foldhash/
lib.rs

1//! This crate provides foldhash, a fast, non-cryptographic, minimally
2//! DoS-resistant hashing algorithm designed for computational uses such as
3//! hashmaps, bloom filters, count sketching, etc.
4//!
5//! When should you **not** use foldhash:
6//!
7//! - You are afraid of people studying your long-running program's behavior
8//!   to reverse engineer its internal random state and using this knowledge to
9//!   create many colliding inputs for computational complexity attacks.
10//!
11//! - You expect foldhash to have a consistent output across versions or
12//!   platforms, such as for persistent file formats or communication protocols.
13//!   
14//! - You are relying on foldhash's properties for any kind of security.
15//!   Foldhash is **not appropriate for any cryptographic purpose**.
16//!
17//! Foldhash has two variants, one optimized for speed which is ideal for data
18//! structures such as hash maps and bloom filters, and one optimized for
19//! statistical quality which is ideal for algorithms such as
20//! [HyperLogLog](https://en.wikipedia.org/wiki/HyperLogLog) and
21//! [MinHash](https://en.wikipedia.org/wiki/MinHash).
22//!
23//! Foldhash can be used in a `#![no_std]` environment by disabling its default
24//! `"std"` feature.
25//!
26//! # Usage
27//!
28//! The easiest way to use this crate with the standard library [`HashMap`] or
29//! [`HashSet`] is to import them from `foldhash` instead, along with the
30//! extension traits to make [`HashMap::new`] and [`HashMap::with_capacity`]
31//! work out-of-the-box:
32//!
33//! ```rust
34//! use foldhash::{HashMap, HashMapExt};
35//!
36//! let mut hm = HashMap::new();
37//! hm.insert(42, "hello");
38//! ```
39//!
40//! You can also avoid the convenience types and do it manually by initializing
41//! a [`RandomState`](fast::RandomState), for example if you are using a different hash map
42//! implementation like [`hashbrown`](https://docs.rs/hashbrown/):
43//!
44//! ```rust
45//! use hashbrown::HashMap;
46//! use foldhash::fast::RandomState;
47//!
48//! let mut hm = HashMap::with_hasher(RandomState::default());
49//! hm.insert("foo", "bar");
50//! ```
51//!
52//! The above methods are the recommended way to use foldhash, which will
53//! automatically generate a randomly generated hasher instance for you. If you
54//! absolutely must have determinism you can use [`FixedState`](fast::FixedState)
55//! instead, but note that this makes you trivially vulnerable to HashDoS
56//! attacks and might lead to quadratic runtime when moving data from one
57//! hashmap/set into another:
58//!
59//! ```rust
60//! use std::collections::HashSet;
61//! use foldhash::fast::FixedState;
62//!
63//! let mut hm = HashSet::with_hasher(FixedState::with_seed(42));
64//! hm.insert([1, 10, 100]);
65//! ```
66//!
67//! If you rely on statistical properties of the hash for the correctness of
68//! your algorithm, such as in [HyperLogLog](https://en.wikipedia.org/wiki/HyperLogLog),
69//! it is suggested to use the [`RandomState`](quality::RandomState)
70//! or [`FixedState`](quality::FixedState) from the [`quality`] module instead
71//! of the [`fast`] module. The latter is optimized purely for speed in hash
72//! tables and has known statistical imperfections.
73//!
74//! Finally, you can also directly use the [`RandomState`](quality::RandomState)
75//! or [`FixedState`](quality::FixedState) to manually hash items using the
76//! [`BuildHasher`](std::hash::BuildHasher) trait:
77//! ```rust
78//! use std::hash::BuildHasher;
79//! use foldhash::quality::RandomState;
80//!
81//! let random_state = RandomState::default();
82//! let hash = random_state.hash_one("hello world");
83//! ```
84
85#![cfg_attr(all(not(test), not(feature = "std")), no_std)]
86#![warn(missing_docs)]
87
88use core::hash::Hasher;
89
90#[cfg(feature = "std")]
91mod convenience;
92mod seed;
93
94#[cfg(feature = "std")]
95pub use convenience::*;
96
97// Arbitrary constants with high entropy. Hexadecimal digits of pi were used.
