fields.
///
/// ```
/// # use bytemuck::{Pod, Zeroable};
/// # use std::marker::PhantomData;
/// #[derive(Copy, Clone, Pod, Zeroable)]
/// #[repr(transparent)]
/// struct Generic<A, B> {
///   a: A,
///   b: PhantomData<B>,
/// }
///
/// let _: u32 = bytemuck::cast(Generic { a: 4u32, b: PhantomData::<u32> });
/// ```
///
/// ```compile_fail
/// # use bytemuck::{Pod, Zeroable};
/// # use std::marker::PhantomData;
/// # #[derive(Copy, Clone, Pod, Zeroable)]
/// # #[repr(transparent)]
/// # struct Generic<A, B> {
/// #   a: A,
/// #   b: PhantomData<B>,
/// # }
/// struct NotPod;
///
/// let _: u32 = bytemuck::cast(Generic { a: 4u32, b: PhantomData::<NotPod> });
/// ```
#[proc_macro_derive(Pod, attributes(bytemuck))]
pub fn derive_pod(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
  let expanded =
    derive_marker_trait::<Pod>(parse_macro_input!(input as DeriveInput));

  proc_macro::TokenStream::from(expanded)
}

/// Derive the `AnyBitPattern` trait for a struct
///
/// The macro ensures that the struct follows all the the safety requirements
/// for the `AnyBitPattern` trait.
///
/// The following constraints need to be satisfied for the macro to succeed
///
/// - All fields in the struct must to implement `AnyBitPattern`
#[proc_macro_derive(AnyBitPattern, attributes(bytemuck))]
pub fn derive_anybitpattern(
  input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
  let expanded = derive_marker_trait::<AnyBitPattern>(parse_macro_input!(
    input as DeriveInput
  ));

  proc_macro::TokenStream::from(expanded)
}

/// Derive the `Zeroable` trait for a type.
///
/// The macro ensures that the type follows all the the safety requirements
/// for the `Zeroable` trait.
///
/// The following constraints need to be satisfied for the macro to succeed on a
/// struct:
///
/// - All fields in the struct must implement `Zeroable`
///
/// The following constraints need to be satisfied for the macro to succeed on
/// an enum:
///
/// - The enum has an explicit `#[repr(Int)]`, `#[repr(C)]`, or `#[repr(C,
///   Int)]`.
/// - The enum has a variant with discriminant 0 (explicitly or implicitly).
/// - All fields in the variant with discriminant 0 (if any) must implement
///   `Zeroable`
///
/// The macro always succeeds on unions.
///
/// ## Example
///
/// ```rust
/// # use bytemuck_derive::{Zeroable};
/// #[derive(Copy, Clone, Zeroable)]
/// #[repr(C)]
/// struct Test {
///   a: u16,
///   b: u16,
/// }
/// ```
/// ```rust
/// # use bytemuck_derive::{Zeroable};
/// #[derive(Copy, Clone, Zeroable)]
/// #[repr(i32)]
/// enum Values {
///   A = 0,
///   B = 1,
///   C = 2,
/// }
/// #[derive(Clone, Zeroable)]
/// #[repr(C)]
/// enum Implicit {
///   A(bool, u8, char),
///   B(String),
///   C(std::num::NonZeroU8),
/// }
/// ```
///
/// # Custom bounds
///
/// Custom bounds for the derived `Zeroable` impl can be given using the
/// `#[zeroable(bound = "")]` helper attribute.
///
/// Using this attribute additionally opts-in to "perfect derive" semantics,
/// where instead of adding bounds for each generic type parameter, bounds are
/// added for each field's type.
///
/// ## Examples
///
/// ```rust
/// # use bytemuck::Zeroable;
/// # use std::marker::PhantomData;
/// #[derive(Clone, Zeroable)]
/// #[zeroable(bound = "")]
/// struct AlwaysZeroable<T> {
///   a: PhantomData<T>,
/// }
///
/// AlwaysZeroable::<std::num::NonZeroU8>::zeroed();
/// ```
/// ```rust
/// # use bytemuck::{Zeroable};
/// #[derive(Copy, Clone, Zeroable)]
/// #[repr(u8)]
/// #[zeroable(bound = "")]
/// enum MyOption<T> {
///   None,
///   Some(T),
/// }
///
/// assert!(matches!(MyOption::<std::num::NonZeroU8>::zeroed(), MyOption::None));
/// ```
///
/// ```rust,compile_fail
/// # use bytemuck::Zeroable;
/// # use std::marker::PhantomData;
/// #[derive(Clone, Zeroable)]
/// #[zeroable(bound = "T: Copy")]
/// struct ZeroableWhenTIsCopy<T> {
///   a: PhantomData<T>,
/// }
///
/// ZeroableWhenTIsCopy::<String>::zeroed();
/// ```
///
/// The restriction that all fields must be Zeroable is still applied, and this
/// is enforced using the mentioned "perfect derive" semantics.
///
/// ```rust
/// # use bytemuck::Zeroable;
/// #[derive(Clone, Zeroable)]
/// #[zeroable(bound = "")]
/// struct ZeroableWhenTIsZeroable<T> {
///   a: T,
/// }
/// ZeroableWhenTIsZeroable::<u32>::zeroed();
/// ```
///
/// ```rust,compile_fail
/// # use bytemuck::Zeroable;
/// # #[derive(Clone, Zeroable)]
/// # #[zeroable(bound = "")]
/// # struct ZeroableWhenTIsZeroable<T> {
/// #   a: T,
/// # }
/// ZeroableWhenTIsZeroable::<String>::zeroed();
/// ```
#[proc_macro_derive(Zeroable, attributes(bytemuck, zeroable))]
pub fn derive_zeroable(
  input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
  let expanded =
    derive_marker_trait::<Zeroable>(parse_macro_input!(input as DeriveInput));

