const_soft_float/soft_f32/div.rs
1use crate::soft_f32::{u32_widen_mul, SoftF32};
2
3type F = SoftF32;
4
5type FInt = u32;
6
7pub(crate) const fn div(a: F, b: F) -> F {
8 const NUMBER_OF_HALF_ITERATIONS: usize = 0;
9 const NUMBER_OF_FULL_ITERATIONS: usize = 3;
10 const USE_NATIVE_FULL_ITERATIONS: bool = true;
11
12 let one = 1;
13 let zero = 0;
14 let hw = F::BITS / 2;
15 let lo_mask = u32::MAX >> hw;
16
17 let significand_bits = F::SIGNIFICAND_BITS;
18 let max_exponent = F::EXPONENT_MAX;
19
20 let exponent_bias = F::EXPONENT_BIAS;
21
22 let implicit_bit = F::IMPLICIT_BIT;
23 let significand_mask = F::SIGNIFICAND_MASK;
24 let sign_bit = F::SIGN_MASK as FInt;
25 let abs_mask = sign_bit - one;
26 let exponent_mask = F::EXPONENT_MASK;
27 let inf_rep = exponent_mask;
28 let quiet_bit = implicit_bit >> 1;
29 let qnan_rep = exponent_mask | quiet_bit;
30
31 #[inline(always)]
32 const fn negate_u32(a: u32) -> u32 {
33 (<i32>::wrapping_neg(a as i32)) as u32
34 }
35
36 let a_rep = a.repr();
37 let b_rep = b.repr();
38
39 let a_exponent = (a_rep >> significand_bits) & max_exponent;
40 let b_exponent = (b_rep >> significand_bits) & max_exponent;
41 let quotient_sign = (a_rep ^ b_rep) & sign_bit;
42
43 let mut a_significand = a_rep & significand_mask;
44 let mut b_significand = b_rep & significand_mask;
45 let mut scale = 0;
46
47 // Detect if a or b is zero, denormal, infinity, or NaN.
48 if a_exponent.wrapping_sub(one) >= (max_exponent - 1)
49 || b_exponent.wrapping_sub(one) >= (max_exponent - 1)
50 {
51 let a_abs = a_rep & abs_mask;
52 let b_abs = b_rep & abs_mask;
53
54 // NaN / anything = qNaN
55 if a_abs > inf_rep {
56 return F::from_repr(a_rep | quiet_bit);
57 }
58 // anything / NaN = qNaN
59 if b_abs > inf_rep {
60 return F::from_repr(b_rep | quiet_bit);
61 }
62
63 if a_abs == inf_rep {
64 if b_abs == inf_rep {
65 // infinity / infinity = NaN
66 return F::from_repr(qnan_rep);
67 } else {
68 // infinity / anything else = +/- infinity
69 return F::from_repr(a_abs | quotient_sign);
70 }
71 }
72
73 // anything else / infinity = +/- 0
74 if b_abs == inf_rep {
75 return F::from_repr(quotient_sign);
76 }
77
78 if a_abs == zero {
79 if b_abs == zero {
80 // zero / zero = NaN
81 return F::from_repr(qnan_rep);
82 } else {
83 // zero / anything else = +/- zero
84 return F::from_repr(quotient_sign);
85 }
86 }
87
88 // anything else / zero = +/- infinity
89 if b_abs == zero {
90 return F::from_repr(inf_rep | quotient_sign);
91 }
92
93 // one or both of a or b is denormal, the other (if applicable) is a
94 // normal number. Renormalize one or both of a and b, and set scale to
95 // include the necessary exponent adjustment.
96 if a_abs < implicit_bit {
97 let (exponent, significand) = F::normalize(a_significand);
98 scale += exponent;
99 a_significand = significand;
100 }
101
102 if b_abs < implicit_bit {
103 let (exponent, significand) = F::normalize(b_significand);
104 scale -= exponent;
105 b_significand = significand;
106 }
107 }
108
109 // Set the implicit significand bit. If we fell through from the
110 // denormal path it was already set by normalize( ), but setting it twice
111 // won't hurt anything.