98const ARBITRARY0: u64 = 0x243f6a8885a308d3;
99const ARBITRARY1: u64 = 0x13198a2e03707344;
100const ARBITRARY2: u64 = 0xa4093822299f31d0;
101const ARBITRARY3: u64 = 0x082efa98ec4e6c89;
102const ARBITRARY4: u64 = 0x452821e638d01377;
103const ARBITRARY5: u64 = 0xbe5466cf34e90c6c;
104const ARBITRARY6: u64 = 0xc0ac29b7c97c50dd;
105const ARBITRARY7: u64 = 0x3f84d5b5b5470917;
106const ARBITRARY8: u64 = 0x9216d5d98979fb1b;
107const ARBITRARY9: u64 = 0xd1310ba698dfb5ac;
108
109#[inline(always)]
110const fn folded_multiply(x: u64, y: u64) -> u64 {
111    #[cfg(target_pointer_width = "64")]
112    {
113        // We compute the full u64 x u64 -> u128 product, this is a single mul
114        // instruction on x86-64, one mul plus one mulhi on ARM64.
115        let full = (x as u128) * (y as u128);
116        let lo = full as u64;
117        let hi = (full >> 64) as u64;
118
119        // The middle bits of the full product fluctuate the most with small
120        // changes in the input. This is the top bits of lo and the bottom bits
121        // of hi. We can thus make the entire output fluctuate with small
122        // changes to the input by XOR'ing these two halves.
123        lo ^ hi
124    }
125
126    #[cfg(target_pointer_width = "32")]
127    {
128        // u64 x u64 -> u128 product is prohibitively expensive on 32-bit.
129        // Decompose into 32-bit parts.
130        let lx = x as u32;
131        let ly = y as u32;
132        let hx = (x >> 32) as u32;
133        let hy = (y >> 32) as u32;
134
135        // u32 x u32 -> u64 the low bits of one with the high bits of the other.
136        let afull = (lx as u64) * (hy as u64);
137        let bfull = (hx as u64) * (ly as u64);
138
139        // Combine, swapping low/high of one of them so the upper bits of the
140        // product of one combine with the lower bits of the other.
141        afull ^ bfull.rotate_right(32)
142    }
143}
144
145/// The foldhash implementation optimized for speed.
146pub mod fast {
147    use super::*;
148
149    pub use seed::fast::{FixedState, RandomState};
150
151    /// A [`Hasher`] instance implementing foldhash, optimized for speed.
152    ///
153    /// It can't be created directly, see [`RandomState`] or [`FixedState`].
154    #[derive(Clone)]
155    pub struct FoldHasher {
156        accumulator: u64,
157        sponge: u128,
158        sponge_len: u8,
159        fold_seed: u64,
160        expand_seed: u64,
161        expand_seed2: u64,
162        expand_seed3: u64,
163    }
164
165    impl FoldHasher {
166        #[inline]
167        pub(crate) fn with_seed(per_hasher_seed: u64, global_seed: &[u64; 4]) -> FoldHasher {
168            FoldHasher {
169                accumulator: per_hasher_seed,
170                sponge: 0,
171                sponge_len: 0,
172                fold_seed: global_seed[0],
173                expand_seed: global_seed[1],
174                expand_seed2: global_seed[2],
175                expand_seed3: global_seed[3],
176            }
177        }
178
179        #[inline(always)]
180        fn write_num<T: Into<u128>>(&mut self, x: T) {
181            let bits: usize = 8 * core::mem::size_of::<T>();
182            if self.sponge_len as usize + bits > 128 {
183                let lo = self.sponge as u64;
184                let hi = (self.sponge >> 64) as u64;
185                self.accumulator = folded_multiply(lo ^ self.accumulator, hi ^ self.fold_seed);
186                self.sponge = x.into();
187                self.sponge_len = bits as u8;
188            } else {
189                self.sponge |= x.into() << self.sponge_len;
190                self.sponge_len += bits as u8;
191            }
192        }
193    }
194
195    impl Hasher for FoldHasher {
196        #[inline(always)]
197        fn write(&mut self, bytes: &[u8]) {
198            let mut s0 = self.accumulator;
199            let mut s1 = self.expand_seed;
200            let len = bytes.len();
201            if len <= 16 {
202                // XOR the input into s0, s1, then multiply and fold.