  proc_macro::TokenStream::from(expanded)
}

/// Derive the `NoUninit` trait for a struct or enum
///
/// The macro ensures that the type follows all the the safety requirements
/// for the `NoUninit` trait.
///
/// The following constraints need to be satisfied for the macro to succeed
/// (the rest of the constraints are guaranteed by the `NoUninit` subtrait
/// bounds, i.e. the type must be `Sized + Copy + 'static`):
///
/// If applied to a struct:
/// - All fields in the struct must implement `NoUninit`
/// - The struct must be `#[repr(C)]` or `#[repr(transparent)]`
/// - The struct must not contain any padding bytes
/// - The struct must contain no generic parameters
///
/// If applied to an enum:
/// - The enum must be explicit `#[repr(Int)]`, `#[repr(C)]`, or both
/// - All variants must be fieldless
/// - The enum must contain no generic parameters
#[proc_macro_derive(NoUninit, attributes(bytemuck))]
pub fn derive_no_uninit(
  input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
  let expanded =
    derive_marker_trait::<NoUninit>(parse_macro_input!(input as DeriveInput));

  proc_macro::TokenStream::from(expanded)
}

/// Derive the `CheckedBitPattern` trait for a struct or enum.
///
/// The macro ensures that the type follows all the the safety requirements
/// for the `CheckedBitPattern` trait and derives the required `Bits` type
/// definition and `is_valid_bit_pattern` method for the type automatically.
///
/// The following constraints need to be satisfied for the macro to succeed:
///
/// If applied to a struct:
/// - All fields must implement `CheckedBitPattern`
/// - The struct must be `#[repr(C)]` or `#[repr(transparent)]`
/// - The struct must contain no generic parameters
///
/// If applied to an enum:
/// - The enum must be explicit `#[repr(Int)]`
/// - All fields in variants must implement `CheckedBitPattern`
/// - The enum must contain no generic parameters
#[proc_macro_derive(CheckedBitPattern)]
pub fn derive_maybe_pod(
  input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
  let expanded = derive_marker_trait::<CheckedBitPattern>(parse_macro_input!(
    input as DeriveInput
  ));

