either/lib.rs
1//! The enum [`Either`] with variants `Left` and `Right` is a general purpose
2//! sum type with two cases.
3//!
4//! [`Either`]: enum.Either.html
5//!
6//! **Crate features:**
7//!
8//! * `"use_std"`
9//! Enabled by default. Disable to make the library `#![no_std]`.
10//!
11//! * `"serde"`
12//! Disabled by default. Enable to `#[derive(Serialize, Deserialize)]` for `Either`
13//!
14
15#![doc(html_root_url = "https://docs.rs/either/1/")]
16#![no_std]
17
18#[cfg(any(test, feature = "use_std"))]
19extern crate std;
20
21#[cfg(feature = "serde")]
22pub mod serde_untagged;
23
24#[cfg(feature = "serde")]
25pub mod serde_untagged_optional;
26
27use core::convert::{AsMut, AsRef};
28use core::fmt;
29use core::future::Future;
30use core::ops::Deref;
31use core::ops::DerefMut;
32use core::pin::Pin;
33
34#[cfg(any(test, feature = "use_std"))]
35use std::error::Error;
36#[cfg(any(test, feature = "use_std"))]
37use std::io::{self, BufRead, Read, Seek, SeekFrom, Write};
38
39pub use crate::Either::{Left, Right};
40
41/// The enum `Either` with variants `Left` and `Right` is a general purpose
42/// sum type with two cases.
43///
44/// The `Either` type is symmetric and treats its variants the same way, without
45/// preference.
46/// (For representing success or error, use the regular `Result` enum instead.)
47#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
48#[derive(Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
49pub enum Either<L, R> {
50 /// A value of type `L`.
51 Left(L),
52 /// A value of type `R`.
53 Right(R),
54}
55
56/// Evaluate the provided expression for both [`Either::Left`] and [`Either::Right`].
57///
58/// This macro is useful in cases where both sides of [`Either`] can be interacted with
59/// in the same way even though the don't share the same type.
60///
61/// Syntax: `either::for_both!(` *expression* `,` *pattern* `=>` *expression* `)`
62///
63/// # Example
64///
65/// ```
66/// use either::Either;
67///
68/// fn length(owned_or_borrowed: Either<String, &'static str>) -> usize {
69/// either::for_both!(owned_or_borrowed, s => s.len())
70/// }
71///
72/// fn main() {
73/// let borrowed = Either::Right("Hello world!");
74/// let owned = Either::Left("Hello world!".to_owned());
75///
76/// assert_eq!(length(borrowed), 12);
77/// assert_eq!(length(owned), 12);
78/// }
79/// ```
80#[macro_export]
81macro_rules! for_both {
82 ($value:expr, $pattern:pat => $result:expr) => {
83 match $value {
84 $crate::Either::Left($pattern) => $result,
85 $crate::Either::Right($pattern) => $result,
86 }
87 };
88}
89
90/// Macro for unwrapping the left side of an [`Either`], which fails early
91/// with the opposite side. Can only be used in functions that return
92/// `Either` because of the early return of `Right` that it provides.
93///
94/// See also [`try_right!`] for its dual, which applies the same just to the
95/// right side.
96///
97/// # Example
98///
99/// ```
100/// use either::{Either, Left, Right};
101///
102/// fn twice(wrapper: Either<u32, &str>) -> Either<u32, &str> {
103/// let value = either::try_left!(wrapper);
104/// Left(value * 2)
105/// }
106///
107/// fn main() {
108/// assert_eq!(twice(Left(2)), Left(4));
109/// assert_eq!(twice(Right("ups")), Right("ups"));
110/// }
111/// ```
112#[macro_export]
113macro_rules! try_left {
114 ($expr:expr) => {
115 match $expr {
116 $crate::Left(val) => val,
117 $crate::Right(err) => return $crate::Right(::core::convert::From::from(err)),
118 }
119 };
120}
121
122/// Dual to [`try_left!`], see its documentation for more information.
123#[macro_export]
124macro_rules! try_right {
125 ($expr:expr) => {
126 match $expr {
127 $crate::Left(err) => return $crate::Left(::core::convert::From::from(err)),
128 $crate::Right(val) => val,
129 }
130 };
131}
132
133macro_rules! map_either {
134 ($value:expr, $pattern:pat => $result:expr) => {
135 match $value {
136 Left($pattern) => Left($result),
137 Right($pattern) => Right($result),
138 }
139 };
140}
141
142mod iterator;
143pub use self::iterator::IterEither;
144
145mod into_either;
146pub use self::into_either::IntoEither;
147
148impl<L: Clone, R: Clone> Clone for Either<L, R> {
149 fn clone(&self) -> Self {
150 match self {
151 Left(inner) => Left(inner.clone()),
152 Right(inner) => Right(inner.clone()),
153 }
154 }
155
156 fn clone_from(&mut self, source: &Self) {
157 match (self, source) {
158 (Left(dest), Left(source)) => dest.clone_from(source),
159 (Right(dest), Right(source)) => dest.clone_from(source),
160 (dest, source) => *dest = source.clone(),
161 }
162 }
163}
164
165impl<L, R> Either<L, R> {
166 /// Return true if the value is the `Left` variant.
167 ///
168 /// ```
169 /// use either::*;
170 ///
171 /// let values = [Left(1), Right("the right value")];
172 /// assert_eq!(values[0].is_left(), true);
173 /// assert_eq!(values[1].is_left(), false);
174 /// ```
175 pub fn is_left(&self) -> bool {
176 match *self {
177 Left(_) => true,
178 Right(_) => false,
179 }
180 }
181
182 /// Return true if the value is the `Right` variant.
183 ///
184 /// ```
185 /// use either::*;
186 ///
187 /// let values = [Left(1), Right("the right value")];
188 /// assert_eq!(values[0].is_right(), false);
189 /// assert_eq!(values[1].is_right(), true);
190 /// ```
191 pub fn is_right(&self) -> bool {
192 !self.is_left()
193 }
194
195 /// Convert the left side of `Either<L, R>` to an `Option<L>`.
196 ///
197 /// ```
198 /// use either::*;
199 ///
200 /// let left: Either<_, ()> = Left("some value");
201 /// assert_eq!(left.left(), Some("some value"));
202 ///
203 /// let right: Either<(), _> = Right(321);
204 /// assert_eq!(right.left(), None);
205 /// ```
206 pub fn left(self) -> Option<L> {
207 match self {
208 Left(l) => Some(l),
209 Right(_) => None,
210 }
211 }
212
213 /// Convert the right side of `Either<L, R>` to an `Option<R>`.
214 ///
215 /// ```
216 /// use either::*;
217 ///
218 /// let left: Either<_, ()> = Left("some value");
219 /// assert_eq!(left.right(), None);
220 ///
221 /// let right: Either<(), _> = Right(321);
222 /// assert_eq!(right.right(), Some(321));
223 /// ```
224 pub fn right(self) -> Option<R> {
225 match self {
226 Left(_) => None,
227 Right(r) => Some(r),
228 }
229 }
230
231 /// Convert `&Either<L, R>` to `Either<&L, &R>`.
