emath/
rect.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
use std::f32::INFINITY;
use std::fmt;

use crate::{lerp, pos2, vec2, Div, Mul, Pos2, Rangef, Rot2, Vec2};

/// A rectangular region of space.
///
/// Usually a [`Rect`] has a positive (or zero) size,
/// and then [`Self::min`] `<=` [`Self::max`].
/// In these cases [`Self::min`] is the left-top corner
/// and [`Self::max`] is the right-bottom corner.
///
/// A rectangle is allowed to have a negative size, which happens when the order
/// of `min` and `max` are swapped. These are usually a sign of an error.
///
/// Normally the unit is points (logical pixels) in screen space coordinates.
///
/// `Rect` does NOT implement `Default`, because there is no obvious default value.
/// [`Rect::ZERO`] may seem reasonable, but when used as a bounding box, [`Rect::NOTHING`]
/// is a better default - so be explicit instead!
#[repr(C)]
#[derive(Clone, Copy, Eq, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
#[cfg_attr(feature = "bytemuck", derive(bytemuck::Pod, bytemuck::Zeroable))]
pub struct Rect {
    /// One of the corners of the rectangle, usually the left top one.
    pub min: Pos2,

    /// The other corner, opposing [`Self::min`]. Usually the right bottom one.
    pub max: Pos2,
}

impl Rect {
    /// Infinite rectangle that contains every point.
    pub const EVERYTHING: Self = Self {
        min: pos2(-INFINITY, -INFINITY),
        max: pos2(INFINITY, INFINITY),
    };

    /// The inverse of [`Self::EVERYTHING`]: stretches from positive infinity to negative infinity.
    /// Contains no points.
    ///
    /// This is useful as the seed for bounding boxes.
    ///
    /// # Example:
    /// ```
    /// # use emath::*;
    /// let mut rect = Rect::NOTHING;
    /// assert!(rect.size() == Vec2::splat(-f32::INFINITY));
    /// assert!(rect.contains(pos2(0.0, 0.0)) == false);
    /// rect.extend_with(pos2(2.0, 1.0));
    /// rect.extend_with(pos2(0.0, 3.0));
    /// assert_eq!(rect, Rect::from_min_max(pos2(0.0, 1.0), pos2(2.0, 3.0)))
    /// ```
    pub const NOTHING: Self = Self {
        min: pos2(INFINITY, INFINITY),
        max: pos2(-INFINITY, -INFINITY),
    };

    /// An invalid [`Rect`] filled with [`f32::NAN`].
    pub const NAN: Self = Self {
        min: pos2(f32::NAN, f32::NAN),
        max: pos2(f32::NAN, f32::NAN),
    };

    /// A [`Rect`] filled with zeroes.
    pub const ZERO: Self = Self {
        min: Pos2::ZERO,
        max: Pos2::ZERO,
    };

    #[inline(always)]
    pub const fn from_min_max(min: Pos2, max: Pos2) -> Self {
        Self { min, max }
    }

    /// left-top corner plus a size (stretching right-down).
    #[inline(always)]
    pub fn from_min_size(min: Pos2, size: Vec2) -> Self {
        Self {
            min,
            max: min + size,
        }
    }

    #[inline(always)]
    pub fn from_center_size(center: Pos2, size: Vec2) -> Self {
        Self {
            min: center - size * 0.5,
            max: center + size * 0.5,
        }
    }

    #[inline(always)]
    pub fn from_x_y_ranges(x_range: impl Into<Rangef>, y_range: impl Into<Rangef>) -> Self {
        let x_range = x_range.into();
        let y_range = y_range.into();
        Self {
            min: pos2(x_range.min, y_range.min),
            max: pos2(x_range.max, y_range.max),
        }
    }

    /// Returns the bounding rectangle of the two points.
    #[inline]
    pub fn from_two_pos(a: Pos2, b: Pos2) -> Self {
        Self {
            min: pos2(a.x.min(b.x), a.y.min(b.y)),
            max: pos2(a.x.max(b.x), a.y.max(b.y)),
        }
    }