  proc_macro::TokenStream::from(expanded)
}

/// Derive the `TransparentWrapper` trait for a struct
///
/// The macro ensures that the struct follows all the the safety requirements
/// for the `TransparentWrapper` trait.
///
/// The following constraints need to be satisfied for the macro to succeed
///
/// - The struct must be `#[repr(transparent)]`
/// - The struct must contain the `Wrapped` type
/// - Any ZST fields must be [`Zeroable`][derive@Zeroable].
///
/// If the struct only contains a single field, the `Wrapped` type will
/// automatically be determined. If there is more then one field in the struct,
/// you need to specify the `Wrapped` type using `#[transparent(T)]`
///
/// ## Examples
///
/// ```rust
/// # use bytemuck_derive::TransparentWrapper;
/// # use std::marker::PhantomData;
/// #[derive(Copy, Clone, TransparentWrapper)]
/// #[repr(transparent)]
/// #[transparent(u16)]
/// struct Test<T> {
///   inner: u16,
///   extra: PhantomData<T>,
/// }
/// ```
///
/// If the struct contains more than one field, the `Wrapped` type must be
/// explicitly specified.
///
/// ```rust,compile_fail
/// # use bytemuck_derive::TransparentWrapper;
/// # use std::marker::PhantomData;
/// #[derive(Copy, Clone, TransparentWrapper)]
/// #[repr(transparent)]
/// // missing `#[transparent(u16)]`
/// struct Test<T> {
///   inner: u16,
///   extra: PhantomData<T>,
/// }
/// ```
///
/// Any ZST fields must be `Zeroable`.
///
/// ```rust,compile_fail
/// # use bytemuck_derive::TransparentWrapper;
/// # use std::marker::PhantomData;
/// struct NonTransparentSafeZST;
///
/// #[derive(TransparentWrapper)]
/// #[repr(transparent)]
/// #[transparent(u16)]
/// struct Test<T> {
///   inner: u16,
///   extra: PhantomData<T>,
///   another_extra: NonTransparentSafeZST, // not `Zeroable`
/// }
/// ```
#[proc_macro_derive(TransparentWrapper, attributes(bytemuck, transparent))]
pub fn derive_transparent(
  input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
  let expanded = derive_marker_trait::<TransparentWrapper>(parse_macro_input!(
    input as DeriveInput
  ));

  proc_macro::TokenStream::from(expanded)
}

/// Derive the `Contiguous` trait for an enum
///
/// The macro ensures that the enum follows all the the safety requirements
/// for the `Contiguous` trait.
///
/// The following constraints need to be satisfied for the macro to succeed
///
/// - The enum must be `#[repr(Int)]`
/// - The enum must be fieldless
/// - The enum discriminants must form a contiguous range
///
/// ## Example
///
/// ```rust
/// # use bytemuck_derive::{Contiguous};
///
/// #[derive(Copy, Clone, Contiguous)]
/// #[repr(u8)]
/// enum Test {
///   A = 0,
///   B = 1,
///   C = 2,
/// }
/// ```
#[proc_macro_derive(Contiguous)]
pub fn derive_contiguous(
  input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
  let expanded =
    derive_marker_trait::<Contiguous>(parse_macro_input!(input as DeriveInput));

  proc_macro::TokenStream::from(expanded)
}

/// Derive the `PartialEq` and `Eq` trait for a type
///
/// The macro implements `PartialEq` and `Eq` by casting both sides of the
/// comparison to a byte slice and then compares those.
///
/// ## Warning
///
/// Since this implements a byte wise comparison, the behavior of floating point
/// numbers does not match their usual comparison behavior. Additionally other
/// custom comparison behaviors of the individual fields are also ignored. This
/// also does not implement `StructuralPartialEq` / `StructuralEq` like
/// `PartialEq` / `Eq` would. This means you can't pattern match on the values.
///
/// ## Examples
///
/// ```rust
/// # use bytemuck_derive::{ByteEq, NoUninit};
/// #[derive(Copy, Clone, NoUninit, ByteEq)]
/// #[repr(C)]
/// struct Test {
///   a: u32,
///   b: char,
///   c: f32,
/// }
/// ```
///
/// ```rust
/// # use bytemuck_derive::ByteEq;
/// # use bytemuck::NoUninit;
/// #[derive(Copy, Clone, ByteEq)]
/// #[repr(C)]
/// struct Test<const N: usize> {
///   a: [u32; N],
/// }
/// unsafe impl<const N: usize> NoUninit for Test<N> {}
/// ```
#[proc_macro_derive(ByteEq)]
pub fn derive_byte_eq(
  input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
  let input = parse_macro_input!(input as DeriveInput);
  let crate_name = bytemuck_crate_name(&input);
  let ident = input.ident;
  let (impl_generics, ty_generics, where_clause) =
    input.generics.split_for_impl();

  proc_macro::TokenStream::from(quote! {
    impl #impl_generics ::core::cmp::PartialEq for #ident #ty_generics #where_clause {
      #[inline]
      #[must_use]
      fn eq(&self, other: &Self) -> bool {
        #crate_name::bytes_of(self) == #crate_name::bytes_of(other)
      }
    }
    impl #impl_generics ::core::cmp::Eq for #ident #ty_generics #where_clause { }
  })
}