112 a_significand |= implicit_bit;
113 b_significand |= implicit_bit;
114
115 let written_exponent: i32 = (a_exponent
116 .wrapping_sub(b_exponent)
117 .wrapping_add(scale as u32))
118 .wrapping_add(exponent_bias) as i32;
119 let b_uq1 = b_significand << (F::BITS - significand_bits - 1);
120
121 // Align the significand of b as a UQ1.(n-1) fixed-point number in the range
122 // [1.0, 2.0) and get a UQ0.n approximate reciprocal using a small minimax
123 // polynomial approximation: x0 = 3/4 + 1/sqrt(2) - b/2.
124 // The max error for this approximation is achieved at endpoints, so
125 // abs(x0(b) - 1/b) <= abs(x0(1) - 1/1) = 3/4 - 1/sqrt(2) = 0.04289...,
126 // which is about 4.5 bits.
127 // The initial approximation is between x0(1.0) = 0.9571... and x0(2.0) = 0.4571...
128
129 // Then, refine the reciprocal estimate using a quadratically converging
130 // Newton-Raphson iteration:
131 // x_{n+1} = x_n * (2 - x_n * b)
132 //
133 // Let b be the original divisor considered "in infinite precision" and
134 // obtained from IEEE754 representation of function argument (with the
135 // implicit bit set). Corresponds to rep_t-sized b_UQ1 represented in
136 // UQ1.(W-1).
137 //
138 // Let b_hw be an infinitely precise number obtained from the highest (HW-1)
139 // bits of divisor significand (with the implicit bit set). Corresponds to
140 // half_rep_t-sized b_UQ1_hw represented in UQ1.(HW-1) that is a **truncated**
141 // version of b_UQ1.
142 //
143 // Let e_n := x_n - 1/b_hw
144 // E_n := x_n - 1/b
145 // abs(E_n) <= abs(e_n) + (1/b_hw - 1/b)
146 // = abs(e_n) + (b - b_hw) / (b*b_hw)
147 // <= abs(e_n) + 2 * 2^-HW
148
149 // rep_t-sized iterations may be slower than the corresponding half-width
150 // variant depending on the handware and whether single/double/quad precision
151 // is selected.
152 // NB: Using half-width iterations increases computation errors due to
153 // rounding, so error estimations have to be computed taking the selected
154 // mode into account!
155
156 #[allow(clippy::absurd_extreme_comparisons)]
157 let mut x_uq0 = if NUMBER_OF_HALF_ITERATIONS > 0 {
158 // Starting with (n-1) half-width iterations
159 let b_uq1_hw: u16 = (b_significand >> (significand_bits + 1 - hw)) as u16;
160
161 // C is (3/4 + 1/sqrt(2)) - 1 truncated to W0 fractional bits as UQ0.HW
162 // with W0 being either 16 or 32 and W0 <= HW.
163 // That is, C is the aforementioned 3/4 + 1/sqrt(2) constant (from which
164 // b/2 is subtracted to obtain x0) wrapped to [0, 1) range.
165
166 // HW is at least 32. Shifting into the highest bits if needed.
167 let c_hw = (0x7504_u32 as u16).wrapping_shl(hw.wrapping_sub(32));
168
169 // b >= 1, thus an upper bound for 3/4 + 1/sqrt(2) - b/2 is about 0.9572,
170 // so x0 fits to UQ0.HW without wrapping.
171 let x_uq0_hw: u16 = {
172 let mut x_uq0_hw: u16 = c_hw.wrapping_sub(b_uq1_hw /* exact b_hw/2 as UQ0.HW */);
173 // An e_0 error is comprised of errors due to
174 // * x0 being an inherently imprecise first approximation of 1/b_hw
175 // * C_hw being some (irrational) number **truncated** to W0 bits
176 // Please note that e_0 is calculated against the infinitely precise
177 // reciprocal of b_hw (that is, **truncated** version of b).
