const_soft_float/soft_f64/
div.rs

1use crate::soft_f64::{u64_widen_mul, SoftF64};
2
3type F = SoftF64;
4
5type FInt = u64;
6
7pub(crate) const fn div(a: F, b: F) -> F {
8    const NUMBER_OF_HALF_ITERATIONS: usize = 3;
9    const NUMBER_OF_FULL_ITERATIONS: usize = 1;
10    const USE_NATIVE_FULL_ITERATIONS: bool = false;
11
12    let one = 1;
13    let zero = 0;
14    let hw = F::BITS / 2;
15    let lo_mask = u64::MAX >> hw;
16
17    let significand_bits = F::SIGNIFICAND_BITS;
18    let max_exponent = F::EXPONENT_MAX;
19
20    let exponent_bias = F::EXPONENT_BIAS;
21
22    let implicit_bit = F::IMPLICIT_BIT;
23    let significand_mask = F::SIGNIFICAND_MASK;
24    let sign_bit = F::SIGN_MASK;
25    let abs_mask = sign_bit - one;
26    let exponent_mask = F::EXPONENT_MASK;
27    let inf_rep = exponent_mask;
28    let quiet_bit = implicit_bit >> 1;
29    let qnan_rep = exponent_mask | quiet_bit;
30
31    #[inline(always)]
32    const fn negate_u64(a: u64) -> u64 {
33        (<i64>::wrapping_neg(a as i64)) as u64
34    }
35
36    let a_rep = a.repr();
37    let b_rep = b.repr();
38
39    let a_exponent = (a_rep >> significand_bits) & max_exponent as u64;
40    let b_exponent = (b_rep >> significand_bits) & max_exponent as u64;
41    let quotient_sign = (a_rep ^ b_rep) & sign_bit;
42
43    let mut a_significand = a_rep & significand_mask;
44    let mut b_significand = b_rep & significand_mask;
45    let mut scale = 0;
46
47    // Detect if a or b is zero, denormal, infinity, or NaN.
48    if a_exponent.wrapping_sub(one) >= (max_exponent - 1) as u64
49        || b_exponent.wrapping_sub(one) >= (max_exponent - 1) as u64
50    {
51        let a_abs = a_rep & abs_mask;
52        let b_abs = b_rep & abs_mask;
53
54        // NaN / anything = qNaN
55        if a_abs > inf_rep {
56            return F::from_repr(a_rep | quiet_bit);
57        }
58        // anything / NaN = qNaN
59        if b_abs > inf_rep {
60            return F::from_repr(b_rep | quiet_bit);
61        }
62
63        if a_abs == inf_rep {
64            if b_abs == inf_rep {
65                // infinity / infinity = NaN
66                return F::from_repr(qnan_rep);
67            } else {
68                // infinity / anything else = +/- infinity
69                return F::from_repr(a_abs | quotient_sign);
70            }
71        }
72
73        // anything else / infinity = +/- 0
74        if b_abs == inf_rep {
75            return F::from_repr(quotient_sign);
76        }
77
78        if a_abs == zero {
79            if b_abs == zero {
80                // zero / zero = NaN
81                return F::from_repr(qnan_rep);
82            } else {
83                // zero / anything else = +/- zero
84                return F::from_repr(quotient_sign);
85            }
86        }
87
88        // anything else / zero = +/- infinity
89        if b_abs == zero {
90            return F::from_repr(inf_rep | quotient_sign);
91        }
92
93        // one or both of a or b is denormal, the other (if applicable) is a
94        // normal number.  Renormalize one or both of a and b, and set scale to
95        // include the necessary exponent adjustment.
96        if a_abs < implicit_bit {
97            let (exponent, significand) = F::normalize(a_significand);
98            scale += exponent;
99            a_significand = significand;
100        }
101
102        if b_abs < implicit_bit {
103            let (exponent, significand) = F::normalize(b_significand);
104            scale -= exponent;
105            b_significand = significand;
106        }
107    }
108
109    // Set the implicit significand bit.  If we fell through from the
110    // denormal path it was already set by normalize( ), but setting it twice
111    // won't hurt anything.
