crossbeam_channel/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
//! Multi-producer multi-consumer channels for message passing.
//!
//! This crate is an alternative to [`std::sync::mpsc`] with more features and better performance.
//!
//! # Hello, world!
//!
//! ```
//! use crossbeam_channel::unbounded;
//!
//! // Create a channel of unbounded capacity.
//! let (s, r) = unbounded();
//!
//! // Send a message into the channel.
//! s.send("Hello, world!").unwrap();
//!
//! // Receive the message from the channel.
//! assert_eq!(r.recv(), Ok("Hello, world!"));
//! ```
//!
//! # Channel types
//!
//! Channels can be created using two functions:
//!
//! * [`bounded`] creates a channel of bounded capacity, i.e. there is a limit to how many messages
//! it can hold at a time.
//!
//! * [`unbounded`] creates a channel of unbounded capacity, i.e. it can hold any number of
//! messages at a time.
//!
//! Both functions return a [`Sender`] and a [`Receiver`], which represent the two opposite sides
//! of a channel.
//!
//! Creating a bounded channel:
//!
//! ```
//! use crossbeam_channel::bounded;
//!
//! // Create a channel that can hold at most 5 messages at a time.
//! let (s, r) = bounded(5);
//!
//! // Can send only 5 messages without blocking.
//! for i in 0..5 {
//! s.send(i).unwrap();
//! }
//!
//! // Another call to `send` would block because the channel is full.
//! // s.send(5).unwrap();
//! ```
//!
//! Creating an unbounded channel:
//!
//! ```
//! use crossbeam_channel::unbounded;
//!
//! // Create an unbounded channel.
//! let (s, r) = unbounded();
//!
//! // Can send any number of messages into the channel without blocking.
//! for i in 0..1000 {
//! s.send(i).unwrap();
//! }
//! ```
//!
//! A special case is zero-capacity channel, which cannot hold any messages. Instead, send and
//! receive operations must appear at the same time in order to pair up and pass the message over:
//!
//! ```
//! use std::thread;
//! use crossbeam_channel::bounded;
//!
//! // Create a zero-capacity channel.
//! let (s, r) = bounded(0);
//!
//! // Sending blocks until a receive operation appears on the other side.
//! thread::spawn(move || s.send("Hi!").unwrap());
//!
//! // Receiving blocks until a send operation appears on the other side.
//! assert_eq!(r.recv(), Ok("Hi!"));
//! ```
//!
//! # Sharing channels
//!
//! Senders and receivers can be cloned and sent to other threads:
//!
//! ```
//! use std::thread;
//! use crossbeam_channel::bounded;
//!
//! let (s1, r1) = bounded(0);
//! let (s2, r2) = (s1.clone(), r1.clone());
//!
//! // Spawn a thread that receives a message and then sends one.
//! thread::spawn(move || {
//! r2.recv().unwrap();
//! s2.send(2).unwrap();
//! });
//!
//! // Send a message and then receive one.
//! s1.send(1).unwrap();
//! r1.recv().unwrap();
//! ```
//!
//! Note that cloning only creates a new handle to the same sending or receiving side. It does not
//! create a separate stream of messages in any way:
//!
//! ```
//! use crossbeam_channel::unbounded;
//!
//! let (s1, r1) = unbounded();
//! let (s2, r2) = (s1.clone(), r1.clone());
//! let (s3, r3) = (s2.clone(), r2.clone());
//!
//! s1.send(10).unwrap();
//! s2.send(20).unwrap();
//! s3.send(30).unwrap();
//!
//! assert_eq!(r3.recv(), Ok(10));
//! assert_eq!(r1.recv(), Ok(20));
//! assert_eq!(r2.recv(), Ok(30));
//! ```
//!
//! It's also possible to share senders and receivers by reference:
//!
//! ```
//! use crossbeam_channel::bounded;
//! use crossbeam_utils::thread::scope;
//!