232 ///
233 /// ```
234 /// use either::*;
235 ///
236 /// let left: Either<_, ()> = Left("some value");
237 /// assert_eq!(left.as_ref(), Left(&"some value"));
238 ///
239 /// let right: Either<(), _> = Right("some value");
240 /// assert_eq!(right.as_ref(), Right(&"some value"));
241 /// ```
242 pub fn as_ref(&self) -> Either<&L, &R> {
243 match *self {
244 Left(ref inner) => Left(inner),
245 Right(ref inner) => Right(inner),
246 }
247 }
248
249 /// Convert `&mut Either<L, R>` to `Either<&mut L, &mut R>`.
250 ///
251 /// ```
252 /// use either::*;
253 ///
254 /// fn mutate_left(value: &mut Either<u32, u32>) {
255 /// if let Some(l) = value.as_mut().left() {
256 /// *l = 999;
257 /// }
258 /// }
259 ///
260 /// let mut left = Left(123);
261 /// let mut right = Right(123);
262 /// mutate_left(&mut left);
263 /// mutate_left(&mut right);
264 /// assert_eq!(left, Left(999));
265 /// assert_eq!(right, Right(123));
266 /// ```
267 pub fn as_mut(&mut self) -> Either<&mut L, &mut R> {
268 match *self {
269 Left(ref mut inner) => Left(inner),
270 Right(ref mut inner) => Right(inner),
271 }
272 }
273
274 /// Convert `Pin<&Either<L, R>>` to `Either<Pin<&L>, Pin<&R>>`,
275 /// pinned projections of the inner variants.
276 pub fn as_pin_ref(self: Pin<&Self>) -> Either<Pin<&L>, Pin<&R>> {
277 // SAFETY: We can use `new_unchecked` because the `inner` parts are
278 // guaranteed to be pinned, as they come from `self` which is pinned.
279 unsafe {
280 match *Pin::get_ref(self) {
281 Left(ref inner) => Left(Pin::new_unchecked(inner)),
282 Right(ref inner) => Right(Pin::new_unchecked(inner)),
283 }
284 }
285 }
286
287 /// Convert `Pin<&mut Either<L, R>>` to `Either<Pin<&mut L>, Pin<&mut R>>`,
288 /// pinned projections of the inner variants.
289 pub fn as_pin_mut(self: Pin<&mut Self>) -> Either<Pin<&mut L>, Pin<&mut R>> {
290 // SAFETY: `get_unchecked_mut` is fine because we don't move anything.
291 // We can use `new_unchecked` because the `inner` parts are guaranteed
292 // to be pinned, as they come from `self` which is pinned, and we never
293 // offer an unpinned `&mut L` or `&mut R` through `Pin<&mut Self>`. We
294 // also don't have an implementation of `Drop`, nor manual `Unpin`.
295 unsafe {
296 match *Pin::get_unchecked_mut(self) {
297 Left(ref mut inner) => Left(Pin::new_unchecked(inner)),
298 Right(ref mut inner) => Right(Pin::new_unchecked(inner)),
299 }
300 }
301 }
302
303 /// Convert `Either<L, R>` to `Either<R, L>`.
304 ///
305 /// ```
306 /// use either::*;
307 ///
308 /// let left: Either<_, ()> = Left(123);
309 /// assert_eq!(left.flip(), Right(123));
310 ///
311 /// let right: Either<(), _> = Right("some value");
312 /// assert_eq!(right.flip(), Left("some value"));
313 /// ```
314 pub fn flip(self) -> Either<R, L> {
315 match self {
316 Left(l) => Right(l),
317 Right(r) => Left(r),
318 }
319 }
320
321 /// Apply the function `f` on the value in the `Left` variant if it is present rewrapping the
322 /// result in `Left`.
323 ///
324 /// ```
325 /// use either::*;
326 ///
327 /// let left: Either<_, u32> = Left(123);
328 /// assert_eq!(left.map_left(|x| x * 2), Left(246));
329 ///
330 /// let right: Either<u32, _> = Right(123);
331 /// assert_eq!(right.map_left(|x| x * 2), Right(123));
332 /// ```
333 pub fn map_left<F, M>(self, f: F) -> Either<M, R>
334 where
335 F: FnOnce(L) -> M,
336 {
337 match self {
338 Left(l) => Left(f(l)),
339 Right(r) => Right(r),
340 }
341 }
342
343 /// Apply the function `f` on the value in the `Right` variant if it is present rewrapping the
344 /// result in `Right`.
345 ///
346 /// ```
347 /// use either::*;
348 ///
349 /// let left: Either<_, u32> = Left(123);
350 /// assert_eq!(left.map_right(|x| x * 2), Left(123));
351 ///
352 /// let right: Either<u32, _> = Right(123);
353 /// assert_eq!(right.map_right(|x| x * 2), Right(246));
354 /// ```
355 pub fn map_right<F, S>(self, f: F) -> Either<L, S>
356 where
357 F: FnOnce(R) -> S,
358 {
359 match self {
360 Left(l) => Left(l),
361 Right(r) => Right(f(r)),
362 }
363 }
364
365 /// Apply the functions `f` and `g` to the `Left` and `Right` variants
366 /// respectively. This is equivalent to
367 /// [bimap](https://hackage.haskell.org/package/bifunctors-5/docs/Data-Bifunctor.html)
368 /// in functional programming.
369 ///
370 /// ```
371 /// use either::*;
372 ///
373 /// let f = |s: String| s.len();
374 /// let g = |u: u8| u.to_string();
375 ///
376 /// let left: Either<String, u8> = Left("loopy".into());
377 /// assert_eq!(left.map_either(f, g), Left(5));
378 ///
379 /// let right: Either<String, u8> = Right(42);
380 /// assert_eq!(right.map_either(f, g), Right("42".into()));
381 /// ```
382 pub fn map_either<F, G, M, S>(self, f: F, g: G) -> Either<M, S>
383 where
384 F: FnOnce(L) -> M,
385 G: FnOnce(R) -> S,
386 {
387 match self {
388 Left(l) => Left(f(l)),
389 Right(r) => Right(g(r)),
390 }
391 }
392
393 /// Similar to [`map_either`][Self::map_either], with an added context `ctx` accessible to
394 /// both functions.
395 ///
396 /// ```
397 /// use either::*;
398 ///
399 /// let mut sum = 0;
400 ///
401 /// // Both closures want to update the same value, so pass it as context.