203                if len >= 8 {
204                    s0 ^= u64::from_ne_bytes(bytes[0..8].try_into().unwrap());
205                    s1 ^= u64::from_ne_bytes(bytes[len - 8..].try_into().unwrap());
206                } else if len >= 4 {
207                    s0 ^= u32::from_ne_bytes(bytes[0..4].try_into().unwrap()) as u64;
208                    s1 ^= u32::from_ne_bytes(bytes[len - 4..].try_into().unwrap()) as u64;
209                } else if len > 0 {
210                    let lo = bytes[0];
211                    let mid = bytes[len / 2];
212                    let hi = bytes[len - 1];
213                    s0 ^= lo as u64;
214                    s1 ^= ((hi as u64) << 8) | mid as u64;
215                }
216                self.accumulator = folded_multiply(s0, s1);
217            } else if len < 256 {
218                self.accumulator = hash_bytes_medium(bytes, s0, s1, self.fold_seed);
219            } else {
220                self.accumulator = hash_bytes_long(
221                    bytes,
222                    s0,
223                    s1,
224                    self.expand_seed2,
225                    self.expand_seed3,
226                    self.fold_seed,
227                );
228            }
229        }
230
231        #[inline(always)]
232        fn write_u8(&mut self, i: u8) {
233            self.write_num(i);
234        }
235
236        #[inline(always)]
237        fn write_u16(&mut self, i: u16) {
238            self.write_num(i);
239        }
240
241        #[inline(always)]
242        fn write_u32(&mut self, i: u32) {
243            self.write_num(i);
244        }
245
246        #[inline(always)]
247        fn write_u64(&mut self, i: u64) {
248            self.write_num(i);
249        }
250
251        #[inline(always)]
252        fn write_u128(&mut self, i: u128) {
253            let lo = i as u64;
254            let hi = (i >> 64) as u64;
255            self.accumulator = folded_multiply(lo ^ self.accumulator, hi ^ self.fold_seed);
256        }
257
258        #[inline(always)]
259        fn write_usize(&mut self, i: usize) {
260            // u128 doesn't implement From<usize>.
261            #[cfg(target_pointer_width = "32")]
262            self.write_num(i as u32);
263            #[cfg(target_pointer_width = "64")]
264            self.write_num(i as u64);
265        }
266
267        #[inline(always)]
268        fn finish(&self) -> u64 {
269            if self.sponge_len > 0 {
270                let lo = self.sponge as u64;
271                let hi = (self.sponge >> 64) as u64;
272                folded_multiply(lo ^ self.accumulator, hi ^ self.fold_seed)
273            } else {
274                self.accumulator
275            }
276        }
277    }
278}
279
280/// The foldhash implementation optimized for quality.
281pub mod quality {
282    use super::*;
283
284    pub use seed::quality::{FixedState, RandomState};
285
286    /// A [`Hasher`] instance implementing foldhash, optimized for quality.
287    ///
288    /// It can't be created directly, see [`RandomState`] or [`FixedState`].