112    a_significand |= implicit_bit;
113    b_significand |= implicit_bit;
114
115    let written_exponent: i64 = a_exponent
116        .wrapping_sub(b_exponent)
117        .wrapping_add(scale as u64)
118        .wrapping_add(exponent_bias as u64) as i64;
119    let b_uq1 = b_significand << (F::BITS - significand_bits - 1);
120
121    // Align the significand of b as a UQ1.(n-1) fixed-point number in the range
122    // [1.0, 2.0) and get a UQ0.n approximate reciprocal using a small minimax
123    // polynomial approximation: x0 = 3/4 + 1/sqrt(2) - b/2.
124    // The max error for this approximation is achieved at endpoints, so
125    //   abs(x0(b) - 1/b) <= abs(x0(1) - 1/1) = 3/4 - 1/sqrt(2) = 0.04289...,
126    // which is about 4.5 bits.
127    // The initial approximation is between x0(1.0) = 0.9571... and x0(2.0) = 0.4571...
128
129    // Then, refine the reciprocal estimate using a quadratically converging
130    // Newton-Raphson iteration:
131    //     x_{n+1} = x_n * (2 - x_n * b)
132    //
133    // Let b be the original divisor considered "in infinite precision" and
134    // obtained from IEEE754 representation of function argument (with the
135    // implicit bit set). Corresponds to rep_t-sized b_UQ1 represented in
136    // UQ1.(W-1).
137    //
138    // Let b_hw be an infinitely precise number obtained from the highest (HW-1)
139    // bits of divisor significand (with the implicit bit set). Corresponds to
140    // half_rep_t-sized b_UQ1_hw represented in UQ1.(HW-1) that is a **truncated**
141    // version of b_UQ1.
142    //
143    // Let e_n := x_n - 1/b_hw
144    //     E_n := x_n - 1/b
145    // abs(E_n) <= abs(e_n) + (1/b_hw - 1/b)
146    //           = abs(e_n) + (b - b_hw) / (b*b_hw)
147    //          <= abs(e_n) + 2 * 2^-HW
148
149    // rep_t-sized iterations may be slower than the corresponding half-width
150    // variant depending on the handware and whether single/double/quad precision
151    // is selected.
152    // NB: Using half-width iterations increases computation errors due to
153    // rounding, so error estimations have to be computed taking the selected
154    // mode into account!
155
156    let mut x_uq0 = if NUMBER_OF_HALF_ITERATIONS > 0 {
157        // Starting with (n-1) half-width iterations
158        let b_uq1_hw: u32 = (b_significand >> (significand_bits + 1 - hw)) as u32;
159
160        // C is (3/4 + 1/sqrt(2)) - 1 truncated to W0 fractional bits as UQ0.HW
161        // with W0 being either 16 or 32 and W0 <= HW.
162        // That is, C is the aforementioned 3/4 + 1/sqrt(2) constant (from which
163        // b/2 is subtracted to obtain x0) wrapped to [0, 1) range.
164
165        // HW is at least 32. Shifting into the highest bits if needed.
166        let c_hw = (0x7504F333_u64 as u32).wrapping_shl(hw.wrapping_sub(32));
167
168        // b >= 1, thus an upper bound for 3/4 + 1/sqrt(2) - b/2 is about 0.9572,
169        // so x0 fits to UQ0.HW without wrapping.
170        let x_uq0_hw: u32 = {
171            let mut x_uq0_hw: u32 = c_hw.wrapping_sub(b_uq1_hw /* exact b_hw/2 as UQ0.HW */);
172            // dbg!(x_uq0_hw);
173            // An e_0 error is comprised of errors due to
174            // * x0 being an inherently imprecise first approximation of 1/b_hw
175            // * C_hw being some (irrational) number **truncated** to W0 bits
176            // Please note that e_0 is calculated against the infinitely precise
177            // reciprocal of b_hw (that is, **truncated** version of b).