/// Derive the `Hash` trait for a type
///
/// The macro implements `Hash` by casting the value to a byte slice and hashing
/// that.
///
/// ## Warning
///
/// The hash does not match the standard library's `Hash` derive.
///
/// ## Examples
///
/// ```rust
/// # use bytemuck_derive::{ByteHash, NoUninit};
/// #[derive(Copy, Clone, NoUninit, ByteHash)]
/// #[repr(C)]
/// struct Test {
///   a: u32,
///   b: char,
///   c: f32,
/// }
/// ```
///
/// ```rust
/// # use bytemuck_derive::ByteHash;
/// # use bytemuck::NoUninit;
/// #[derive(Copy, Clone, ByteHash)]
/// #[repr(C)]
/// struct Test<const N: usize> {
///   a: [u32; N],
/// }
/// unsafe impl<const N: usize> NoUninit for Test<N> {}
/// ```
#[proc_macro_derive(ByteHash)]
pub fn derive_byte_hash(
  input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
  let input = parse_macro_input!(input as DeriveInput);
  let crate_name = bytemuck_crate_name(&input);
  let ident = input.ident;
  let (impl_generics, ty_generics, where_clause) =
    input.generics.split_for_impl();

  proc_macro::TokenStream::from(quote! {
    impl #impl_generics ::core::hash::Hash for #ident #ty_generics #where_clause {
      #[inline]
      fn hash<H: ::core::hash::Hasher>(&self, state: &mut H) {
        ::core::hash::Hash::hash_slice(#crate_name::bytes_of(self), state)
      }

      #[inline]
      fn hash_slice<H: ::core::hash::Hasher>(data: &[Self], state: &mut H) {
        ::core::hash::Hash::hash_slice(#crate_name::cast_slice::<_, u8>(data), state)
      }
    }
  })
}

/// Basic wrapper for error handling
fn derive_marker_trait<Trait: Derivable>(input: DeriveInput) -> TokenStream {
  derive_marker_trait_inner::<Trait>(input)
    .unwrap_or_else(|err| err.into_compile_error())
}

/// Find `#[name(key = "value")]` helper attributes on the struct, and return
/// their `"value"`s parsed with `parser`.
///
/// Returns an error if any attributes with the given `name` do not match the
/// expected format. Returns `Ok([])` if no attributes with `name` are found.
fn find_and_parse_helper_attributes<P: syn::parse::Parser + Copy>(
  attributes: &[syn::Attribute], name: &str, key: &str, parser: P,
  example_value: &str, invalid_value_msg: &str,
) -> Result<Vec<P::Output>> {
  let invalid_format_msg =
    format!("{name} attribute must be `{name}({key} = \"{example_value}\")`",);
  let values_to_check = attributes.iter().filter_map(|attr| match &attr.meta {
    // If a `Path` matches our `name`, return an error, else ignore it.
    // e.g. `#[zeroable]`
    syn::Meta::Path(path) => path
      .is_ident(name)
      .then(|| Err(syn::Error::new_spanned(path, &invalid_format_msg))),
    // If a `NameValue` matches our `name`, return an error, else ignore it.
    // e.g. `#[zeroable = "hello"]`
    syn::Meta::NameValue(namevalue) => {
      namevalue.path.is_ident(name).then(|| {
        Err(syn::Error::new_spanned(&namevalue.path, &invalid_format_msg))
      })
    }
    // If a `List` matches our `name`, match its contents to our format, else
    // ignore it. If its contents match our format, return the value, else
    // return an error.
    syn::Meta::List(list) => list.path.is_ident(name).then(|| {
      let namevalue: syn::MetaNameValue = syn::parse2(list.tokens.clone())
        .map_err(|_| {
          syn::Error::new_spanned(&list.tokens, &invalid_format_msg)
        })?;
      if namevalue.path.is_ident(key) {
        match namevalue.value {
          syn::Expr::Lit(syn::ExprLit {
            lit: syn::Lit::Str(strlit), ..
          }) => Ok(strlit),
          _ => {
            Err(syn::Error::new_spanned(&namevalue.path, &invalid_format_msg))
          }
        }
      } else {
        Err(syn::Error::new_spanned(&namevalue.path, &invalid_format_msg))
      }
    }),
  });
  // Parse each value found with the given parser, and return them if no errors
  // occur.
  values_to_check
    .map(|lit| {
      let lit = lit?;
      lit.parse_with(parser).map_err(|err| {
        syn::Error::new_spanned(&lit, format!("{invalid_value_msg}: {err}"))
      })
    })
    .collect()
}