//! let (s, r) = bounded(0);
//!
//! scope(|scope| {
//! // Spawn a thread that receives a message and then sends one.
//! scope.spawn(|_| {
//! r.recv().unwrap();
//! s.send(2).unwrap();
//! });
//!
//! // Send a message and then receive one.
//! s.send(1).unwrap();
//! r.recv().unwrap();
//! }).unwrap();
//! ```
//!
//! # Disconnection
//!
//! When all senders or all receivers associated with a channel get dropped, the channel becomes
//! disconnected. No more messages can be sent, but any remaining messages can still be received.
//! Send and receive operations on a disconnected channel never block.
//!
//! ```
//! use crossbeam_channel::{unbounded, RecvError};
//!
//! let (s, r) = unbounded();
//! s.send(1).unwrap();
//! s.send(2).unwrap();
//! s.send(3).unwrap();
//!
//! // The only sender is dropped, disconnecting the channel.
//! drop(s);
//!
//! // The remaining messages can be received.
//! assert_eq!(r.recv(), Ok(1));
//! assert_eq!(r.recv(), Ok(2));
//! assert_eq!(r.recv(), Ok(3));
//!
//! // There are no more messages in the channel.
//! assert!(r.is_empty());
//!
//! // Note that calling `r.recv()` does not block.
//! // Instead, `Err(RecvError)` is returned immediately.
//! assert_eq!(r.recv(), Err(RecvError));
//! ```
//!
//! # Blocking operations
//!
//! Send and receive operations come in three flavors:
//!
//! * Non-blocking (returns immediately with success or failure).
//! * Blocking (waits until the operation succeeds or the channel becomes disconnected).
//! * Blocking with a timeout (blocks only for a certain duration of time).
//!
//! A simple example showing the difference between non-blocking and blocking operations:
//!
//! ```
//! use crossbeam_channel::{bounded, RecvError, TryRecvError};
//!
//! let (s, r) = bounded(1);
//!
//! // Send a message into the channel.
//! s.send("foo").unwrap();
//!
//! // This call would block because the channel is full.
//! // s.send("bar").unwrap();
//!
//! // Receive the message.
//! assert_eq!(r.recv(), Ok("foo"));
//!
//! // This call would block because the channel is empty.
//! // r.recv();
//!
//! // Try receiving a message without blocking.
//! assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
//!
//! // Disconnect the channel.
//! drop(s);
//!
//! // This call doesn't block because the channel is now disconnected.
//! assert_eq!(r.recv(), Err(RecvError));
//! ```
//!
//! # Iteration
//!
//! Receivers can be used as iterators. For example, method [`iter`] creates an iterator that
//! receives messages until the channel becomes empty and disconnected. Note that iteration may
//! block waiting for next message to arrive.
//!
//! ```
//! use std::thread;
//! use crossbeam_channel::unbounded;
//!
//! let (s, r) = unbounded();
//!
//! thread::spawn(move || {
//! s.send(1).unwrap();
//! s.send(2).unwrap();
//! s.send(3).unwrap();
//! drop(s); // Disconnect the channel.
//! });
//!
//! // Collect all messages from the channel.
//! // Note that the call to `collect` blocks until the sender is dropped.
//! let v: Vec<_> = r.iter().collect();
//!
//! assert_eq!(v, [1, 2, 3]);
//! ```
//!
//! A non-blocking iterator can be created using [`try_iter`], which receives all available
//! messages without blocking:
//!
//! ```
//! use crossbeam_channel::unbounded;
//!
//! let (s, r) = unbounded();
//! s.send(1).unwrap();
//! s.send(2).unwrap();
//! s.send(3).unwrap();
//! // No need to drop the sender.
//!
//! // Receive all messages currently in the channel.
//! let v: Vec<_> = r.try_iter().collect();
//!
//! assert_eq!(v, [1, 2, 3]);
//! ```
//!
//! # Selection
//!