    /// A zero-sized rect at a specific point.
    #[inline]
    pub fn from_pos(point: Pos2) -> Self {
        Self {
            min: point,
            max: point,
        }
    }

    /// Bounding-box around the points.
    pub fn from_points(points: &[Pos2]) -> Self {
        let mut rect = Self::NOTHING;
        for &p in points {
            rect.extend_with(p);
        }
        rect
    }

    /// A [`Rect`] that contains every point to the right of the given X coordinate.
    #[inline]
    pub fn everything_right_of(left_x: f32) -> Self {
        let mut rect = Self::EVERYTHING;
        rect.set_left(left_x);
        rect
    }

    /// A [`Rect`] that contains every point to the left of the given X coordinate.
    #[inline]
    pub fn everything_left_of(right_x: f32) -> Self {
        let mut rect = Self::EVERYTHING;
        rect.set_right(right_x);
        rect
    }

    /// A [`Rect`] that contains every point below a certain y coordinate
    #[inline]
    pub fn everything_below(top_y: f32) -> Self {
        let mut rect = Self::EVERYTHING;
        rect.set_top(top_y);
        rect
    }

    /// A [`Rect`] that contains every point above a certain y coordinate
    #[inline]
    pub fn everything_above(bottom_y: f32) -> Self {
        let mut rect = Self::EVERYTHING;
        rect.set_bottom(bottom_y);
        rect
    }

    #[must_use]
    #[inline]
    pub fn with_min_x(mut self, min_x: f32) -> Self {
        self.min.x = min_x;
        self
    }

    #[must_use]
    #[inline]
    pub fn with_min_y(mut self, min_y: f32) -> Self {
        self.min.y = min_y;
        self
    }

    #[must_use]
    #[inline]
    pub fn with_max_x(mut self, max_x: f32) -> Self {
        self.max.x = max_x;
        self
    }

    #[must_use]
    #[inline]
    pub fn with_max_y(mut self, max_y: f32) -> Self {
        self.max.y = max_y;
        self
    }

    /// Expand by this much in each direction, keeping the center
    #[must_use]
    pub fn expand(self, amnt: f32) -> Self {
        self.expand2(Vec2::splat(amnt))
    }

    /// Expand by this much in each direction, keeping the center
    #[must_use]
    pub fn expand2(self, amnt: Vec2) -> Self {
        Self::from_min_max(self.min - amnt, self.max + amnt)
    }

    /// Scale up by this factor in each direction, keeping the center
    #[must_use]
    pub fn scale_from_center(self, scale_factor: f32) -> Self {
        self.scale_from_center2(Vec2::splat(scale_factor))
    }

    /// Scale up by this factor in each direction, keeping the center
    #[must_use]
    pub fn scale_from_center2(self, scale_factor: Vec2) -> Self {
        Self::from_center_size(self.center(), self.size() * scale_factor)
    }

    /// Shrink by this much in each direction, keeping the center
    #[must_use]
    pub fn shrink(self, amnt: f32) -> Self {
        self.shrink2(Vec2::splat(amnt))
    }

    /// Shrink by this much in each direction, keeping the center
    #[must_use]
    pub fn shrink2(self, amnt: Vec2) -> Self {
        Self::from_min_max(self.min + amnt, self.max - amnt)
    }

    #[must_use]
    #[inline]
    pub fn translate(self, amnt: Vec2) -> Self {
        Self::from_min_size(self.min + amnt, self.size())
    }

    /// Rotate the bounds (will expand the [`Rect`])
    #[must_use]
    #[inline]
    pub fn rotate_bb(self, rot: Rot2) -> Self {
        let a = rot * self.left_top().to_vec2();
        let b = rot * self.right_top().to_vec2();
        let c = rot * self.left_bottom().to_vec2();
        let d = rot * self.right_bottom().to_vec2();

        Self::from_min_max(
            a.min(b).min(c).min(d).to_pos2(),
            a.max(b).max(c).max(d).to_pos2(),
        )
    }

    #[must_use]
    #[inline]
    pub fn intersects(self, other: Self) -> bool {
        self.min.x <= other.max.x
            && other.min.x <= self.max.x
            && self.min.y <= other.max.y
            && other.min.y <= self.max.y
    }