402 /// let mut f = |sum: &mut usize, s: String| { *sum += s.len(); s.to_uppercase() };
403 /// let mut g = |sum: &mut usize, u: usize| { *sum += u; u.to_string() };
404 ///
405 /// let left: Either<String, usize> = Left("loopy".into());
406 /// assert_eq!(left.map_either_with(&mut sum, &mut f, &mut g), Left("LOOPY".into()));
407 ///
408 /// let right: Either<String, usize> = Right(42);
409 /// assert_eq!(right.map_either_with(&mut sum, &mut f, &mut g), Right("42".into()));
410 ///
411 /// assert_eq!(sum, 47);
412 /// ```
413 pub fn map_either_with<Ctx, F, G, M, S>(self, ctx: Ctx, f: F, g: G) -> Either<M, S>
414 where
415 F: FnOnce(Ctx, L) -> M,
416 G: FnOnce(Ctx, R) -> S,
417 {
418 match self {
419 Left(l) => Left(f(ctx, l)),
420 Right(r) => Right(g(ctx, r)),
421 }
422 }
423
424 /// Apply one of two functions depending on contents, unifying their result. If the value is
425 /// `Left(L)` then the first function `f` is applied; if it is `Right(R)` then the second
426 /// function `g` is applied.
427 ///
428 /// ```
429 /// use either::*;
430 ///
431 /// fn square(n: u32) -> i32 { (n * n) as i32 }
432 /// fn negate(n: i32) -> i32 { -n }
433 ///
434 /// let left: Either<u32, i32> = Left(4);
435 /// assert_eq!(left.either(square, negate), 16);
436 ///
437 /// let right: Either<u32, i32> = Right(-4);
438 /// assert_eq!(right.either(square, negate), 4);
439 /// ```
440 pub fn either<F, G, T>(self, f: F, g: G) -> T
441 where
442 F: FnOnce(L) -> T,
443 G: FnOnce(R) -> T,
444 {
445 match self {
446 Left(l) => f(l),
447 Right(r) => g(r),
448 }
449 }
450
451 /// Like [`either`][Self::either], but provide some context to whichever of the
452 /// functions ends up being called.
453 ///
454 /// ```
455 /// // In this example, the context is a mutable reference
456 /// use either::*;
457 ///
458 /// let mut result = Vec::new();
459 ///
460 /// let values = vec![Left(2), Right(2.7)];
461 ///
462 /// for value in values {
463 /// value.either_with(&mut result,
464 /// |ctx, integer| ctx.push(integer),
465 /// |ctx, real| ctx.push(f64::round(real) as i32));
466 /// }
467 ///
468 /// assert_eq!(result, vec![2, 3]);
469 /// ```
470 pub fn either_with<Ctx, F, G, T>(self, ctx: Ctx, f: F, g: G) -> T
471 where
472 F: FnOnce(Ctx, L) -> T,
473 G: FnOnce(Ctx, R) -> T,
474 {
475 match self {
476 Left(l) => f(ctx, l),
477 Right(r) => g(ctx, r),
478 }
479 }
480
481 /// Apply the function `f` on the value in the `Left` variant if it is present.
482 ///
483 /// ```
484 /// use either::*;
485 ///
486 /// let left: Either<_, u32> = Left(123);
487 /// assert_eq!(left.left_and_then::<_,()>(|x| Right(x * 2)), Right(246));
488 ///
489 /// let right: Either<u32, _> = Right(123);
490 /// assert_eq!(right.left_and_then(|x| Right::<(), _>(x * 2)), Right(123));
491 /// ```
492 pub fn left_and_then<F, S>(self, f: F) -> Either<S, R>
493 where
494 F: FnOnce(L) -> Either<S, R>,
495 {
496 match self {
497 Left(l) => f(l),
498 Right(r) => Right(r),
499 }
500 }
501
502 /// Apply the function `f` on the value in the `Right` variant if it is present.
503 ///
504 /// ```
505 /// use either::*;
506 ///
507 /// let left: Either<_, u32> = Left(123);
508 /// assert_eq!(left.right_and_then(|x| Right(x * 2)), Left(123));
509 ///
510 /// let right: Either<u32, _> = Right(123);
511 /// assert_eq!(right.right_and_then(|x| Right(x * 2)), Right(246));
512 /// ```
513 pub fn right_and_then<F, S>(self, f: F) -> Either<L, S>
514 where
515 F: FnOnce(R) -> Either<L, S>,
516 {
517 match self {
518 Left(l) => Left(l),
519 Right(r) => f(r),
520 }
521 }
522
523 /// Convert the inner value to an iterator.
524 ///
525 /// This requires the `Left` and `Right` iterators to have the same item type.
526 /// See [`factor_into_iter`][Either::factor_into_iter] to iterate different types.
527 ///
528 /// ```
529 /// use either::*;
530 ///
531 /// let left: Either<_, Vec<u32>> = Left(vec![1, 2, 3, 4, 5]);
532 /// let mut right: Either<Vec<u32>, _> = Right(vec![]);
533 /// right.extend(left.into_iter());
534 /// assert_eq!(right, Right(vec![1, 2, 3, 4, 5]));
535 /// ```
536 #[allow(clippy::should_implement_trait)]
537 pub fn into_iter(self) -> Either<L::IntoIter, R::IntoIter>
538 where
539 L: IntoIterator,
540 R: IntoIterator<Item = L::Item>,
541 {
542 map_either!(self, inner => inner.into_iter())
543 }
544
545 /// Borrow the inner value as an iterator.
546 ///
547 /// This requires the `Left` and `Right` iterators to have the same item type.
548 /// See [`factor_iter`][Either::factor_iter] to iterate different types.
549 ///
550 /// ```
551 /// use either::*;
552 ///
553 /// let left: Either<_, &[u32]> = Left(vec![2, 3]);
554 /// let mut right: Either<Vec<u32>, _> = Right(&[4, 5][..]);
555 /// let mut all = vec![1];
556 /// all.extend(left.iter());
557 /// all.extend(right.iter());
558 /// assert_eq!(all, vec![1, 2, 3, 4, 5]);
559 /// ```
560 pub fn iter(&self) -> Either<<&L as IntoIterator>::IntoIter, <&R as IntoIterator>::IntoIter>
561 where
562 for<'a> &'a L: IntoIterator,
563 for<'a> &'a R: IntoIterator<Item = <&'a L as IntoIterator>::Item>,
564 {
565 map_either!(self, inner => inner.into_iter())
566 }
567
568 /// Mutably borrow the inner value as an iterator.
569 ///
570 /// This requires the `Left` and `Right` iterators to have the same item type.
571 /// See [`factor_iter_mut`][Either::factor_iter_mut] to iterate different types.