178 //
179 // e_0 <= 3/4 - 1/sqrt(2) + 2^-W0
180
181 // By construction, 1 <= b < 2
182 // f(x) = x * (2 - b*x) = 2*x - b*x^2
183 // f'(x) = 2 * (1 - b*x)
184 //
185 // On the [0, 1] interval, f(0) = 0,
186 // then it increses until f(1/b) = 1 / b, maximum on (0, 1),
187 // then it decreses to f(1) = 2 - b
188 //
189 // Let g(x) = x - f(x) = b*x^2 - x.
190 // On (0, 1/b), g(x) < 0 <=> f(x) > x
191 // On (1/b, 1], g(x) > 0 <=> f(x) < x
192 //
193 // For half-width iterations, b_hw is used instead of b.
194 #[allow(clippy::reversed_empty_ranges)]
195 let mut idx = 0;
196 while idx < NUMBER_OF_HALF_ITERATIONS {
197 // corr_UQ1_hw can be **larger** than 2 - b_hw*x by at most 1*Ulp
198 // of corr_UQ1_hw.
199 // "0.0 - (...)" is equivalent to "2.0 - (...)" in UQ1.(HW-1).
200 // On the other hand, corr_UQ1_hw should not overflow from 2.0 to 0.0 provided
201 // no overflow occurred earlier: ((rep_t)x_UQ0_hw * b_UQ1_hw >> HW) is
202 // expected to be strictly positive because b_UQ1_hw has its highest bit set
203 // and x_UQ0_hw should be rather large (it converges to 1/2 < 1/b_hw <= 1).
204 let corr_uq1_hw: u16 = 0_u32
205 .wrapping_sub((x_uq0_hw as u32).wrapping_mul(b_uq1_hw as u32) >> hw)
206 as u16;
207
208 // Now, we should multiply UQ0.HW and UQ1.(HW-1) numbers, naturally
209 // obtaining an UQ1.(HW-1) number and proving its highest bit could be
210 // considered to be 0 to be able to represent it in UQ0.HW.
211 // From the above analysis of f(x), if corr_UQ1_hw would be represented
212 // without any intermediate loss of precision (that is, in twice_rep_t)
213 // x_UQ0_hw could be at most [1.]000... if b_hw is exactly 1.0 and strictly
214 // less otherwise. On the other hand, to obtain [1.]000..., one have to pass
215 // 1/b_hw == 1.0 to f(x), so this cannot occur at all without overflow (due
216 // to 1.0 being not representable as UQ0.HW).
217 // The fact corr_UQ1_hw was virtually round up (due to result of
218 // multiplication being **first** truncated, then negated - to improve
219 // error estimations) can increase x_UQ0_hw by up to 2*Ulp of x_UQ0_hw.
220 x_uq0_hw = ((x_uq0_hw as u32).wrapping_mul(corr_uq1_hw as u32) >> (hw - 1)) as u16;
221 // Now, either no overflow occurred or x_UQ0_hw is 0 or 1 in its half_rep_t
222 // representation. In the latter case, x_UQ0_hw will be either 0 or 1 after
223 // any number of iterations, so just subtract 2 from the reciprocal
224 // approximation after last iteration.