    /// keep min
    pub fn set_width(&mut self, w: f32) {
        self.max.x = self.min.x + w;
    }

    /// keep min
    pub fn set_height(&mut self, h: f32) {
        self.max.y = self.min.y + h;
    }

    /// Keep size
    pub fn set_center(&mut self, center: Pos2) {
        *self = self.translate(center - self.center());
    }

    #[must_use]
    #[inline(always)]
    pub fn contains(&self, p: Pos2) -> bool {
        self.min.x <= p.x && p.x <= self.max.x && self.min.y <= p.y && p.y <= self.max.y
    }

    #[must_use]
    pub fn contains_rect(&self, other: Self) -> bool {
        self.contains(other.min) && self.contains(other.max)
    }

    /// Return the given points clamped to be inside the rectangle
    /// Panics if [`Self::is_negative`].
    #[must_use]
    pub fn clamp(&self, p: Pos2) -> Pos2 {
        p.clamp(self.min, self.max)
    }

    #[inline(always)]
    pub fn extend_with(&mut self, p: Pos2) {
        self.min = self.min.min(p);
        self.max = self.max.max(p);
    }

    #[inline(always)]
    /// Expand to include the given x coordinate
    pub fn extend_with_x(&mut self, x: f32) {
        self.min.x = self.min.x.min(x);
        self.max.x = self.max.x.max(x);
    }

    #[inline(always)]
    /// Expand to include the given y coordinate
    pub fn extend_with_y(&mut self, y: f32) {
        self.min.y = self.min.y.min(y);
        self.max.y = self.max.y.max(y);
    }

    /// The union of two bounding rectangle, i.e. the minimum [`Rect`]
    /// that contains both input rectangles.
    #[inline(always)]
    #[must_use]
    pub fn union(self, other: Self) -> Self {
        Self {
            min: self.min.min(other.min),
            max: self.max.max(other.max),
        }
    }

    /// The intersection of two [`Rect`], i.e. the area covered by both.
    #[inline]
    #[must_use]
    pub fn intersect(self, other: Self) -> Self {
        Self {
            min: self.min.max(other.min),
            max: self.max.min(other.max),
        }
    }

    #[inline(always)]
    pub fn center(&self) -> Pos2 {
        Pos2 {
            x: (self.min.x + self.max.x) / 2.0,
            y: (self.min.y + self.max.y) / 2.0,
        }
    }

    /// `rect.size() == Vec2 { x: rect.width(), y: rect.height() }`
    #[inline(always)]
    pub fn size(&self) -> Vec2 {
        self.max - self.min
    }

    #[inline(always)]
    pub fn width(&self) -> f32 {
        self.max.x - self.min.x
    }

    #[inline(always)]
    pub fn height(&self) -> f32 {
        self.max.y - self.min.y
    }

    /// Width / height
    ///
    /// * `aspect_ratio < 1`: portrait / high
    /// * `aspect_ratio = 1`: square
    /// * `aspect_ratio > 1`: landscape / wide
    pub fn aspect_ratio(&self) -> f32 {
        self.width() / self.height()
    }

    /// `[2, 1]` for wide screen, and `[1, 2]` for portrait, etc.
    /// At least one dimension = 1, the other >= 1
    /// Returns the proportions required to letter-box a square view area.
    pub fn square_proportions(&self) -> Vec2 {
        let w = self.width();
        let h = self.height();
        if w > h {
            vec2(w / h, 1.0)
        } else {
            vec2(1.0, h / w)
        }
    }

    #[inline(always)]
    pub fn area(&self) -> f32 {
        self.width() * self.height()
    }

    /// The distance from the rect to the position.
    ///
    /// The distance is zero when the position is in the interior of the rectangle.
    ///
    /// [Negative rectangles](Self::is_negative) always return [`f32::INFINITY`].
    #[inline]
    pub fn distance_to_pos(&self, pos: Pos2) -> f32 {
        self.distance_sq_to_pos(pos).sqrt()
    }