572 ///
573 /// ```
574 /// use either::*;
575 ///
576 /// let mut left: Either<_, &mut [u32]> = Left(vec![2, 3]);
577 /// for l in left.iter_mut() {
578 /// *l *= *l
579 /// }
580 /// assert_eq!(left, Left(vec![4, 9]));
581 ///
582 /// let mut inner = [4, 5];
583 /// let mut right: Either<Vec<u32>, _> = Right(&mut inner[..]);
584 /// for r in right.iter_mut() {
585 /// *r *= *r
586 /// }
587 /// assert_eq!(inner, [16, 25]);
588 /// ```
589 pub fn iter_mut(
590 &mut self,
591 ) -> Either<<&mut L as IntoIterator>::IntoIter, <&mut R as IntoIterator>::IntoIter>
592 where
593 for<'a> &'a mut L: IntoIterator,
594 for<'a> &'a mut R: IntoIterator<Item = <&'a mut L as IntoIterator>::Item>,
595 {
596 map_either!(self, inner => inner.into_iter())
597 }
598
599 /// Converts an `Either` of `Iterator`s to be an `Iterator` of `Either`s
600 ///
601 /// Unlike [`into_iter`][Either::into_iter], this does not require the
602 /// `Left` and `Right` iterators to have the same item type.
603 ///
604 /// ```
605 /// use either::*;
606 /// let left: Either<_, Vec<u8>> = Left(&["hello"]);
607 /// assert_eq!(left.factor_into_iter().next(), Some(Left(&"hello")));
608
609 /// let right: Either<&[&str], _> = Right(vec![0, 1]);
610 /// assert_eq!(right.factor_into_iter().collect::<Vec<_>>(), vec![Right(0), Right(1)]);
611 ///
612 /// ```
613 // TODO(MSRV): doc(alias) was stabilized in Rust 1.48
614 // #[doc(alias = "transpose")]
615 pub fn factor_into_iter(self) -> IterEither<L::IntoIter, R::IntoIter>
616 where
617 L: IntoIterator,
618 R: IntoIterator,
619 {
620 IterEither::new(map_either!(self, inner => inner.into_iter()))
621 }
622
623 /// Borrows an `Either` of `Iterator`s to be an `Iterator` of `Either`s
624 ///
625 /// Unlike [`iter`][Either::iter], this does not require the
626 /// `Left` and `Right` iterators to have the same item type.
627 ///
628 /// ```
629 /// use either::*;
630 /// let left: Either<_, Vec<u8>> = Left(["hello"]);
631 /// assert_eq!(left.factor_iter().next(), Some(Left(&"hello")));
632
633 /// let right: Either<[&str; 2], _> = Right(vec![0, 1]);
634 /// assert_eq!(right.factor_iter().collect::<Vec<_>>(), vec![Right(&0), Right(&1)]);
635 ///
636 /// ```
637 pub fn factor_iter(
638 &self,
639 ) -> IterEither<<&L as IntoIterator>::IntoIter, <&R as IntoIterator>::IntoIter>
640 where
641 for<'a> &'a L: IntoIterator,
642 for<'a> &'a R: IntoIterator,
643 {
644 IterEither::new(map_either!(self, inner => inner.into_iter()))
645 }
646
647 /// Mutably borrows an `Either` of `Iterator`s to be an `Iterator` of `Either`s
648 ///
649 /// Unlike [`iter_mut`][Either::iter_mut], this does not require the
650 /// `Left` and `Right` iterators to have the same item type.
651 ///
652 /// ```
653 /// use either::*;
654 /// let mut left: Either<_, Vec<u8>> = Left(["hello"]);
655 /// left.factor_iter_mut().for_each(|x| *x.unwrap_left() = "goodbye");
656 /// assert_eq!(left, Left(["goodbye"]));
657
658 /// let mut right: Either<[&str; 2], _> = Right(vec![0, 1, 2]);
659 /// right.factor_iter_mut().for_each(|x| if let Right(r) = x { *r = -*r; });
660 /// assert_eq!(right, Right(vec![0, -1, -2]));
661 ///
662 /// ```
663 pub fn factor_iter_mut(
664 &mut self,
665 ) -> IterEither<<&mut L as IntoIterator>::IntoIter, <&mut R as IntoIterator>::IntoIter>
666 where
667 for<'a> &'a mut L: IntoIterator,
668 for<'a> &'a mut R: IntoIterator,
669 {
670 IterEither::new(map_either!(self, inner => inner.into_iter()))
671 }
672
673 /// Return left value or given value
674 ///
675 /// Arguments passed to `left_or` are eagerly evaluated; if you are passing
676 /// the result of a function call, it is recommended to use
677 /// [`left_or_else`][Self::left_or_else], which is lazily evaluated.
678 ///
679 /// # Examples
680 ///
681 /// ```
682 /// # use either::*;
683 /// let left: Either<&str, &str> = Left("left");
684 /// assert_eq!(left.left_or("foo"), "left");
685 ///
686 /// let right: Either<&str, &str> = Right("right");
687 /// assert_eq!(right.left_or("left"), "left");
688 /// ```
689 pub fn left_or(self, other: L) -> L {
690 match self {
691 Either::Left(l) => l,
692 Either::Right(_) => other,
693 }
694 }
695
696 /// Return left or a default
697 ///
698 /// # Examples
699 ///
700 /// ```
701 /// # use either::*;
702 /// let left: Either<String, u32> = Left("left".to_string());
703 /// assert_eq!(left.left_or_default(), "left");
704 ///
705 /// let right: Either<String, u32> = Right(42);
706 /// assert_eq!(right.left_or_default(), String::default());
707 /// ```
708 pub fn left_or_default(self) -> L
709 where
710 L: Default,
711 {
712 match self {
713 Either::Left(l) => l,
714 Either::Right(_) => L::default(),
715 }
716 }
717
718 /// Returns left value or computes it from a closure
719 ///
720 /// # Examples
721 ///
722 /// ```
723 /// # use either::*;
724 /// let left: Either<String, u32> = Left("3".to_string());
725 /// assert_eq!(left.left_or_else(|_| unreachable!()), "3");
726 ///
727 /// let right: Either<String, u32> = Right(3);
728 /// assert_eq!(right.left_or_else(|x| x.to_string()), "3");
729 /// ```
730 pub fn left_or_else<F>(self, f: F) -> L
731 where
732 F: FnOnce(R) -> L,
733 {
734 match self {
735 Either::Left(l) => l,
736 Either::Right(r) => f(r),
737 }
738 }
739
740 /// Return right value or given value
741 ///
742 /// Arguments passed to `right_or` are eagerly evaluated; if you are passing
743 /// the result of a function call, it is recommended to use
744 /// [`right_or_else`][Self::right_or_else], which is lazily evaluated.
