encase/types/
matrix.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
use crate::core::Metadata;

pub trait MatrixScalar: crate::ShaderSize {}
impl_marker_trait_for_f32!(MatrixScalar);

pub struct MatrixMetadata {
    pub col_padding: u64,
}

impl Metadata<MatrixMetadata> {
    #[inline]
    pub const fn col_padding(self) -> u64 {
        self.extra.col_padding
    }
}

/// Enables reading from the matrix (via `&[[T; R]; C]`)
pub trait AsRefMatrixParts<T: MatrixScalar, const C: usize, const R: usize> {
    fn as_ref_parts(&self) -> &[[T; R]; C];
}

/// Enables writing to the matrix (via `&mut [[T; R]; C]`)
pub trait AsMutMatrixParts<T: MatrixScalar, const C: usize, const R: usize> {
    fn as_mut_parts(&mut self) -> &mut [[T; R]; C];
}

/// Enables the creation of a matrix (via `[[T; R]; C]`)
pub trait FromMatrixParts<T: MatrixScalar, const C: usize, const R: usize> {
    fn from_parts(parts: [[T; R]; C]) -> Self;
}

/// Used to implement `ShaderType` for the given matrix type
///
/// The given matrix type should implement any combination of
/// [`AsRefMatrixParts`], [`AsMutMatrixParts`], [`FromMatrixParts`]
/// depending on needed capability (they can also be derived via `$using`)
///
/// # Args
///
/// - `$c` nr of columns the given matrix contains
///
/// - `$r` nr of rows the given matrix contains
///
/// - `$type` the type (representing a matrix) for which `ShaderType` will be implemented for
///
/// - `$generics` \[optional\] generics that will be passed into the `impl< >`
///
/// - `$el_type` \[optional\] inner element type of the matrix (should implement [`MatrixScalar`])
///
/// - `$using` \[optional\] can be any combination of `AsRef AsMut From`
#[macro_export]
macro_rules! impl_matrix {
    ($c:literal, $r:literal, $type:ty $( ; using $($using:tt)* )?) => {
        $crate::impl_matrix_inner!(__inner, ($c, $r, $type, T, (T)); $( $($using)* )?);
    };
    ($c:literal, $r:literal, $type:ty; ($($generics:tt)*) $( ; using $($using:tt)* )?) => {
        $crate::impl_matrix_inner!(__inner, ($c, $r, $type, T, ($($generics)*)); $( $($using)* )?);
    };
    ($c:literal, $r:literal, $type:ty, $el_ty:ty $( ; using $($using:tt)* )?) => {
        $crate::impl_matrix_inner!(__inner, ($c, $r, $type, $el_ty, ()); $( $($using)* )?);
    };
}

#[doc(hidden)]
#[macro_export]
macro_rules! impl_matrix_inner {
    (__inner, ($($other:tt)*); AsRef $($using:tt)*) => {
        $crate::impl_matrix_inner!(__ref, $($other)*);
        $crate::impl_matrix_inner!(__inner, ($($other)*); $($using)*);
    };
    (__inner, ($($other:tt)*); AsMut $($using:tt)*) => {
        $crate::impl_matrix_inner!(__mut, $($other)*);
        $crate::impl_matrix_inner!(__inner, ($($other)*); $($using)*);
    };
    (__inner, ($($other:tt)*); From $($using:tt)*) => {
        $crate::impl_matrix_inner!(__from, $($other)*);
        $crate::impl_matrix_inner!(__inner, ($($other)*); $($using)*);
    };
    (__inner, ($c:literal, $r:literal, $type:ty, $el_ty:ty, ($($generics:tt)*)); ) => {
        $crate::impl_matrix_inner!(__main, $c, $r, $type, $el_ty, ($($generics)*));
    };

    (__ref, $c:literal, $r:literal, $type:ty, $el_ty:ty, ($($generics:tt)*)) => {
        impl<$($generics)*> $crate::private::AsRefMatrixParts<$el_ty, $c, $r> for $type
        where
            Self: ::core::convert::AsRef<[[$el_ty; $r]; $c]>,
            $el_ty: $crate::private::MatrixScalar,
        {
            #[inline]
            fn as_ref_parts(&self) -> &[[$el_ty; $r]; $c] {
                ::core::convert::AsRef::as_ref(self)
            }
        }
    };
    (__mut, $c:literal, $r:literal, $type:ty, $el_ty:ty, ($($generics:tt)*)) => {
        impl<$($generics)*> $crate::private::AsMutMatrixParts<$el_ty, $c, $r> for $type
        where
            Self: ::core::convert::AsMut<[[$el_ty; $r]; $c]>,
            $el_ty: $crate::private::MatrixScalar,
        {
            #[inline]
            fn as_mut_parts(&mut self) -> &mut [[$el_ty; $r]; $c] {
                ::core::convert::AsMut::as_mut(self)
            }
        }
    };
    (__from, $c:literal, $r:literal, $type:ty, $el_ty:ty, ($($generics:tt)*)) => {
        impl<$($generics)*> $crate::private::FromMatrixParts<$el_ty, $c, $r> for $type
        where
            Self: ::core::convert::From<[[$el_ty; $r]; $c]>,
            $el_ty: $crate::private::MatrixScalar,
        {
            #[inline]
            fn from_parts(parts: [[$el_ty; $r]; $c]) -> Self {
                ::core::convert::From::from(parts)
            }
        }
    };

