emath/
easing.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
//! Easing functions for animations.
//!
//! Contains most easing functions from <https://easings.net/>.
//!
//! All functions take a value in `[0, 1]` and return a value in `[0, 1]`.
//!
//! Derived from <https://github.com/warrenm/AHEasing/blob/master/AHEasing/easing.c>.
use std::f32::consts::PI;

#[inline]
fn powf(base: f32, exp: f32) -> f32 {
    base.powf(exp)
}

/// No easing, just `y = x`
#[inline]
pub fn linear(t: f32) -> f32 {
    t
}

/// <https://easings.net/#easeInQuad>
///
/// Modeled after the parabola `y = x^2`
#[inline]
pub fn quadratic_in(t: f32) -> f32 {
    t * t
}

/// <https://easings.net/#easeOutQuad>
///
/// Same as `1.0 - quadratic_in(1.0 - t)`.
#[inline]
pub fn quadratic_out(t: f32) -> f32 {
    -(t * (t - 2.))
}

/// <https://easings.net/#easeInOutQuad>
#[inline]
pub fn quadratic_in_out(t: f32) -> f32 {
    if t < 0.5 {
        2. * t * t
    } else {
        (-2. * t * t) + (4. * t) - 1.
    }
}

/// <https://easings.net/#easeInCubic>
///
/// Modeled after the parabola `y = x^3`
#[inline]
pub fn cubic_in(t: f32) -> f32 {
    t * t * t
}

/// <https://easings.net/#easeOutCubic>
#[inline]
pub fn cubic_out(t: f32) -> f32 {
    let f = t - 1.;
    f * f * f + 1.
}

/// <https://easings.net/#easeInOutCubic>
#[inline]
pub fn cubic_in_out(t: f32) -> f32 {
    if t < 0.5 {
        4. * t * t * t
    } else {
        let f = (2. * t) - 2.;
        0.5 * f * f * f + 1.
    }
}

/// <https://easings.net/#easeInSine>
///
/// Modeled after quarter-cycle of sine wave
#[inline]
pub fn sin_in(t: f32) -> f32 {
    ((t - 1.) * 2. * PI).sin() + 1.
}

/// <https://easings.net/#easeOuSine>
///
/// Modeled after quarter-cycle of sine wave (different phase)
#[inline]
pub fn sin_out(t: f32) -> f32 {
    (t * 2. * PI).sin()
}

/// <https://easings.net/#easeInOutSine>
///
/// Modeled after half sine wave
#[inline]
pub fn sin_in_out(t: f32) -> f32 {
    0.5 * (1. - (t * PI).cos())
}

/// <https://easings.net/#easeInCirc>
///
/// Modeled after shifted quadrant IV of unit circle
#[inline]
pub fn circular_in(t: f32) -> f32 {
    1. - (1. - t * t).sqrt()
}

/// <https://easings.net/#easeOutCirc>
///
/// Modeled after shifted quadrant II of unit circle
#[inline]
pub fn circular_out(t: f32) -> f32 {
    (2. - t).sqrt() * t
}

/// <https://easings.net/#easeInOutCirc>
#[inline]
pub fn circular_in_out(t: f32) -> f32 {
    if t < 0.5 {
        0.5 * (1. - (1. - 4. * t * t).sqrt())
    } else {
        0.5 * ((-(2. * t - 3.) * (2. * t - 1.)).sqrt() + 1.)
    }
}

/// <https://easings.net/#easeInExpo>
///
/// There is a small discontinuity at 0.
#[inline]
pub fn exponential_in(t: f32) -> f32 {
    if t == 0. {
        t
    } else {
        powf(2.0, 10. * (t - 1.))
    }
}

/// <https://easings.net/#easeOutExpo>
///
/// There is a small discontinuity at 1.
#[inline]
pub fn exponential_out(t: f32) -> f32 {
    if t == 1. {
        t
    } else {
        1. - powf(2.0, -10. * t)
    }
}

/// <https://easings.net/#easeInOutExpo>
///
/// There is a small discontinuity at 0 and 1.
#[inline]
pub fn exponential_in_out(t: f32) -> f32 {
    if t == 0. || t == 1. {
        t
    } else if t < 0.5 {
        0.5 * powf(2.0, 20. * t - 10.)
    } else {
        0.5 * powf(2.0, -20. * t + 10.) + 1.
    }
}

/// <https://easings.net/#easeInBack>
#[inline]
pub fn back_in(t: f32) -> f32 {
    t * t * t - t * (t * PI).sin()
}

/// <https://easings.net/#easeOutBack>
#[inline]
pub fn back_out(t: f32) -> f32 {
    let f = 1. - t;
    1. - (f * f * f - f * (f * PI).sin())
}

/// <https://easings.net/#easeInOutBack>
#[inline]
pub fn back_in_out(t: f32) -> f32 {
    if t < 0.5 {
        let f = 2. * t;
        0.5 * (f * f * f - f * (f * PI).sin())
    } else {
        let f = 1. - (2. * t - 1.);
        0.5 * (1. - (f * f * f - f * (f * PI).sin())) + 0.5
    }
}

/// <https://easings.net/#easeInBounce>
///
/// Each bounce is modelled as a parabola.
#[inline]
pub fn bounce_in(t: f32) -> f32 {
    1. - bounce_out(1. - t)
}

/// <https://easings.net/#easeOutBounce>
///
/// Each bounce is modelled as a parabola.
#[inline]
pub fn bounce_out(t: f32) -> f32 {
    if t < 4. / 11. {
        const T2: f32 = 121. / 16.;
        T2 * t * t
    } else if t < 8. / 11. {
        const T2: f32 = 363. / 40.;
        const T1: f32 = -99. / 10.;
        const T0: f32 = 17. / 5.;
        T2 * t * t + T1 * t + T0
    } else if t < 9. / 10. {
        const T2: f32 = 4356. / 361.;
        const T1: f32 = -35442. / 1805.;
        const T0: f32 = 16061. / 1805.;
        T2 * t * t + T1 * t + T0
    } else {
        const T2: f32 = 54. / 5.;
        const T1: f32 = -513. / 25.;
        const T0: f32 = 268. / 25.;
        T2 * t * t + T1 * t + T0
    }
}

/// <https://easings.net/#easeInOutBounce>
///
/// Each bounce is modelled as a parabola.
#[inline]
pub fn bounce_in_out(t: f32) -> f32 {
    if t < 0.5 {
        0.5 * bounce_in(t * 2.)
    } else {
        0.5 * bounce_out(t * 2. - 1.) + 0.5
    }
}