745 ///
746 /// # Examples
747 ///
748 /// ```
749 /// # use either::*;
750 /// let right: Either<&str, &str> = Right("right");
751 /// assert_eq!(right.right_or("foo"), "right");
752 ///
753 /// let left: Either<&str, &str> = Left("left");
754 /// assert_eq!(left.right_or("right"), "right");
755 /// ```
756 pub fn right_or(self, other: R) -> R {
757 match self {
758 Either::Left(_) => other,
759 Either::Right(r) => r,
760 }
761 }
762
763 /// Return right or a default
764 ///
765 /// # Examples
766 ///
767 /// ```
768 /// # use either::*;
769 /// let left: Either<String, u32> = Left("left".to_string());
770 /// assert_eq!(left.right_or_default(), u32::default());
771 ///
772 /// let right: Either<String, u32> = Right(42);
773 /// assert_eq!(right.right_or_default(), 42);
774 /// ```
775 pub fn right_or_default(self) -> R
776 where
777 R: Default,
778 {
779 match self {
780 Either::Left(_) => R::default(),
781 Either::Right(r) => r,
782 }
783 }
784
785 /// Returns right value or computes it from a closure
786 ///
787 /// # Examples
788 ///
789 /// ```
790 /// # use either::*;
791 /// let left: Either<String, u32> = Left("3".to_string());
792 /// assert_eq!(left.right_or_else(|x| x.parse().unwrap()), 3);
793 ///
794 /// let right: Either<String, u32> = Right(3);
795 /// assert_eq!(right.right_or_else(|_| unreachable!()), 3);
796 /// ```
797 pub fn right_or_else<F>(self, f: F) -> R
798 where
799 F: FnOnce(L) -> R,
800 {
801 match self {
802 Either::Left(l) => f(l),
803 Either::Right(r) => r,
804 }
805 }
806
807 /// Returns the left value
808 ///
809 /// # Examples
810 ///
811 /// ```
812 /// # use either::*;
813 /// let left: Either<_, ()> = Left(3);
814 /// assert_eq!(left.unwrap_left(), 3);
815 /// ```
816 ///
817 /// # Panics
818 ///
819 /// When `Either` is a `Right` value
820 ///
821 /// ```should_panic
822 /// # use either::*;
823 /// let right: Either<(), _> = Right(3);
824 /// right.unwrap_left();
825 /// ```
826 pub fn unwrap_left(self) -> L
827 where
828 R: core::fmt::Debug,
829 {
830 match self {
831 Either::Left(l) => l,
832 Either::Right(r) => {
833 panic!("called `Either::unwrap_left()` on a `Right` value: {:?}", r)
834 }
835 }
836 }
837
838 /// Returns the right value
839 ///
840 /// # Examples
841 ///
842 /// ```
843 /// # use either::*;
844 /// let right: Either<(), _> = Right(3);
845 /// assert_eq!(right.unwrap_right(), 3);
846 /// ```
847 ///
848 /// # Panics
849 ///
850 /// When `Either` is a `Left` value
851 ///
852 /// ```should_panic
853 /// # use either::*;
854 /// let left: Either<_, ()> = Left(3);
855 /// left.unwrap_right();
856 /// ```
857 pub fn unwrap_right(self) -> R
858 where
859 L: core::fmt::Debug,
860 {
861 match self {
862 Either::Right(r) => r,
863 Either::Left(l) => panic!("called `Either::unwrap_right()` on a `Left` value: {:?}", l),
864 }
865 }
866
867 /// Returns the left value
868 ///
869 /// # Examples
870 ///
871 /// ```
872 /// # use either::*;
873 /// let left: Either<_, ()> = Left(3);
874 /// assert_eq!(left.expect_left("value was Right"), 3);
875 /// ```
876 ///
877 /// # Panics
878 ///
879 /// When `Either` is a `Right` value
880 ///
881 /// ```should_panic
882 /// # use either::*;
883 /// let right: Either<(), _> = Right(3);
884 /// right.expect_left("value was Right");
885 /// ```
886 pub fn expect_left(self, msg: &str) -> L
887 where
888 R: core::fmt::Debug,
889 {
890 match self {
891 Either::Left(l) => l,
892 Either::Right(r) => panic!("{}: {:?}", msg, r),
893 }
894 }
895
896 /// Returns the right value
897 ///
898 /// # Examples
899 ///
900 /// ```
901 /// # use either::*;
902 /// let right: Either<(), _> = Right(3);
903 /// assert_eq!(right.expect_right("value was Left"), 3);
904 /// ```
905 ///
906 /// # Panics
907 ///
908 /// When `Either` is a `Left` value
909 ///
910 /// ```should_panic
911 /// # use either::*;
912 /// let left: Either<_, ()> = Left(3);
913 /// left.expect_right("value was Right");
914 /// ```
915 pub fn expect_right(self, msg: &str) -> R
916 where
917 L: core::fmt::Debug,
918 {
919 match self {
920 Either::Right(r) => r,
921 Either::Left(l) => panic!("{}: {:?}", msg, l),
922 }
923 }
924
925 /// Convert the contained value into `T`
926 ///
927 /// # Examples
928 ///
929 /// ```
930 /// # use either::*;
931 /// // Both u16 and u32 can be converted to u64.
932 /// let left: Either<u16, u32> = Left(3u16);
933 /// assert_eq!(left.either_into::<u64>(), 3u64);
934 /// let right: Either<u16, u32> = Right(7u32);
935 /// assert_eq!(right.either_into::<u64>(), 7u64);
936 /// ```
937 pub fn either_into<T>(self) -> T
938 where
939 L: Into<T>,
940 R: Into<T>,
941 {
942 match self {
943 Either::Left(l) => l.into(),
944 Either::Right(r) => r.into(),
945 }
946 }
947}
948
949impl<L, R> Either<Option<L>, Option<R>> {
950 /// Factors out `None` from an `Either` of [`Option`].
951 ///
952 /// ```
953 /// use either::*;
954 /// let left: Either<_, Option<String>> = Left(Some(vec![0]));
955 /// assert_eq!(left.factor_none(), Some(Left(vec![0])));
956 ///
957 /// let right: Either<Option<Vec<u8>>, _> = Right(Some(String::new()));
958 /// assert_eq!(right.factor_none(), Some(Right(String::new())));
959 /// ```
960 // TODO(MSRV): doc(alias) was stabilized in Rust 1.48
961 // #[doc(alias = "transpose")]
962 pub fn factor_none(self) -> Option<Either<L, R>> {
963 match self {
964 Left(l) => l.map(Either::Left),
965 Right(r) => r.map(Either::Right),
966 }
967 }
968}
969
970impl<L, R, E> Either<Result<L, E>, Result<R, E>> {
971 /// Factors out a homogenous type from an `Either` of [`Result`].
972 ///
973 /// Here, the homogeneous type is the `Err` type of the [`Result`].
974 ///
975 /// ```
976 /// use either::*;
977 /// let left: Either<_, Result<String, u32>> = Left(Ok(vec![0]));
978 /// assert_eq!(left.factor_err(), Ok(Left(vec![0])));
979 ///
980 /// let right: Either<Result<Vec<u8>, u32>, _> = Right(Ok(String::new()));
981 /// assert_eq!(right.factor_err(), Ok(Right(String::new())));
982 /// ```
983 // TODO(MSRV): doc(alias) was stabilized in Rust 1.48
984 // #[doc(alias = "transpose")]
985 pub fn factor_err(self) -> Result<Either<L, R>, E> {
986 match self {
987 Left(l) => l.map(Either::Left),
988 Right(r) => r.map(Either::Right),
989 }
990 }
991}
992
993impl<T, L, R> Either<Result<T, L>, Result<T, R>> {
994 /// Factors out a homogenous type from an `Either` of [`Result`].