    (__main, $c:literal, $r:literal, $type:ty, $el_ty:ty, ($($generics:tt)*)) => {
        const _: () = assert!(
            2 <= $c && $c <= 4,
            "Matrix should have at least 2 columns and at most 4!",
        );
        const _: () = assert!(
            2 <= $r && $r <= 4,
            "Matrix should have at least 2 rows and at most 4!",
        );

        impl<$($generics)*> $crate::private::ShaderType for $type
        where
            $el_ty: $crate::private::ShaderSize,
        {
            type ExtraMetadata = $crate::private::MatrixMetadata;
            const METADATA: $crate::private::Metadata<Self::ExtraMetadata> = {
                let col_size = $crate::private::SizeValue::from(<$el_ty as $crate::private::ShaderSize>::SHADER_SIZE).mul($r);
                let alignment = $crate::private::AlignmentValue::from_next_power_of_two_size(col_size);
                let size = alignment.round_up_size(col_size).mul($c);
                let col_padding = alignment.padding_needed_for(col_size.get());

                $crate::private::Metadata {
                    alignment,
                    has_uniform_min_alignment: false,
                    min_size: size,
                    is_pod: <[$el_ty; $r] as $crate::private::ShaderType>::METADATA.is_pod() && col_padding == 0,
                    extra: $crate::private::MatrixMetadata {
                        col_padding,
                    },
                }
            };
        }

        impl<$($generics)*> $crate::private::ShaderSize for $type
        where
            $el_ty: $crate::private::ShaderSize
        {}

        impl<$($generics)*> $crate::private::WriteInto for $type
        where
            Self: $crate::private::AsRefMatrixParts<$el_ty, $c, $r> + $crate::private::ShaderType<ExtraMetadata = $crate::private::MatrixMetadata>,
            $el_ty: $crate::private::MatrixScalar + $crate::private::WriteInto,
        {
            #[inline]
            fn write_into<B: $crate::private::BufferMut>(&self, writer: &mut $crate::private::Writer<B>) {
                let columns = $crate::private::AsRefMatrixParts::<$el_ty, $c, $r>::as_ref_parts(self);

                $crate::if_pod_and_little_endian!(if pod_and_little_endian {
                    $crate::private::WriteInto::write_into(columns, writer);
                } else {
                    for col in columns {
                        $crate::private::WriteInto::write_into(col, writer);
                        writer.advance(<Self as $crate::private::ShaderType>::METADATA.col_padding() as ::core::primitive::usize);
                    }
                });
            }
        }

        impl<$($generics)*> $crate::private::ReadFrom for $type
        where
            Self: $crate::private::AsMutMatrixParts<$el_ty, $c, $r> + $crate::private::ShaderType<ExtraMetadata = $crate::private::MatrixMetadata>,
            $el_ty: $crate::private::MatrixScalar + $crate::private::ReadFrom,
        {
            #[inline]
            fn read_from<B: $crate::private::BufferRef>(&mut self, reader: &mut $crate::private::Reader<B>) {
                let columns = $crate::private::AsMutMatrixParts::<$el_ty, $c, $r>::as_mut_parts(self);

                $crate::if_pod_and_little_endian!(if pod_and_little_endian {
                    $crate::private::ReadFrom::read_from(columns, reader);
                } else {
                    for col in columns {
                        $crate::private::ReadFrom::read_from(col, reader);
                        reader.advance(<Self as $crate::private::ShaderType>::METADATA.col_padding() as ::core::primitive::usize);
                    }
                });
            }
        }

        impl<$($generics)*> $crate::private::CreateFrom for $type
        where
            Self: $crate::private::FromMatrixParts<$el_ty, $c, $r> + $crate::private::ShaderType<ExtraMetadata = $crate::private::MatrixMetadata>,
            $el_ty: $crate::private::MatrixScalar + $crate::private::CreateFrom,
        {
            #[inline]
            fn create_from<B: $crate::private::BufferRef>(reader: &mut $crate::private::Reader<B>) -> Self {
                let columns = $crate::if_pod_and_little_endian!(if pod_and_little_endian {
                    $crate::private::CreateFrom::create_from(reader)
                } else {
                    ::core::array::from_fn(|_| {
                        let col = $crate::private::CreateFrom::create_from(reader);
                        reader.advance(<Self as $crate::private::ShaderType>::METADATA.col_padding() as ::core::primitive::usize);
                        col
                    })
                });
                $crate::private::FromMatrixParts::<$el_ty, $c, $r>::from_parts(columns)
            }
        }
    };
}