178            //
179            // e_0 <= 3/4 - 1/sqrt(2) + 2^-W0
180
181            // By construction, 1 <= b < 2
182            // f(x)  = x * (2 - b*x) = 2*x - b*x^2
183            // f'(x) = 2 * (1 - b*x)
184            //
185            // On the [0, 1] interval, f(0)   = 0,
186            // then it increses until  f(1/b) = 1 / b, maximum on (0, 1),
187            // then it decreses to     f(1)   = 2 - b
188            //
189            // Let g(x) = x - f(x) = b*x^2 - x.
190            // On (0, 1/b), g(x) < 0 <=> f(x) > x
191            // On (1/b, 1], g(x) > 0 <=> f(x) < x
192            //
193            // For half-width iterations, b_hw is used instead of b.
194            let mut idx = 0;
195            while idx < NUMBER_OF_HALF_ITERATIONS {
196                // corr_UQ1_hw can be **larger** than 2 - b_hw*x by at most 1*Ulp
197                // of corr_UQ1_hw.
198                // "0.0 - (...)" is equivalent to "2.0 - (...)" in UQ1.(HW-1).
199                // On the other hand, corr_UQ1_hw should not overflow from 2.0 to 0.0 provided
200                // no overflow occurred earlier: ((rep_t)x_UQ0_hw * b_UQ1_hw >> HW) is
201                // expected to be strictly positive because b_UQ1_hw has its highest bit set
202                // and x_UQ0_hw should be rather large (it converges to 1/2 < 1/b_hw <= 1).
203                let corr_uq1_hw: u32 = 0_u64
204                    .wrapping_sub(((x_uq0_hw as u64).wrapping_mul(b_uq1_hw as u64)) >> hw)
205                    as u32;
206                // dbg!(corr_uq1_hw);
207
208                // Now, we should multiply UQ0.HW and UQ1.(HW-1) numbers, naturally
209                // obtaining an UQ1.(HW-1) number and proving its highest bit could be
210                // considered to be 0 to be able to represent it in UQ0.HW.
211                // From the above analysis of f(x), if corr_UQ1_hw would be represented
212                // without any intermediate loss of precision (that is, in twice_rep_t)
213                // x_UQ0_hw could be at most [1.]000... if b_hw is exactly 1.0 and strictly
214                // less otherwise. On the other hand, to obtain [1.]000..., one have to pass
215                // 1/b_hw == 1.0 to f(x), so this cannot occur at all without overflow (due
216                // to 1.0 being not representable as UQ0.HW).
217                // The fact corr_UQ1_hw was virtually round up (due to result of
218                // multiplication being **first** truncated, then negated - to improve
219                // error estimations) can increase x_UQ0_hw by up to 2*Ulp of x_UQ0_hw.
220                x_uq0_hw = ((x_uq0_hw as u64).wrapping_mul(corr_uq1_hw as u64) >> (hw - 1)) as u32;
221                // dbg!(x_uq0_hw);
222                // Now, either no overflow occurred or x_UQ0_hw is 0 or 1 in its half_rep_t
223                // representation. In the latter case, x_UQ0_hw will be either 0 or 1 after
224                // any number of iterations, so just subtract 2 from the reciprocal
225                // approximation after last iteration.