995 ///
996 /// Here, the homogeneous type is the `Ok` type of the [`Result`].
997 ///
998 /// ```
999 /// use either::*;
1000 /// let left: Either<_, Result<u32, String>> = Left(Err(vec![0]));
1001 /// assert_eq!(left.factor_ok(), Err(Left(vec![0])));
1002 ///
1003 /// let right: Either<Result<u32, Vec<u8>>, _> = Right(Err(String::new()));
1004 /// assert_eq!(right.factor_ok(), Err(Right(String::new())));
1005 /// ```
1006 // TODO(MSRV): doc(alias) was stabilized in Rust 1.48
1007 // #[doc(alias = "transpose")]
1008 pub fn factor_ok(self) -> Result<T, Either<L, R>> {
1009 match self {
1010 Left(l) => l.map_err(Either::Left),
1011 Right(r) => r.map_err(Either::Right),
1012 }
1013 }
1014}
1015
1016impl<T, L, R> Either<(T, L), (T, R)> {
1017 /// Factor out a homogeneous type from an either of pairs.
1018 ///
1019 /// Here, the homogeneous type is the first element of the pairs.
1020 ///
1021 /// ```
1022 /// use either::*;
1023 /// let left: Either<_, (u32, String)> = Left((123, vec![0]));
1024 /// assert_eq!(left.factor_first().0, 123);
1025 ///
1026 /// let right: Either<(u32, Vec<u8>), _> = Right((123, String::new()));
1027 /// assert_eq!(right.factor_first().0, 123);
1028 /// ```
1029 pub fn factor_first(self) -> (T, Either<L, R>) {
1030 match self {
1031 Left((t, l)) => (t, Left(l)),
1032 Right((t, r)) => (t, Right(r)),
1033 }
1034 }
1035}
1036
1037impl<T, L, R> Either<(L, T), (R, T)> {
1038 /// Factor out a homogeneous type from an either of pairs.
1039 ///
1040 /// Here, the homogeneous type is the second element of the pairs.
1041 ///
1042 /// ```
1043 /// use either::*;
1044 /// let left: Either<_, (String, u32)> = Left((vec![0], 123));
1045 /// assert_eq!(left.factor_second().1, 123);
1046 ///
1047 /// let right: Either<(Vec<u8>, u32), _> = Right((String::new(), 123));
1048 /// assert_eq!(right.factor_second().1, 123);
1049 /// ```
1050 pub fn factor_second(self) -> (Either<L, R>, T) {
1051 match self {
1052 Left((l, t)) => (Left(l), t),
1053 Right((r, t)) => (Right(r), t),
1054 }
1055 }
1056}
1057
1058impl<T> Either<T, T> {
1059 /// Extract the value of an either over two equivalent types.
1060 ///
1061 /// ```
1062 /// use either::*;
1063 ///
1064 /// let left: Either<_, u32> = Left(123);
1065 /// assert_eq!(left.into_inner(), 123);
1066 ///
1067 /// let right: Either<u32, _> = Right(123);
1068 /// assert_eq!(right.into_inner(), 123);
1069 /// ```
1070 pub fn into_inner(self) -> T {
1071 for_both!(self, inner => inner)
1072 }
1073
1074 /// Map `f` over the contained value and return the result in the
1075 /// corresponding variant.
1076 ///
1077 /// ```
1078 /// use either::*;
1079 ///
1080 /// let value: Either<_, i32> = Right(42);
1081 ///
1082 /// let other = value.map(|x| x * 2);
1083 /// assert_eq!(other, Right(84));
1084 /// ```
1085 pub fn map<F, M>(self, f: F) -> Either<M, M>
1086 where
1087 F: FnOnce(T) -> M,
1088 {
1089 match self {
1090 Left(l) => Left(f(l)),
1091 Right(r) => Right(f(r)),
1092 }
1093 }
1094}
1095
1096impl<L, R> Either<&L, &R> {
1097 /// Maps an `Either<&L, &R>` to an `Either<L, R>` by cloning the contents of
1098 /// either branch.
1099 pub fn cloned(self) -> Either<L, R>
1100 where
1101 L: Clone,
1102 R: Clone,
1103 {
1104 match self {
1105 Self::Left(l) => Either::Left(l.clone()),
1106 Self::Right(r) => Either::Right(r.clone()),
1107 }
1108 }
1109
1110 /// Maps an `Either<&L, &R>` to an `Either<L, R>` by copying the contents of
1111 /// either branch.
1112 pub fn copied(self) -> Either<L, R>
1113 where
1114 L: Copy,
1115 R: Copy,
1116 {
1117 match self {
1118 Self::Left(l) => Either::Left(*l),
1119 Self::Right(r) => Either::Right(*r),
1120 }
1121 }
1122}
1123
1124impl<L, R> Either<&mut L, &mut R> {
1125 /// Maps an `Either<&mut L, &mut R>` to an `Either<L, R>` by cloning the contents of
1126 /// either branch.
1127 pub fn cloned(self) -> Either<L, R>
1128 where
1129 L: Clone,
1130 R: Clone,
1131 {
1132 match self {
1133 Self::Left(l) => Either::Left(l.clone()),
1134 Self::Right(r) => Either::Right(r.clone()),
1135 }
1136 }
1137
1138 /// Maps an `Either<&mut L, &mut R>` to an `Either<L, R>` by copying the contents of
1139 /// either branch.
1140 pub fn copied(self) -> Either<L, R>
1141 where
1142 L: Copy,
1143 R: Copy,
1144 {
1145 match self {
1146 Self::Left(l) => Either::Left(*l),
1147 Self::Right(r) => Either::Right(*r),
1148 }
1149 }
1150}
1151
1152/// Convert from `Result` to `Either` with `Ok => Right` and `Err => Left`.
1153impl<L, R> From<Result<R, L>> for Either<L, R> {
1154 fn from(r: Result<R, L>) -> Self {
1155 match r {
1156 Err(e) => Left(e),
1157 Ok(o) => Right(o),
1158 }
1159 }
1160}
1161
1162/// Convert from `Either` to `Result` with `Right => Ok` and `Left => Err`.
1163#[allow(clippy::from_over_into)] // From requires RFC 2451, Rust 1.41
1164impl<L, R> Into<Result<R, L>> for Either<L, R> {
1165 fn into(self) -> Result<R, L> {
1166 match self {
1167 Left(l) => Err(l),
1168 Right(r) => Ok(r),
1169 }
1170 }
1171}
1172
1173/// `Either<L, R>` is a future if both `L` and `R` are futures.