//! The [`select!`] macro allows you to define a set of channel operations, wait until any one of
//! them becomes ready, and finally execute it. If multiple operations are ready at the same time,
//! a random one among them is selected.
//!
//! It is also possible to define a `default` case that gets executed if none of the operations are
//! ready, either right away or for a certain duration of time.
//!
//! An operation is considered to be ready if it doesn't have to block. Note that it is ready even
//! when it will simply return an error because the channel is disconnected.
//!
//! An example of receiving a message from two channels:
//!
//! ```
//! use std::thread;
//! use std::time::Duration;
//! use crossbeam_channel::{select, unbounded};
//!
//! let (s1, r1) = unbounded();
//! let (s2, r2) = unbounded();
//!
//! thread::spawn(move || s1.send(10).unwrap());
//! thread::spawn(move || s2.send(20).unwrap());
//!
//! // At most one of these two receive operations will be executed.
//! select! {
//! recv(r1) -> msg => assert_eq!(msg, Ok(10)),
//! recv(r2) -> msg => assert_eq!(msg, Ok(20)),
//! default(Duration::from_secs(1)) => println!("timed out"),
//! }
//! ```
//!
//! If you need to select over a dynamically created list of channel operations, use [`Select`]
//! instead. The [`select!`] macro is just a convenience wrapper around [`Select`].
//!
//! # Extra channels
//!
//! Three functions can create special kinds of channels, all of which return just a [`Receiver`]
//! handle:
//!
//! * [`after`] creates a channel that delivers a single message after a certain duration of time.
//! * [`tick`] creates a channel that delivers messages periodically.
//! * [`never`](never()) creates a channel that never delivers messages.
//!
//! These channels are very efficient because messages get lazily generated on receive operations.
//!
//! An example that prints elapsed time every 50 milliseconds for the duration of 1 second:
//!
//! ```
//! use std::time::{Duration, Instant};
//! use crossbeam_channel::{after, select, tick};
//!
//! let start = Instant::now();
//! let ticker = tick(Duration::from_millis(50));
//! let timeout = after(Duration::from_secs(1));
//!
//! loop {
//! select! {
//! recv(ticker) -> _ => println!("elapsed: {:?}", start.elapsed()),
//! recv(timeout) -> _ => break,
//! }
//! }
//! ```
//!
//! [`send`]: Sender::send
//! [`recv`]: Receiver::recv
//! [`iter`]: Receiver::iter
//! [`try_iter`]: Receiver::try_iter
#![no_std]
#![doc(test(
no_crate_inject,
attr(
deny(warnings, rust_2018_idioms),
allow(dead_code, unused_assignments, unused_variables)
)
))]
#![warn(
missing_docs,
missing_debug_implementations,
rust_2018_idioms,
unreachable_pub
)]
#[cfg(feature = "std")]
extern crate std;
#[cfg(feature = "std")]
mod channel;
#[cfg(feature = "std")]
mod context;
#[cfg(feature = "std")]
mod counter;
#[cfg(feature = "std")]
mod err;
#[cfg(feature = "std")]
mod flavors;
#[cfg(feature = "std")]
mod select;
#[cfg(feature = "std")]
mod select_macro;
#[cfg(feature = "std")]
mod utils;
#[cfg(feature = "std")]
mod waker;
/// Crate internals used by the `select!` macro.
#[doc(hidden)]
#[cfg(feature = "std")]
pub mod internal {
pub use crate::select::{select, select_timeout, try_select, SelectHandle};
}
#[cfg(feature = "std")]
pub use crate::{
channel::{
after, at, bounded, never, tick, unbounded, IntoIter, Iter, Receiver, Sender, TryIter,
},
err::{
ReadyTimeoutError, RecvError, RecvTimeoutError, SelectTimeoutError, SendError,
SendTimeoutError, TryReadyError, TryRecvError, TrySelectError, TrySendError,
},
select::{Select, SelectedOperation},
};