226
227                // In infinite precision, with 0 <= eps1, eps2 <= U = 2^-HW:
228                // corr_UQ1_hw = 2 - (1/b_hw + e_n) * b_hw + 2*eps1
229                //             = 1 - e_n * b_hw + 2*eps1
230                // x_UQ0_hw = (1/b_hw + e_n) * (1 - e_n*b_hw + 2*eps1) - eps2
231                //          = 1/b_hw - e_n + 2*eps1/b_hw + e_n - e_n^2*b_hw + 2*e_n*eps1 - eps2
232                //          = 1/b_hw + 2*eps1/b_hw - e_n^2*b_hw + 2*e_n*eps1 - eps2
233                // e_{n+1} = -e_n^2*b_hw + 2*eps1/b_hw + 2*e_n*eps1 - eps2
234                //         = 2*e_n*eps1 - (e_n^2*b_hw + eps2) + 2*eps1/b_hw
235                //                        \------ >0 -------/   \-- >0 ---/
236                // abs(e_{n+1}) <= 2*abs(e_n)*U + max(2*e_n^2 + U, 2 * U)
237                idx += 1;
238            }
239            // For initial half-width iterations, U = 2^-HW
240            // Let  abs(e_n)     <= u_n * U,
241            // then abs(e_{n+1}) <= 2 * u_n * U^2 + max(2 * u_n^2 * U^2 + U, 2 * U)
242            // u_{n+1} <= 2 * u_n * U + max(2 * u_n^2 * U + 1, 2)
243
244            // Account for possible overflow (see above). For an overflow to occur for the
245            // first time, for "ideal" corr_UQ1_hw (that is, without intermediate
246            // truncation), the result of x_UQ0_hw * corr_UQ1_hw should be either maximum
247            // value representable in UQ0.HW or less by 1. This means that 1/b_hw have to
248            // be not below that value (see g(x) above), so it is safe to decrement just
249            // once after the final iteration. On the other hand, an effective value of
250            // divisor changes after this point (from b_hw to b), so adjust here.
251            x_uq0_hw.wrapping_sub(1_u32)
252        };
253
254        // Error estimations for full-precision iterations are calculated just
255        // as above, but with U := 2^-W and taking extra decrementing into account.
256        // We need at least one such iteration.
257
258        // Simulating operations on a twice_rep_t to perform a single final full-width
259        // iteration. Using ad-hoc multiplication implementations to take advantage
260        // of particular structure of operands.
261        let blo: u64 = b_uq1 & lo_mask;
262        // x_UQ0 = x_UQ0_hw * 2^HW - 1
263        // x_UQ0 * b_UQ1 = (x_UQ0_hw * 2^HW) * (b_UQ1_hw * 2^HW + blo) - b_UQ1
264        //
265        //   <--- higher half ---><--- lower half --->
266        //   [x_UQ0_hw * b_UQ1_hw]
267        // +            [  x_UQ0_hw *  blo  ]
268        // -                      [      b_UQ1       ]
269        // = [      result       ][.... discarded ...]
270        let corr_uq1 = negate_u64(
271            (x_uq0_hw as u64) * (b_uq1_hw as u64) + (((x_uq0_hw as u64) * (blo)) >> hw) - 1,
272        ); // account for *possible* carry
273        let lo_corr = corr_uq1 & lo_mask;
274        let hi_corr = corr_uq1 >> hw;
275        // x_UQ0 * corr_UQ1 = (x_UQ0_hw * 2^HW) * (hi_corr * 2^HW + lo_corr) - corr_UQ1
276        let mut x_uq0: FInt = (((x_uq0_hw as u64) * hi_corr) << 1)
277            .wrapping_add(((x_uq0_hw as u64) * lo_corr) >> (hw - 1))
278            .wrapping_sub(2); // 1 to account for the highest bit of corr_UQ1 can be 1
279                              // 1 to account for possible carry
280                              // Just like the case of half-width iterations but with possibility
281                              // of overflowing by one extra Ulp of x_UQ0.
