emath/
ordered_float.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
//! Total order on floating point types.
//! Can be used for sorting, min/max computation, and other collection algorithms.

use std::cmp::Ordering;
use std::hash::{Hash, Hasher};

/// Wraps a floating-point value to add total order and hash.
/// Possible types for `T` are `f32` and `f64`.
///
/// All NaNs are considered equal to each other.
/// The size of zero is ignored.
///
/// See also [`Float`].
#[derive(Clone, Copy)]
pub struct OrderedFloat<T>(pub T);

impl<T: Float + Copy> OrderedFloat<T> {
    #[inline]
    pub fn into_inner(self) -> T {
        self.0
    }
}

impl<T: Float> Eq for OrderedFloat<T> {}

impl<T: Float> PartialEq<Self> for OrderedFloat<T> {
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        // NaNs are considered equal (equivalent) when it comes to ordering
        if self.0.is_nan() {
            other.0.is_nan()
        } else {
            self.0 == other.0
        }
    }
}

impl<T: Float> PartialOrd<Self> for OrderedFloat<T> {
    #[inline]
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl<T: Float> Ord for OrderedFloat<T> {
    #[inline]
    fn cmp(&self, other: &Self) -> Ordering {
        match self.0.partial_cmp(&other.0) {
            Some(ord) => ord,
            None => self.0.is_nan().cmp(&other.0.is_nan()),
        }
    }
}

impl<T: Float> Hash for OrderedFloat<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.0.hash(state);
    }
}

impl<T> From<T> for OrderedFloat<T> {
    #[inline]
    fn from(val: T) -> Self {
        Self(val)
    }
}

// ----------------------------------------------------------------------------

/// Extension trait to provide `ord()` method.
///
/// Example with `f64`:
/// ```
/// use emath::Float as _;
///
/// let array = [1.0, 2.5, 2.0];
/// let max = array.iter().max_by_key(|val| val.ord());
///
/// assert_eq!(max, Some(&2.5));
/// ```
pub trait Float: PartialOrd + PartialEq + private::FloatImpl {
    /// Type to provide total order, useful as key in sorted contexts.
    fn ord(self) -> OrderedFloat<Self>
    where
        Self: Sized;
}

impl Float for f32 {
    #[inline]
    fn ord(self) -> OrderedFloat<Self> {
        OrderedFloat(self)
    }
}

impl Float for f64 {
    #[inline]
    fn ord(self) -> OrderedFloat<Self> {
        OrderedFloat(self)
    }
}

// Keep this trait in private module, to avoid exposing its methods as extensions in user code
mod private {
    use super::{Hash, Hasher};

    pub trait FloatImpl {
        fn is_nan(&self) -> bool;

        fn hash<H: Hasher>(&self, state: &mut H);
    }

    impl FloatImpl for f32 {
        #[inline]
        fn is_nan(&self) -> bool {
            Self::is_nan(*self)
        }

        #[inline]
        fn hash<H: Hasher>(&self, state: &mut H) {
            if *self == 0.0 {
                state.write_u8(0);
            } else if self.is_nan() {
                state.write_u8(1);
            } else {
                self.to_bits().hash(state);
            }
        }
    }

    impl FloatImpl for f64 {
        #[inline]
        fn is_nan(&self) -> bool {
            Self::is_nan(*self)
        }

        #[inline]
        fn hash<H: Hasher>(&self, state: &mut H) {
            if *self == 0.0 {
                state.write_u8(0);
            } else if self.is_nan() {
                state.write_u8(1);
            } else {
                self.to_bits().hash(state);
            }
        }
    }
}