const_soft_float/soft_f64/sin.rs
1// origin: FreeBSD /usr/src/lib/msun/src/s_sin.c, https://github.com/rust-lang/libm/blob/4c8a973741c014b11ce7f1477693a3e5d4ef9609/src/math/sin.rs */
2//
3// ====================================================
4// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5//
6// Developed at SunPro, a Sun Microsystems, Inc. business.
7// Permission to use, copy, modify, and distribute this
8// software is freely granted, provided that this notice
9// is preserved.
10// ====================================================
11
12use super::{
13 helpers::{k_cos, k_sin, rem_pio2},
14 SoftF64,
15};
16
17// sin(x)
18// Return sine function of x.
19//
20// kernel function:
21// k_sin ... sine function on [-pi/4,pi/4]
22// k_cos ... cose function on [-pi/4,pi/4]
23// rem_pio2 ... argument reduction routine
24//
25// Method.rounded
26// Let S,C and T denote the sin, cos and tan respectively on
27// [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
28// in [-pi/4 , +pi/4], and let n = k mod 4.
29// We have
30//
31// n sin(x) cos(x) tan(x)
32// ----------------------------------------------------------
33// 0 S C T
34// 1 C -S -1/T
35// 2 -S -C T
36// 3 -C S -1/T
37// ----------------------------------------------------------
38//
39// Special cases:
40// Let trig be any of sin, cos, or tan.
41// trig(+-INF) is NaN, with signals;
42// trig(NaN) is that NaN;
43//
44// Accuracy:
45// TRIG(x) returns trig(x) nearly rounded
46pub(crate) const fn sin(x: SoftF64) -> SoftF64 {
47 let x1p120 = SoftF64::from_bits(0x4770000000000000); // 0x1p120f === 2 ^ 120
48
49 /* High word of x. */
50 let ix = (SoftF64::to_bits(x) >> 32) as u32 & 0x7fffffff;
51
52 /* |x| ~< pi/4 */
53 if ix <= 0x3fe921fb {
54 if ix < 0x3e500000 {
55 /* |x| < 2**-26 */
56 /* raise inexact if x != 0 and underflow if subnormal*/
57 if ix < 0x00100000 {
58 x.div(x1p120);
59 } else {
60 x.add(x1p120);
61 }
62 return x;
63 }
64 return k_sin(x, SoftF64::ZERO, 0);
65 }
66
67 /* sin(Inf or NaN) is NaN */
68 if ix >= 0x7ff00000 {
69 return x.sub(x);
70 }
71
72 /* argument reduction needed */
73 let (n, y0, y1) = rem_pio2(x);
74 match n & 3 {
75 0 => k_sin(y0, y1, 1),
76 1 => k_cos(y0, y1),
77 2 => k_sin(y0, y1, 1).neg(),
78 _ => k_cos(y0, y1).neg(),
79 }
80}
81
82#[cfg(test)]
83mod test {
84 use crate::soft_f64::SoftF64;
85
86 #[test]
87 fn test_near_pi() {
88 let x = SoftF64::from_bits(0x400921fb000FD5DD); // 3.141592026217707
89 let sx = SoftF64::from_bits(0x3ea50d15ced1a4a2); // 6.273720864039205e-7
90 let result = x.sin().0;
91 assert_eq!(result, sx.0);
92 }
93
94 #[test]
95 fn test_large_neg() {
96 assert_eq!(SoftF64(-1647101.0).sin().to_f64(), (-1647101.0_f64).sin())
97 }
98}