282        x_uq0 -= one;
283        // ... and then traditional fixup by 2 should work
284
285        // On error estimation:
286        // abs(E_{N-1}) <=   (u_{N-1} + 2 /* due to conversion e_n -> E_n */) * 2^-HW
287        //                 + (2^-HW + 2^-W))
288        // abs(E_{N-1}) <= (u_{N-1} + 3.01) * 2^-HW
289
290        // Then like for the half-width iterations:
291        // With 0 <= eps1, eps2 < 2^-W
292        // E_N  = 4 * E_{N-1} * eps1 - (E_{N-1}^2 * b + 4 * eps2) + 4 * eps1 / b
293        // abs(E_N) <= 2^-W * [ 4 * abs(E_{N-1}) + max(2 * abs(E_{N-1})^2 * 2^W + 4, 8)) ]
294        // abs(E_N) <= 2^-W * [ 4 * (u_{N-1} + 3.01) * 2^-HW + max(4 + 2 * (u_{N-1} + 3.01)^2, 8) ]
295        x_uq0
296    } else {
297        // C is (3/4 + 1/sqrt(2)) - 1 truncated to 64 fractional bits as UQ0.n
298        let c: FInt = 0x7504F333 << (F::BITS - 32);
299        let x_uq0: FInt = c.wrapping_sub(b_uq1);
300        // E_0 <= 3/4 - 1/sqrt(2) + 2 * 2^-64
301        x_uq0
302    };
303
304    let mut x_uq0 = if USE_NATIVE_FULL_ITERATIONS {
305        let mut idx = 0;
306        while idx < NUMBER_OF_FULL_ITERATIONS {
307            let corr_uq1: u64 = 0_u64.wrapping_sub((x_uq0 * b_uq1) >> F::BITS);
308            x_uq0 = (((x_uq0 as u128) * (corr_uq1 as u128)) >> (F::BITS - 1)) as u64;
309            idx += 1;
310        }
311        x_uq0
312    } else {
313        // not using native full iterations
314        x_uq0
315    };
316
317    // Finally, account for possible overflow, as explained above.
318    x_uq0 = x_uq0.wrapping_sub(2);
319
320    // u_n for different precisions (with N-1 half-width iterations):
321    // W0 is the precision of C
322    //   u_0 = (3/4 - 1/sqrt(2) + 2^-W0) * 2^HW
323
324    // Estimated with bc:
325    //   define half1(un) { return 2.0 * (un + un^2) / 2.0^hw + 1.0; }
326    //   define half2(un) { return 2.0 * un / 2.0^hw + 2.0; }
327    //   define full1(un) { return 4.0 * (un + 3.01) / 2.0^hw + 2.0 * (un + 3.01)^2 + 4.0; }
328    //   define full2(un) { return 4.0 * (un + 3.01) / 2.0^hw + 8.0; }
329
330    //             | f32 (0 + 3) | f32 (2 + 1)  | f64 (3 + 1)  | f128 (4 + 1)
331    // u_0         | < 184224974 | < 2812.1     | < 184224974  | < 791240234244348797
332    // u_1         | < 15804007  | < 242.7      | < 15804007   | < 67877681371350440
333    // u_2         | < 116308    | < 2.81       | < 116308     | < 499533100252317
334    // u_3         | < 7.31      |              | < 7.31       | < 27054456580
335    // u_4         |             |              |              | < 80.4
336    // Final (U_N) | same as u_3 | < 72         | < 218        | < 13920
337
338    // Add 2 to U_N due to final decrement.
339
340    let reciprocal_precision: FInt = 220;
341
342    // Suppose 1/b - P * 2^-W < x < 1/b + P * 2^-W
343    let x_uq0 = x_uq0 - reciprocal_precision;
344    // Now 1/b - (2*P) * 2^-W < x < 1/b
345    // FIXME Is x_UQ0 still >= 0.5?
346
347    let mut quotient: FInt = u64_widen_mul(x_uq0, a_significand << 1).1;
348    // Now, a/b - 4*P * 2^-W < q < a/b for q=<quotient_UQ1:dummy> in UQ1.(SB+1+W).
349
350    // quotient_UQ1 is in [0.5, 2.0) as UQ1.(SB+1),
351    // adjust it to be in [1.0, 2.0) as UQ1.SB.