225
226 // In infinite precision, with 0 <= eps1, eps2 <= U = 2^-HW:
227 // corr_UQ1_hw = 2 - (1/b_hw + e_n) * b_hw + 2*eps1
228 // = 1 - e_n * b_hw + 2*eps1
229 // x_UQ0_hw = (1/b_hw + e_n) * (1 - e_n*b_hw + 2*eps1) - eps2
230 // = 1/b_hw - e_n + 2*eps1/b_hw + e_n - e_n^2*b_hw + 2*e_n*eps1 - eps2
231 // = 1/b_hw + 2*eps1/b_hw - e_n^2*b_hw + 2*e_n*eps1 - eps2
232 // e_{n+1} = -e_n^2*b_hw + 2*eps1/b_hw + 2*e_n*eps1 - eps2
233 // = 2*e_n*eps1 - (e_n^2*b_hw + eps2) + 2*eps1/b_hw
234 // \------ >0 -------/ \-- >0 ---/
235 // abs(e_{n+1}) <= 2*abs(e_n)*U + max(2*e_n^2 + U, 2 * U)
236 idx += 1;
237 }
238 // For initial half-width iterations, U = 2^-HW
239 // Let abs(e_n) <= u_n * U,
240 // then abs(e_{n+1}) <= 2 * u_n * U^2 + max(2 * u_n^2 * U^2 + U, 2 * U)
241 // u_{n+1} <= 2 * u_n * U + max(2 * u_n^2 * U + 1, 2)
242
243 // Account for possible overflow (see above). For an overflow to occur for the
244 // first time, for "ideal" corr_UQ1_hw (that is, without intermediate
245 // truncation), the result of x_UQ0_hw * corr_UQ1_hw should be either maximum
246 // value representable in UQ0.HW or less by 1. This means that 1/b_hw have to
247 // be not below that value (see g(x) above), so it is safe to decrement just
248 // once after the final iteration. On the other hand, an effective value of
249 // divisor changes after this point (from b_hw to b), so adjust here.
250 x_uq0_hw.wrapping_sub(1_u16)
251 };
252
253 // Error estimations for full-precision iterations are calculated just
254 // as above, but with U := 2^-W and taking extra decrementing into account.
255 // We need at least one such iteration.
256
257 // Simulating operations on a twice_rep_t to perform a single final full-width
258 // iteration. Using ad-hoc multiplication implementations to take advantage
259 // of particular structure of operands.
260
261 let blo: u32 = b_uq1 & lo_mask;
262 // x_UQ0 = x_UQ0_hw * 2^HW - 1
263 // x_UQ0 * b_UQ1 = (x_UQ0_hw * 2^HW) * (b_UQ1_hw * 2^HW + blo) - b_UQ1
264 //
265 // <--- higher half ---><--- lower half --->
266 // [x_UQ0_hw * b_UQ1_hw]
267 // + [ x_UQ0_hw * blo ]
268 // - [ b_UQ1 ]
269 // = [ result ][.... discarded ...]
270 let corr_uq1 = negate_u32(
271 (x_uq0_hw as u32) * (b_uq1_hw as u32) + (((x_uq0_hw as u32) * (blo)) >> hw) - 1,
272 ); // account for *possible* carry
273 let lo_corr = corr_uq1 & lo_mask;
274 let hi_corr = corr_uq1 >> hw;
275 // x_UQ0 * corr_UQ1 = (x_UQ0_hw * 2^HW) * (hi_corr * 2^HW + lo_corr) - corr_UQ1
276 let mut x_uq0 = (((x_uq0_hw as u32) * hi_corr) << 1)
277 .wrapping_add(((x_uq0_hw as u32) * lo_corr) >> (hw - 1))
278 .wrapping_sub(2);
279 // 1 to account for the highest bit of corr_UQ1 can be 1
280 // 1 to account for possible carry
281 // Just like the case of half-width iterations but with possibility
282 // of overflowing by one extra Ulp of x_UQ0.