289    #[derive(Clone)]
290    pub struct FoldHasher {
291        pub(crate) inner: fast::FoldHasher,
292    }
293
294    impl Hasher for FoldHasher {
295        #[inline(always)]
296        fn write(&mut self, bytes: &[u8]) {
297            self.inner.write(bytes);
298        }
299
300        #[inline(always)]
301        fn write_u8(&mut self, i: u8) {
302            self.inner.write_u8(i);
303        }
304
305        #[inline(always)]
306        fn write_u16(&mut self, i: u16) {
307            self.inner.write_u16(i);
308        }
309
310        #[inline(always)]
311        fn write_u32(&mut self, i: u32) {
312            self.inner.write_u32(i);
313        }
314
315        #[inline(always)]
316        fn write_u64(&mut self, i: u64) {
317            self.inner.write_u64(i);
318        }
319
320        #[inline(always)]
321        fn write_u128(&mut self, i: u128) {
322            self.inner.write_u128(i);
323        }
324
325        #[inline(always)]
326        fn write_usize(&mut self, i: usize) {
327            self.inner.write_usize(i);
328        }
329
330        #[inline(always)]
331        fn finish(&self) -> u64 {
332            folded_multiply(self.inner.finish(), ARBITRARY0)
333        }
334    }
335}
336
337/// Hashes strings >= 16 bytes, has unspecified behavior when bytes.len() < 16.
338fn hash_bytes_medium(bytes: &[u8], mut s0: u64, mut s1: u64, fold_seed: u64) -> u64 {
339    // Process 32 bytes per iteration, 16 bytes from the start, 16 bytes from
340    // the end. On the last iteration these two chunks can overlap, but that is
341    // perfectly fine.
342    let left_to_right = bytes.chunks_exact(16);
343    let mut right_to_left = bytes.rchunks_exact(16);
344    for lo in left_to_right {
345        let hi = right_to_left.next().unwrap();
346        let unconsumed_start = lo.as_ptr();
347        let unconsumed_end = hi.as_ptr_range().end;
348        if unconsumed_start >= unconsumed_end {
349            break;
350        }
351
352        let a = u64::from_ne_bytes(lo[0..8].try_into().unwrap());
353        let b = u64::from_ne_bytes(lo[8..16].try_into().unwrap());
354        let c = u64::from_ne_bytes(hi[0..8].try_into().unwrap());
355        let d = u64::from_ne_bytes(hi[8..16].try_into().unwrap());
356        s0 = folded_multiply(a ^ s0, c ^ fold_seed);
357        s1 = folded_multiply(b ^ s1, d ^ fold_seed);
358    }
359
360    s0 ^ s1
361}
362
363/// Hashes strings >= 16 bytes, has unspecified behavior when bytes.len() < 16.
364#[cold]
365#[inline(never)]
366fn hash_bytes_long(
367    bytes: &[u8],
368    mut s0: u64,
369    mut s1: u64,
370    mut s2: u64,
371    mut s3: u64,
372    fold_seed: u64,
373) -> u64 {
374    let chunks = bytes.chunks_exact(64);
375    let remainder = chunks.remainder().len();
376    for chunk in chunks {
377        let a = u64::from_ne_bytes(chunk[0..8].try_into().unwrap());
378        let b = u64::from_ne_bytes(chunk[8..16].try_into().unwrap());
379        let c = u64::from_ne_bytes(chunk[16..24].try_into().unwrap());
380        let d = u64::from_ne_bytes(chunk[24..32].try_into().unwrap());
381        let e = u64::from_ne_bytes(chunk[32..40].try_into().unwrap());
382        let f = u64::from_ne_bytes(chunk[40..48].try_into().unwrap());
383        let g = u64::from_ne_bytes(chunk[48..56].try_into().unwrap());
384        let h = u64::from_ne_bytes(chunk[56..64].try_into().unwrap());
385        s0 = folded_multiply(a ^ s0, e ^ fold_seed);
386        s1 = folded_multiply(b ^ s1, f ^ fold_seed);
387        s2 = folded_multiply(c ^ s2, g ^ fold_seed);
388        s3 = folded_multiply(d ^ s3, h ^ fold_seed);
389    }
390    s0 ^= s2;
391    s1 ^= s3;
392
393    if remainder > 0 {
394        hash_bytes_medium(&bytes[bytes.len() - remainder.max(16)..], s0, s1, fold_seed)
395    } else {
396        s0 ^ s1
397    }
398}