fn derive_marker_trait_inner<Trait: Derivable>(
  mut input: DeriveInput,
) -> Result<TokenStream> {
  let crate_name = bytemuck_crate_name(&input);
  let trait_ = Trait::ident(&input, &crate_name)?;
  // If this trait allows explicit bounds, and any explicit bounds were given,
  // then use those explicit bounds. Else, apply the default bounds (bound
  // each generic type on this trait).
  if let Some(name) = Trait::explicit_bounds_attribute_name() {
    // See if any explicit bounds were given in attributes.
    let explicit_bounds = find_and_parse_helper_attributes(
      &input.attrs,
      name,
      "bound",
      <syn::punctuated::Punctuated<syn::WherePredicate, syn::Token![,]>>::parse_terminated,
      "Type: Trait",
      "invalid where predicate",
    )?;

    if !explicit_bounds.is_empty() {
      // Explicit bounds were given.
      // Enforce explicitly given bounds, and emit "perfect derive" (i.e. add
      // bounds for each field's type).
      let explicit_bounds = explicit_bounds
        .into_iter()
        .flatten()
        .collect::<Vec<syn::WherePredicate>>();

      let fields = match (Trait::perfect_derive_fields(&input), &input.data) {
        (Some(fields), _) => fields,
        (None, syn::Data::Struct(syn::DataStruct { fields, .. })) => {
          fields.clone()
        }
        (None, syn::Data::Union(_)) => {
          return Err(syn::Error::new_spanned(
            trait_,
            &"perfect derive is not supported for unions",
          ));
        }
        (None, syn::Data::Enum(_)) => {
          return Err(syn::Error::new_spanned(
            trait_,
            &"perfect derive is not supported for enums",
          ));
        }
      };

      let predicates = &mut input.generics.make_where_clause().predicates;

      predicates.extend(explicit_bounds);

      for field in fields {
        let ty = field.ty;
        predicates.push(syn::parse_quote!(
          #ty: #trait_
        ));
      }
    } else {
      // No explicit bounds were given.
      // Enforce trait bound on all type generics.
      add_trait_marker(&mut input.generics, &trait_);
    }
  } else {
    // This trait does not allow explicit bounds.
    // Enforce trait bound on all type generics.
    add_trait_marker(&mut input.generics, &trait_);
  }

  let name = &input.ident;

  let (impl_generics, ty_generics, where_clause) =
    input.generics.split_for_impl();

  Trait::check_attributes(&input.data, &input.attrs)?;
  let asserts = Trait::asserts(&input, &crate_name)?;
  let (trait_impl_extras, trait_impl) = Trait::trait_impl(&input, &crate_name)?;

  let implies_trait = if let Some(implies_trait) =
    Trait::implies_trait(&crate_name)
  {
    quote!(unsafe impl #impl_generics #implies_trait for #name #ty_generics #where_clause {})
  } else {
    quote!()
  };

  let where_clause =
    if Trait::requires_where_clause() { where_clause } else { None };

  Ok(quote! {
    #asserts

    #trait_impl_extras

    unsafe impl #impl_generics #trait_ for #name #ty_generics #where_clause {
      #trait_impl
    }

    #implies_trait
  })
}

/// Add a trait marker to the generics if it is not already present
fn add_trait_marker(generics: &mut syn::Generics, trait_name: &syn::Path) {
  // Get each generic type parameter.
  let type_params = generics
    .type_params()
    .map(|param| &param.ident)
    .map(|param| {
      syn::parse_quote!(
        #param: #trait_name
      )
    })
    .collect::<Vec<syn::WherePredicate>>();

  generics.make_where_clause().predicates.extend(type_params);
}