    /// The distance from the rect to the position, squared.
    ///
    /// The distance is zero when the position is in the interior of the rectangle.
    ///
    /// [Negative rectangles](Self::is_negative) always return [`f32::INFINITY`].
    #[inline]
    pub fn distance_sq_to_pos(&self, pos: Pos2) -> f32 {
        if self.is_negative() {
            return f32::INFINITY;
        }

        let dx = if self.min.x > pos.x {
            self.min.x - pos.x
        } else if pos.x > self.max.x {
            pos.x - self.max.x
        } else {
            0.0
        };

        let dy = if self.min.y > pos.y {
            self.min.y - pos.y
        } else if pos.y > self.max.y {
            pos.y - self.max.y
        } else {
            0.0
        };

        dx * dx + dy * dy
    }

    /// Signed distance to the edge of the box.
    ///
    /// Negative inside the box.
    ///
    /// [Negative rectangles](Self::is_negative) always return [`f32::INFINITY`].
    ///
    /// ```
    /// # use emath::{pos2, Rect};
    /// let rect = Rect::from_min_max(pos2(0.0, 0.0), pos2(1.0, 1.0));
    /// assert_eq!(rect.signed_distance_to_pos(pos2(0.50, 0.50)), -0.50);
    /// assert_eq!(rect.signed_distance_to_pos(pos2(0.75, 0.50)), -0.25);
    /// assert_eq!(rect.signed_distance_to_pos(pos2(1.50, 0.50)), 0.50);
    /// ```
    pub fn signed_distance_to_pos(&self, pos: Pos2) -> f32 {
        if self.is_negative() {
            return f32::INFINITY;
        }

        let edge_distances = (pos - self.center()).abs() - self.size() * 0.5;
        let inside_dist = edge_distances.max_elem().min(0.0);
        let outside_dist = edge_distances.max(Vec2::ZERO).length();
        inside_dist + outside_dist
    }

    /// Linearly interpolate so that `[0, 0]` is [`Self::min`] and
    /// `[1, 1]` is [`Self::max`].
    #[inline]
    pub fn lerp_inside(&self, t: Vec2) -> Pos2 {
        Pos2 {
            x: lerp(self.min.x..=self.max.x, t.x),
            y: lerp(self.min.y..=self.max.y, t.y),
        }
    }

    /// Linearly self towards other rect.
    #[inline]
    pub fn lerp_towards(&self, other: &Self, t: f32) -> Self {
        Self {
            min: self.min.lerp(other.min, t),
            max: self.max.lerp(other.max, t),
        }
    }

    #[inline(always)]
    pub fn x_range(&self) -> Rangef {
        Rangef::new(self.min.x, self.max.x)
    }

    #[inline(always)]
    pub fn y_range(&self) -> Rangef {
        Rangef::new(self.min.y, self.max.y)
    }

    #[inline(always)]
    pub fn bottom_up_range(&self) -> Rangef {
        Rangef::new(self.max.y, self.min.y)
    }

    /// `width < 0 || height < 0`
    #[inline(always)]
    pub fn is_negative(&self) -> bool {
        self.max.x < self.min.x || self.max.y < self.min.y
    }

    /// `width > 0 && height > 0`
    #[inline(always)]
    pub fn is_positive(&self) -> bool {
        self.min.x < self.max.x && self.min.y < self.max.y
    }

    /// True if all members are also finite.
    #[inline(always)]
    pub fn is_finite(&self) -> bool {
        self.min.is_finite() && self.max.is_finite()
    }

    /// True if any member is NaN.
    #[inline(always)]
    pub fn any_nan(self) -> bool {
        self.min.any_nan() || self.max.any_nan()
    }
}

/// ## Convenience functions (assumes origin is towards left top):
impl Rect {
    /// `min.x`
    #[inline(always)]
    pub fn left(&self) -> f32 {
        self.min.x
    }

    /// `min.x`
    #[inline(always)]
    pub fn left_mut(&mut self) -> &mut f32 {
        &mut self.min.x
    }

    /// `min.x`
    #[inline(always)]
    pub fn set_left(&mut self, x: f32) {
        self.min.x = x;
    }

    /// `max.x`
    #[inline(always)]
    pub fn right(&self) -> f32 {
        self.max.x
    }