1174impl<L, R> Future for Either<L, R>
1175where
1176 L: Future,
1177 R: Future<Output = L::Output>,
1178{
1179 type Output = L::Output;
1180
1181 fn poll(
1182 self: Pin<&mut Self>,
1183 cx: &mut core::task::Context<'_>,
1184 ) -> core::task::Poll<Self::Output> {
1185 for_both!(self.as_pin_mut(), inner => inner.poll(cx))
1186 }
1187}
1188
1189#[cfg(any(test, feature = "use_std"))]
1190/// `Either<L, R>` implements `Read` if both `L` and `R` do.
1191///
1192/// Requires crate feature `"use_std"`
1193impl<L, R> Read for Either<L, R>
1194where
1195 L: Read,
1196 R: Read,
1197{
1198 fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
1199 for_both!(*self, ref mut inner => inner.read(buf))
1200 }
1201
1202 fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
1203 for_both!(*self, ref mut inner => inner.read_exact(buf))
1204 }
1205
1206 fn read_to_end(&mut self, buf: &mut std::vec::Vec<u8>) -> io::Result<usize> {
1207 for_both!(*self, ref mut inner => inner.read_to_end(buf))
1208 }
1209
1210 fn read_to_string(&mut self, buf: &mut std::string::String) -> io::Result<usize> {
1211 for_both!(*self, ref mut inner => inner.read_to_string(buf))
1212 }
1213}
1214
1215#[cfg(any(test, feature = "use_std"))]
1216/// `Either<L, R>` implements `Seek` if both `L` and `R` do.
1217///
1218/// Requires crate feature `"use_std"`
1219impl<L, R> Seek for Either<L, R>
1220where
1221 L: Seek,
1222 R: Seek,
1223{
1224 fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> {
1225 for_both!(*self, ref mut inner => inner.seek(pos))
1226 }
1227}
1228
1229#[cfg(any(test, feature = "use_std"))]
1230/// Requires crate feature `"use_std"`
1231impl<L, R> BufRead for Either<L, R>
1232where
1233 L: BufRead,
1234 R: BufRead,
1235{
1236 fn fill_buf(&mut self) -> io::Result<&[u8]> {
1237 for_both!(*self, ref mut inner => inner.fill_buf())
1238 }
1239
1240 fn consume(&mut self, amt: usize) {
1241 for_both!(*self, ref mut inner => inner.consume(amt))
1242 }
1243
1244 fn read_until(&mut self, byte: u8, buf: &mut std::vec::Vec<u8>) -> io::Result<usize> {
1245 for_both!(*self, ref mut inner => inner.read_until(byte, buf))
1246 }
1247
1248 fn read_line(&mut self, buf: &mut std::string::String) -> io::Result<usize> {
1249 for_both!(*self, ref mut inner => inner.read_line(buf))
1250 }
1251}
1252
1253#[cfg(any(test, feature = "use_std"))]
1254/// `Either<L, R>` implements `Write` if both `L` and `R` do.
1255///
1256/// Requires crate feature `"use_std"`
1257impl<L, R> Write for Either<L, R>
1258where
1259 L: Write,
1260 R: Write,
1261{
1262 fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
1263 for_both!(*self, ref mut inner => inner.write(buf))
1264 }
1265
1266 fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
1267 for_both!(*self, ref mut inner => inner.write_all(buf))
1268 }
1269
1270 fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> io::Result<()> {
1271 for_both!(*self, ref mut inner => inner.write_fmt(fmt))
1272 }
1273
1274 fn flush(&mut self) -> io::Result<()> {
1275 for_both!(*self, ref mut inner => inner.flush())
1276 }
1277}
1278
1279impl<L, R, Target> AsRef<Target> for Either<L, R>
1280where
1281 L: AsRef<Target>,
1282 R: AsRef<Target>,
1283{
1284 fn as_ref(&self) -> &Target {
1285 for_both!(*self, ref inner => inner.as_ref())
1286 }
1287}
1288
1289macro_rules! impl_specific_ref_and_mut {
1290 ($t:ty, $($attr:meta),* ) => {
1291 $(#[$attr])*
1292 impl<L, R> AsRef<$t> for Either<L, R>
1293 where L: AsRef<$t>, R: AsRef<$t>
1294 {
1295 fn as_ref(&self) -> &$t {
1296 for_both!(*self, ref inner => inner.as_ref())
1297 }
1298 }
1299
1300 $(#[$attr])*
1301 impl<L, R> AsMut<$t> for Either<L, R>
1302 where L: AsMut<$t>, R: AsMut<$t>
1303 {
1304 fn as_mut(&mut self) -> &mut $t {
1305 for_both!(*self, ref mut inner => inner.as_mut())
1306 }
1307 }
1308 };
1309}
1310
1311impl_specific_ref_and_mut!(str,);
1312impl_specific_ref_and_mut!(
1313 ::std::path::Path,
1314 cfg(feature = "use_std"),
1315 doc = "Requires crate feature `use_std`."
1316);
1317impl_specific_ref_and_mut!(
1318 ::std::ffi::OsStr,
1319 cfg(feature = "use_std"),
1320 doc = "Requires crate feature `use_std`."
1321);
1322impl_specific_ref_and_mut!(
1323 ::std::ffi::CStr,
1324 cfg(feature = "use_std"),
1325 doc = "Requires crate feature `use_std`."
1326);
1327
1328impl<L, R, Target> AsRef<[Target]> for Either<L, R>
1329where
1330 L: AsRef<[Target]>,
1331 R: AsRef<[Target]>,
1332{
1333 fn as_ref(&self) -> &[Target] {
1334 for_both!(*self, ref inner => inner.as_ref())
1335 }
1336}
1337
1338impl<L, R, Target> AsMut<Target> for Either<L, R>
1339where
1340 L: AsMut<Target>,
1341 R: AsMut<Target>,
1342{
1343 fn as_mut(&mut self) -> &mut Target {
1344 for_both!(*self, ref mut inner => inner.as_mut())
1345 }
1346}
1347
1348impl<L, R, Target> AsMut<[Target]> for Either<L, R>
1349where
1350 L: AsMut<[Target]>,
1351 R: AsMut<[Target]>,
1352{
1353 fn as_mut(&mut self) -> &mut [Target] {
1354 for_both!(*self, ref mut inner => inner.as_mut())
1355 }
1356}
1357
1358impl<L, R> Deref for Either<L, R>
1359where
1360 L: Deref,
1361 R: Deref<Target = L::Target>,
1362{
1363 type Target = L::Target;
1364
1365 fn deref(&self) -> &Self::Target {
1366 for_both!(*self, ref inner => &**inner)
1367 }
1368}
1369
1370impl<L, R> DerefMut for Either<L, R>
1371where
1372 L: DerefMut,
1373 R: DerefMut<Target = L::Target>,
1374{
1375 fn deref_mut(&mut self) -> &mut Self::Target {
1376 for_both!(*self, ref mut inner => &mut *inner)
1377 }
1378}
1379
1380#[cfg(any(test, feature = "use_std"))]
1381/// `Either` implements `Error` if *both* `L` and `R` implement it.