283 x_uq0 -= one;
284 // ... and then traditional fixup by 2 should work
285
286 // On error estimation:
287 // abs(E_{N-1}) <= (u_{N-1} + 2 /* due to conversion e_n -> E_n */) * 2^-HW
288 // + (2^-HW + 2^-W))
289 // abs(E_{N-1}) <= (u_{N-1} + 3.01) * 2^-HW
290
291 // Then like for the half-width iterations:
292 // With 0 <= eps1, eps2 < 2^-W
293 // E_N = 4 * E_{N-1} * eps1 - (E_{N-1}^2 * b + 4 * eps2) + 4 * eps1 / b
294 // abs(E_N) <= 2^-W * [ 4 * abs(E_{N-1}) + max(2 * abs(E_{N-1})^2 * 2^W + 4, 8)) ]
295 // abs(E_N) <= 2^-W * [ 4 * (u_{N-1} + 3.01) * 2^-HW + max(4 + 2 * (u_{N-1} + 3.01)^2, 8) ]
296 x_uq0
297 } else {
298 // C is (3/4 + 1/sqrt(2)) - 1 truncated to 32 fractional bits as UQ0.n
299 let c = 0x7504F333_u32 << (F::BITS - 32);
300 let x_uq0 = c.wrapping_sub(b_uq1);
301 // E_0 <= 3/4 - 1/sqrt(2) + 2 * 2^-32
302 x_uq0
303 };
304
305 let mut x_uq0 = if USE_NATIVE_FULL_ITERATIONS {
306 let mut idx = 0;
307 while idx < NUMBER_OF_FULL_ITERATIONS {
308 let corr_uq1: u32 = 0_u64
309 .wrapping_sub(((x_uq0 as u64).wrapping_mul(b_uq1 as u64)).wrapping_shr(F::BITS))
310 as u32;
311 x_uq0 = (((x_uq0 as u64) * (corr_uq1 as u64)) >> (F::BITS - 1)) as u32;
312 idx += 1;
313 }
314 x_uq0
315 } else {
316 // not using native full iterations
317 x_uq0
318 };
319
320 // Finally, account for possible overflow, as explained above.
321 x_uq0 = x_uq0.wrapping_sub(2);
322
323 // u_n for different precisions (with N-1 half-width iterations):
324 // W0 is the precision of C
325 // u_0 = (3/4 - 1/sqrt(2) + 2^-W0) * 2^HW
326
327 // Estimated with bc:
328 // define half1(un) { return 2.0 * (un + un^2) / 2.0^hw + 1.0; }
329 // define half2(un) { return 2.0 * un / 2.0^hw + 2.0; }
330 // define full1(un) { return 4.0 * (un + 3.01) / 2.0^hw + 2.0 * (un + 3.01)^2 + 4.0; }
331 // define full2(un) { return 4.0 * (un + 3.01) / 2.0^hw + 8.0; }
332
333 // | f32 (0 + 3) | f32 (2 + 1) | f64 (3 + 1) | f128 (4 + 1)
334 // u_0 | < 184224974 | < 2812.1 | < 184224974 | < 791240234244348797
335 // u_1 | < 15804007 | < 242.7 | < 15804007 | < 67877681371350440
336 // u_2 | < 116308 | < 2.81 | < 116308 | < 499533100252317
337 // u_3 | < 7.31 | | < 7.31 | < 27054456580
338 // u_4 | | | | < 80.4
339 // Final (U_N) | same as u_3 | < 72 | < 218 | < 13920
340
341 // Add 2 to U_N due to final decrement.
342
343 let reciprocal_precision: FInt = 10;
344
345 // Suppose 1/b - P * 2^-W < x < 1/b + P * 2^-W
346 let x_uq0 = x_uq0 - reciprocal_precision;
347 // Now 1/b - (2*P) * 2^-W < x < 1/b
348 // FIXME Is x_UQ0 still >= 0.5?
349
350 let mut quotient: FInt = u32_widen_mul(x_uq0, a_significand << 1).1;
351 // Now, a/b - 4*P * 2^-W < q < a/b for q=<quotient_UQ1:dummy> in UQ1.(SB+1+W).
352
353 // quotient_UQ1 is in [0.5, 2.0) as UQ1.(SB+1),
354 // adjust it to be in [1.0, 2.0) as UQ1.SB.