    /// `max.x`
    #[inline(always)]
    pub fn right_mut(&mut self) -> &mut f32 {
        &mut self.max.x
    }

    /// `max.x`
    #[inline(always)]
    pub fn set_right(&mut self, x: f32) {
        self.max.x = x;
    }

    /// `min.y`
    #[inline(always)]
    pub fn top(&self) -> f32 {
        self.min.y
    }

    /// `min.y`
    #[inline(always)]
    pub fn top_mut(&mut self) -> &mut f32 {
        &mut self.min.y
    }

    /// `min.y`
    #[inline(always)]
    pub fn set_top(&mut self, y: f32) {
        self.min.y = y;
    }

    /// `max.y`
    #[inline(always)]
    pub fn bottom(&self) -> f32 {
        self.max.y
    }

    /// `max.y`
    #[inline(always)]
    pub fn bottom_mut(&mut self) -> &mut f32 {
        &mut self.max.y
    }

    /// `max.y`
    #[inline(always)]
    pub fn set_bottom(&mut self, y: f32) {
        self.max.y = y;
    }

    #[inline(always)]
    #[doc(alias = "top_left")]
    pub fn left_top(&self) -> Pos2 {
        pos2(self.left(), self.top())
    }

    #[inline(always)]
    pub fn center_top(&self) -> Pos2 {
        pos2(self.center().x, self.top())
    }

    #[inline(always)]
    #[doc(alias = "top_right")]
    pub fn right_top(&self) -> Pos2 {
        pos2(self.right(), self.top())
    }

    #[inline(always)]
    pub fn left_center(&self) -> Pos2 {
        pos2(self.left(), self.center().y)
    }

    #[inline(always)]
    pub fn right_center(&self) -> Pos2 {
        pos2(self.right(), self.center().y)
    }

    #[inline(always)]
    #[doc(alias = "bottom_left")]
    pub fn left_bottom(&self) -> Pos2 {
        pos2(self.left(), self.bottom())
    }

    #[inline(always)]
    pub fn center_bottom(&self) -> Pos2 {
        pos2(self.center().x, self.bottom())
    }

    #[inline(always)]
    #[doc(alias = "bottom_right")]
    pub fn right_bottom(&self) -> Pos2 {
        pos2(self.right(), self.bottom())
    }

    /// Split rectangle in left and right halves. `t` is expected to be in the (0,1) range.
    pub fn split_left_right_at_fraction(&self, t: f32) -> (Self, Self) {
        self.split_left_right_at_x(lerp(self.min.x..=self.max.x, t))
    }

    /// Split rectangle in left and right halves at the given `x` coordinate.
    pub fn split_left_right_at_x(&self, split_x: f32) -> (Self, Self) {
        let left = Self::from_min_max(self.min, Pos2::new(split_x, self.max.y));
        let right = Self::from_min_max(Pos2::new(split_x, self.min.y), self.max);
        (left, right)
    }

    /// Split rectangle in top and bottom halves. `t` is expected to be in the (0,1) range.
    pub fn split_top_bottom_at_fraction(&self, t: f32) -> (Self, Self) {
        self.split_top_bottom_at_y(lerp(self.min.y..=self.max.y, t))
    }

    /// Split rectangle in top and bottom halves at the given `y` coordinate.
    pub fn split_top_bottom_at_y(&self, split_y: f32) -> (Self, Self) {
        let top = Self::from_min_max(self.min, Pos2::new(self.max.x, split_y));
        let bottom = Self::from_min_max(Pos2::new(self.min.x, split_y), self.max);
        (top, bottom)
    }
}

impl Rect {
    /// Does this Rect intersect the given ray (where `d` is normalized)?
    ///
    /// A ray that starts inside the rect will return `true`.
    pub fn intersects_ray(&self, o: Pos2, d: Vec2) -> bool {
        let mut tmin = -f32::INFINITY;
        let mut tmax = f32::INFINITY;

        if d.x != 0.0 {
            let tx1 = (self.min.x - o.x) / d.x;
            let tx2 = (self.max.x - o.x) / d.x;

            tmin = tmin.max(tx1.min(tx2));
            tmax = tmax.min(tx1.max(tx2));
        }

        if d.y != 0.0 {
            let ty1 = (self.min.y - o.y) / d.y;
            let ty2 = (self.max.y - o.y) / d.y;

            tmin = tmin.max(ty1.min(ty2));
            tmax = tmax.min(ty1.max(ty2));
        }