1382///
1383/// Requires crate feature `"use_std"`
1384impl<L, R> Error for Either<L, R>
1385where
1386 L: Error,
1387 R: Error,
1388{
1389 fn source(&self) -> Option<&(dyn Error + 'static)> {
1390 for_both!(*self, ref inner => inner.source())
1391 }
1392
1393 #[allow(deprecated)]
1394 fn description(&self) -> &str {
1395 for_both!(*self, ref inner => inner.description())
1396 }
1397
1398 #[allow(deprecated)]
1399 fn cause(&self) -> Option<&dyn Error> {
1400 for_both!(*self, ref inner => inner.cause())
1401 }
1402}
1403
1404impl<L, R> fmt::Display for Either<L, R>
1405where
1406 L: fmt::Display,
1407 R: fmt::Display,
1408{
1409 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1410 for_both!(*self, ref inner => inner.fmt(f))
1411 }
1412}
1413
1414#[test]
1415fn basic() {
1416 let mut e = Left(2);
1417 let r = Right(2);
1418 assert_eq!(e, Left(2));
1419 e = r;
1420 assert_eq!(e, Right(2));
1421 assert_eq!(e.left(), None);
1422 assert_eq!(e.right(), Some(2));
1423 assert_eq!(e.as_ref().right(), Some(&2));
1424 assert_eq!(e.as_mut().right(), Some(&mut 2));
1425}
1426
1427#[test]
1428fn macros() {
1429 use std::string::String;
1430
1431 fn a() -> Either<u32, u32> {
1432 let x: u32 = try_left!(Right(1337u32));
1433 Left(x * 2)
1434 }
1435 assert_eq!(a(), Right(1337));
1436
1437 fn b() -> Either<String, &'static str> {
1438 Right(try_right!(Left("foo bar")))
1439 }
1440 assert_eq!(b(), Left(String::from("foo bar")));
1441}
1442
1443#[test]
1444fn deref() {
1445 use std::string::String;
1446
1447 fn is_str(_: &str) {}
1448 let value: Either<String, &str> = Left(String::from("test"));
1449 is_str(&*value);
1450}
1451
1452#[test]
1453fn iter() {
1454 let x = 3;
1455 let mut iter = match x {
1456 3 => Left(0..10),
1457 _ => Right(17..),
1458 };
1459
1460 assert_eq!(iter.next(), Some(0));
1461 assert_eq!(iter.count(), 9);
1462}
1463
1464#[test]
1465fn seek() {
1466 use std::io;
1467
1468 let use_empty = false;
1469 let mut mockdata = [0x00; 256];
1470 for i in 0..256 {
1471 mockdata[i] = i as u8;
1472 }
1473
1474 let mut reader = if use_empty {
1475 // Empty didn't impl Seek until Rust 1.51
1476 Left(io::Cursor::new([]))
1477 } else {
1478 Right(io::Cursor::new(&mockdata[..]))
1479 };
1480
1481 let mut buf = [0u8; 16];
1482 assert_eq!(reader.read(&mut buf).unwrap(), buf.len());
1483 assert_eq!(buf, mockdata[..buf.len()]);
1484
1485 // the first read should advance the cursor and return the next 16 bytes thus the `ne`
1486 assert_eq!(reader.read(&mut buf).unwrap(), buf.len());
1487 assert_ne!(buf, mockdata[..buf.len()]);
1488
1489 // if the seek operation fails it should read 16..31 instead of 0..15
1490 reader.seek(io::SeekFrom::Start(0)).unwrap();
1491 assert_eq!(reader.read(&mut buf).unwrap(), buf.len());
1492 assert_eq!(buf, mockdata[..buf.len()]);
1493}
1494
1495#[test]
1496fn read_write() {
1497 use std::io;
1498
1499 let use_stdio = false;
1500 let mockdata = [0xff; 256];
1501
1502 let mut reader = if use_stdio {
1503 Left(io::stdin())
1504 } else {
1505 Right(&mockdata[..])
1506 };
1507
1508 let mut buf = [0u8; 16];
1509 assert_eq!(reader.read(&mut buf).unwrap(), buf.len());
1510 assert_eq!(&buf, &mockdata[..buf.len()]);
1511
1512 let mut mockbuf = [0u8; 256];
1513 let mut writer = if use_stdio {
1514 Left(io::stdout())
1515 } else {
1516 Right(&mut mockbuf[..])
1517 };
1518
1519 let buf = [1u8; 16];
1520 assert_eq!(writer.write(&buf).unwrap(), buf.len());
1521}
1522
1523#[test]
1524fn error() {
1525 let invalid_utf8 = b"\xff";
1526 #[allow(invalid_from_utf8)]
1527 let res = if let Err(error) = ::std::str::from_utf8(invalid_utf8) {
1528 Err(Left(error))
1529 } else if let Err(error) = "x".parse::<i32>() {
1530 Err(Right(error))
1531 } else {
1532 Ok(())
1533 };
1534 assert!(res.is_err());
1535 #[allow(deprecated)]
1536 res.unwrap_err().description(); // make sure this can be called
1537}
1538
1539/// A helper macro to check if AsRef and AsMut are implemented for a given type.
1540macro_rules! check_t {
1541 ($t:ty) => {{
1542 fn check_ref<T: AsRef<$t>>() {}
1543 fn propagate_ref<T1: AsRef<$t>, T2: AsRef<$t>>() {
1544 check_ref::<Either<T1, T2>>()
1545 }
1546 fn check_mut<T: AsMut<$t>>() {}
1547 fn propagate_mut<T1: AsMut<$t>, T2: AsMut<$t>>() {
1548 check_mut::<Either<T1, T2>>()
1549 }
1550 }};
1551}
1552
1553// This "unused" method is here to ensure that compilation doesn't fail on given types.
1554fn _unsized_ref_propagation() {
1555 check_t!(str);
1556
1557 fn check_array_ref<T: AsRef<[Item]>, Item>() {}
1558 fn check_array_mut<T: AsMut<[Item]>, Item>() {}
1559
1560 fn propagate_array_ref<T1: AsRef<[Item]>, T2: AsRef<[Item]>, Item>() {
1561 check_array_ref::<Either<T1, T2>, _>()
1562 }
1563
1564 fn propagate_array_mut<T1: AsMut<[Item]>, T2: AsMut<[Item]>, Item>() {
1565 check_array_mut::<Either<T1, T2>, _>()
1566 }
1567}
1568
1569// This "unused" method is here to ensure that compilation doesn't fail on given types.
1570#[cfg(feature = "use_std")]
1571fn _unsized_std_propagation() {
1572 check_t!(::std::path::Path);
1573 check_t!(::std::ffi::OsStr);
1574 check_t!(::std::ffi::CStr);
1575}