352    let (mut residual, written_exponent) = if quotient < (implicit_bit << 1) {
353        // Highest bit is 0, so just reinterpret quotient_UQ1 as UQ1.SB,
354        // effectively doubling its value as well as its error estimation.
355        let residual_lo = (a_significand << (significand_bits + 1))
356            .wrapping_sub(quotient.wrapping_mul(b_significand));
357        a_significand <<= 1;
358        (residual_lo, written_exponent.wrapping_sub(1))
359    } else {
360        // Highest bit is 1 (the UQ1.(SB+1) value is in [1, 2)), convert it
361        // to UQ1.SB by right shifting by 1. Least significant bit is omitted.
362        quotient >>= 1;
363        let residual_lo =
364            (a_significand << significand_bits).wrapping_sub(quotient.wrapping_mul(b_significand));
365        (residual_lo, written_exponent)
366    };
367
368    //drop mutability
369    let quotient = quotient;
370
371    // NB: residualLo is calculated above for the normal result case.
372    //     It is re-computed on denormal path that is expected to be not so
373    //     performance-sensitive.
374
375    // Now, q cannot be greater than a/b and can differ by at most 8*P * 2^-W + 2^-SB
376    // Each NextAfter() increments the floating point value by at least 2^-SB
377    // (more, if exponent was incremented).
378    // Different cases (<---> is of 2^-SB length, * = a/b that is shown as a midpoint):
379    //   q
380    //   |   | * |   |   |       |       |
381    //       <--->      2^t
382    //   |   |   |   |   |   *   |       |
383    //               q
384    // To require at most one NextAfter(), an error should be less than 1.5 * 2^-SB.
385    //   (8*P) * 2^-W + 2^-SB < 1.5 * 2^-SB
386    //   (8*P) * 2^-W         < 0.5 * 2^-SB
387    //   P < 2^(W-4-SB)
388    // Generally, for at most R NextAfter() to be enough,
389    //   P < (2*R - 1) * 2^(W-4-SB)
390    // For f32 (0+3): 10 < 32 (OK)
391    // For f32 (2+1): 32 < 74 < 32 * 3, so two NextAfter() are required
392    // For f64: 220 < 256 (OK)
393    // For f128: 4096 * 3 < 13922 < 4096 * 5 (three NextAfter() are required)
394
395    // If we have overflowed the exponent, return infinity
396    if written_exponent >= max_exponent as i64 {
397        return F::from_repr(inf_rep | quotient_sign);
398    }
399
400    // Now, quotient <= the correctly-rounded result
401    // and may need taking NextAfter() up to 3 times (see error estimates above)
402    // r = a - b * q
403    let abs_result = if written_exponent > 0 {
404        let mut ret = quotient & significand_mask;
405        ret |= (written_exponent as u64) << significand_bits;
406        residual <<= 1;
407        ret
408    } else {
409        if (significand_bits as i64 + written_exponent) < 0 {
410            return F::from_repr(quotient_sign);
411        }
412        let ret = quotient.wrapping_shr((negate_u64(written_exponent as u64) + 1) as u32);
413        residual = a_significand
414            .wrapping_shl(significand_bits.wrapping_add(written_exponent as u32))
415            .wrapping_sub(((ret).wrapping_mul(b_significand)) << 1);
416        ret
417    };
418    // Round
419    let abs_result = {
420        residual += abs_result & one; // tie to even
421                                      // conditionally turns the below LT comparison into LTE
422        if residual > b_significand {
423            abs_result + one
424        } else {
425            abs_result
426        }
427    };
428    F::from_repr(abs_result | quotient_sign)
429}
430
431#[cfg(test)]
432mod test {
433    use super::SoftF64;
434
435    #[test]
436    fn sanity_check() {
437        assert_eq!(SoftF64(10.0).div(SoftF64(5.0)).0, 2.0)
438    }
439}