355 let (mut residual, written_exponent) = if quotient < (implicit_bit << 1) {
356 // Highest bit is 0, so just reinterpret quotient_UQ1 as UQ1.SB,
357 // effectively doubling its value as well as its error estimation.
358 let residual_lo = (a_significand << (significand_bits + 1))
359 .wrapping_sub(quotient.wrapping_mul(b_significand));
360 a_significand <<= 1;
361 (residual_lo, written_exponent.wrapping_sub(1))
362 } else {
363 // Highest bit is 1 (the UQ1.(SB+1) value is in [1, 2)), convert it
364 // to UQ1.SB by right shifting by 1. Least significant bit is omitted.
365 quotient >>= 1;
366 let residual_lo =
367 (a_significand << significand_bits).wrapping_sub(quotient.wrapping_mul(b_significand));
368 (residual_lo, written_exponent)
369 };
370
371 //drop mutability
372 let quotient = quotient;
373
374 // NB: residualLo is calculated above for the normal result case.
375 // It is re-computed on denormal path that is expected to be not so
376 // performance-sensitive.
377
378 // Now, q cannot be greater than a/b and can differ by at most 8*P * 2^-W + 2^-SB
379 // Each NextAfter() increments the floating point value by at least 2^-SB
380 // (more, if exponent was incremented).
381 // Different cases (<---> is of 2^-SB length, * = a/b that is shown as a midpoint):
382 // q
383 // | | * | | | | |
384 // <---> 2^t
385 // | | | | | * | |
386 // q
387 // To require at most one NextAfter(), an error should be less than 1.5 * 2^-SB.
388 // (8*P) * 2^-W + 2^-SB < 1.5 * 2^-SB
389 // (8*P) * 2^-W < 0.5 * 2^-SB
390 // P < 2^(W-4-SB)
391 // Generally, for at most R NextAfter() to be enough,
392 // P < (2*R - 1) * 2^(W-4-SB)
393 // For f32 (0+3): 10 < 32 (OK)
394 // For f32 (2+1): 32 < 74 < 32 * 3, so two NextAfter() are required
395 // For f64: 220 < 256 (OK)
396 // For f128: 4096 * 3 < 13922 < 4096 * 5 (three NextAfter() are required)
397
398 // If we have overflowed the exponent, return infinity
399 if written_exponent >= max_exponent as i32 {
400 return F::from_repr(inf_rep | quotient_sign);
401 }
402
403 // Now, quotient <= the correctly-rounded result
404 // and may need taking NextAfter() up to 3 times (see error estimates above)
405 // r = a - b * q
406 let abs_result = if written_exponent > 0 {
407 let mut ret = quotient & significand_mask;
408 ret |= ((written_exponent as u32) << significand_bits) as u32;
409 residual <<= 1;
410 ret
411 } else {
412 if (significand_bits as i32 + written_exponent) < 0 {
413 return F::from_repr(quotient_sign);
414 }
415 let ret = quotient.wrapping_shr(negate_u32(written_exponent as u32) + 1);
416 residual = (a_significand
417 .wrapping_shl(significand_bits.wrapping_add(written_exponent as u32))
418 as u32)
419 .wrapping_sub((ret.wrapping_mul(b_significand)) << 1);
420 ret
421 };
422 // Round
423 let abs_result = {
424 residual += abs_result & one; // tie to even
425 // The above line conditionally turns the below LT comparison into LTE
426
427 if residual > b_significand {
428 abs_result + one
429 } else {
430 abs_result
431 }
432 };
433 F::from_repr(abs_result | quotient_sign)
434}
435
436#[cfg(test)]
437mod test {
438 use crate::soft_f32::SoftF32;
439
440 #[test]
441 fn sanity_check() {
442 assert_eq!(SoftF32(10.0).div(SoftF32(5.0)).0, 2.0)
443 }
444}