        0.0 <= tmax && tmin <= tmax
    }
}

impl fmt::Debug for Rect {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "[{:?} - {:?}]", self.min, self.max)
    }
}

impl fmt::Display for Rect {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str("[")?;
        self.min.fmt(f)?;
        f.write_str(" - ")?;
        self.max.fmt(f)?;
        f.write_str("]")?;
        Ok(())
    }
}

/// from (min, max) or (left top, right bottom)
impl From<[Pos2; 2]> for Rect {
    #[inline]
    fn from([min, max]: [Pos2; 2]) -> Self {
        Self { min, max }
    }
}

impl Mul<f32> for Rect {
    type Output = Self;

    #[inline]
    fn mul(self, factor: f32) -> Self {
        Self {
            min: self.min * factor,
            max: self.max * factor,
        }
    }
}

impl Mul<Rect> for f32 {
    type Output = Rect;

    #[inline]
    fn mul(self, vec: Rect) -> Rect {
        Rect {
            min: self * vec.min,
            max: self * vec.max,
        }
    }
}

impl Div<f32> for Rect {
    type Output = Self;

    #[inline]
    fn div(self, factor: f32) -> Self {
        Self {
            min: self.min / factor,
            max: self.max / factor,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_rect() {
        let r = Rect::from_min_max(pos2(10.0, 10.0), pos2(20.0, 20.0));
        assert_eq!(r.distance_sq_to_pos(pos2(15.0, 15.0)), 0.0);
        assert_eq!(r.distance_sq_to_pos(pos2(10.0, 15.0)), 0.0);
        assert_eq!(r.distance_sq_to_pos(pos2(10.0, 10.0)), 0.0);

        assert_eq!(r.distance_sq_to_pos(pos2(5.0, 15.0)), 25.0); // left of
        assert_eq!(r.distance_sq_to_pos(pos2(25.0, 15.0)), 25.0); // right of
        assert_eq!(r.distance_sq_to_pos(pos2(15.0, 5.0)), 25.0); // above
        assert_eq!(r.distance_sq_to_pos(pos2(15.0, 25.0)), 25.0); // below
        assert_eq!(r.distance_sq_to_pos(pos2(25.0, 5.0)), 50.0); // right and above
    }

    #[test]
    fn scale_rect() {
        let c = pos2(100.0, 50.0);
        let r = Rect::from_center_size(c, vec2(30.0, 60.0));

        assert_eq!(
            r.scale_from_center(2.0),
            Rect::from_center_size(c, vec2(60.0, 120.0))
        );
        assert_eq!(
            r.scale_from_center(0.5),
            Rect::from_center_size(c, vec2(15.0, 30.0))
        );
        assert_eq!(
            r.scale_from_center2(vec2(2.0, 3.0)),
            Rect::from_center_size(c, vec2(60.0, 180.0))
        );
    }

    #[test]
    fn test_ray_intersection() {
        let rect = Rect::from_min_max(pos2(1.0, 1.0), pos2(3.0, 3.0));

        println!("Righward ray from left:");
        assert!(rect.intersects_ray(pos2(0.0, 2.0), Vec2::RIGHT));

        println!("Righward ray from center:");
        assert!(rect.intersects_ray(pos2(2.0, 2.0), Vec2::RIGHT));

        println!("Righward ray from right:");
        assert!(!rect.intersects_ray(pos2(4.0, 2.0), Vec2::RIGHT));

        println!("Leftward ray from left:");
        assert!(!rect.intersects_ray(pos2(0.0, 2.0), Vec2::LEFT));

        println!("Leftward ray from center:");
        assert!(rect.intersects_ray(pos2(2.0, 2.0), Vec2::LEFT));

        println!("Leftward ray from right:");
        assert!(rect.intersects_ray(pos2(4.0, 2.0), Vec2::LEFT));
    }
}