futures_lite/future.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
//! Combinators for the [`Future`] trait.
//!
//! # Examples
//!
//! ```
//! use futures_lite::future;
//!
//! # spin_on::spin_on(async {
//! for step in 0..3 {
//! println!("step {}", step);
//!
//! // Give other tasks a chance to run.
//! future::yield_now().await;
//! }
//! # });
//! ```
#[cfg(all(not(feature = "std"), feature = "alloc"))]
extern crate alloc;
#[doc(no_inline)]
pub use core::future::{pending, ready, Future, Pending, Ready};
use core::fmt;
use core::pin::Pin;
use pin_project_lite::pin_project;
#[cfg(feature = "std")]
use std::{
any::Any,
panic::{catch_unwind, AssertUnwindSafe, UnwindSafe},
};
#[cfg(feature = "race")]
use fastrand::Rng;
#[cfg(all(not(feature = "std"), feature = "alloc"))]
use alloc::boxed::Box;
use core::task::{Context, Poll};
/// Blocks the current thread on a future.
///
/// # Examples
///
/// ```
/// use futures_lite::future;
///
/// let val = future::block_on(async {
/// 1 + 2
/// });
///
/// assert_eq!(val, 3);
/// ```
#[cfg(feature = "std")]
pub fn block_on<T>(future: impl Future<Output = T>) -> T {
use core::cell::RefCell;
use core::task::Waker;
use parking::Parker;
// Pin the future on the stack.
crate::pin!(future);
// Creates a parker and an associated waker that unparks it.
fn parker_and_waker() -> (Parker, Waker) {
let parker = Parker::new();
let unparker = parker.unparker();
let waker = Waker::from(unparker);
(parker, waker)
}
thread_local! {
// Cached parker and waker for efficiency.
static CACHE: RefCell<(Parker, Waker)> = RefCell::new(parker_and_waker());
}
CACHE.with(|cache| {
// Try grabbing the cached parker and waker.
let tmp_cached;
let tmp_fresh;
let (parker, waker) = match cache.try_borrow_mut() {
Ok(cache) => {
// Use the cached parker and waker.
tmp_cached = cache;
&*tmp_cached
}
Err(_) => {
// Looks like this is a recursive `block_on()` call.
// Create a fresh parker and waker.
tmp_fresh = parker_and_waker();
&tmp_fresh
}
};
let cx = &mut Context::from_waker(waker);
// Keep polling until the future is ready.
loop {
match future.as_mut().poll(cx) {
Poll::Ready(output) => return output,
Poll::Pending => parker.park(),
}
}
})
}
/// Polls a future just once and returns an [`Option`] with the result.
///
/// # Examples
///
/// ```
/// use futures_lite::future;
///
/// # spin_on::spin_on(async {
/// assert_eq!(future::poll_once(future::pending::<()>()).await, None);
/// assert_eq!(future::poll_once(future::ready(42)).await, Some(42));
/// # })
/// ```
pub fn poll_once<T, F>(f: F) -> PollOnce<F>
where
F: Future<Output = T>,
{
PollOnce { f }
}
pin_project! {
/// Future for the [`poll_once()`] function.
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct PollOnce<F> {
#[pin]
f: F,
}
}
impl<F> fmt::Debug for PollOnce<F> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("PollOnce").finish()
}
}
impl<T, F> Future for PollOnce<F>
where
F: Future<Output = T>,
{
type Output = Option<T>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
match self.project().f.poll(cx) {
Poll::Ready(t) => Poll::Ready(Some(t)),
Poll::Pending => Poll::Ready(None),
}
}
}
/// Creates a future from a function returning [`Poll`].
///
/// # Examples
///
/// ```
/// use futures_lite::future;
/// use std::task::{Context, Poll};
///
/// # spin_on::spin_on(async {
/// fn f(_: &mut Context<'_>) -> Poll<i32> {
/// Poll::Ready(7)
/// }
///
/// assert_eq!(future::poll_fn(f).await, 7);
/// # })
/// ```
pub fn poll_fn<T, F>(f: F) -> PollFn<F>
where
F: FnMut(&mut Context<'_>) -> Poll<T>,
{
PollFn { f }
}
pin_project! {
/// Future for the [`poll_fn()`] function.
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct PollFn<F> {
f: F,
}
}
impl<F> fmt::Debug for PollFn<F> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("PollFn").finish()
}
}
impl<T, F> Future for PollFn<F>
where
F: FnMut(&mut Context<'_>) -> Poll<T>,
{
type Output = T;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<T> {
let this = self.project();
(this.f)(cx)
}
}
/// Wakes the current task and returns [`Poll::Pending`] once.
///
/// This function is useful when we want to cooperatively give time to the task scheduler. It is
/// generally a good idea to yield inside loops because that way we make sure long-running tasks
/// don't prevent other tasks from running.
///
/// # Examples
///
/// ```
/// use futures_lite::future;
///
/// # spin_on::spin_on(async {
/// future::yield_now().await;
/// # })
/// ```
pub fn yield_now() -> YieldNow {
YieldNow(false)
}
/// Future for the [`yield_now()`] function.
#[derive(Debug)]
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct YieldNow(bool);
impl Future for YieldNow {
type Output = ();
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
if !self.0 {
self.0 = true;
cx.waker().wake_by_ref();
Poll::Pending
} else {
Poll::Ready(())
}
}
}
/// Joins two futures, waiting for both to complete.
///
/// # Examples
///
/// ```
/// use futures_lite::future;
///
/// # spin_on::spin_on(async {
/// let a = async { 1 };
/// let b = async { 2 };
///
/// assert_eq!(future::zip(a, b).await, (1, 2));
/// # })
/// ```
pub fn zip<F1, F2>(future1: F1, future2: F2) -> Zip<F1, F2>
where
F1: Future,
F2: Future,
{
Zip {
future1,
future2,
output1: None,
output2: None,
}
}
pin_project! {
/// Future for the [`zip()`] function.
#[derive(Debug)]
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct Zip<F1, F2>
where
F1: Future,
F2: Future,
{
#[pin]
future1: F1,
output1: Option<F1::Output>,
#[pin]
future2: F2,
output2: Option<F2::Output>,
}
}
/// Extracts the contents of two options and zips them, handling `(Some(_), None)` cases
fn take_zip_from_parts<T1, T2>(o1: &mut Option<T1>, o2: &mut Option<T2>) -> Poll<(T1, T2)> {
match (o1.take(), o2.take()) {
(Some(t1), Some(t2)) => Poll::Ready((t1, t2)),
(o1x, o2x) => {
*o1 = o1x;
*o2 = o2x;
Poll::Pending
}
}
}
impl<F1, F2> Future for Zip<F1, F2>
where
F1: Future,
F2: Future,
{
type Output = (F1::Output, F2::Output);
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
if this.output1.is_none() {
if let Poll::Ready(out) = this.future1.poll(cx) {
*this.output1 = Some(out);
}
}
if this.output2.is_none() {
if let Poll::Ready(out) = this.future2.poll(cx) {
*this.output2 = Some(out);
}
}
take_zip_from_parts(this.output1, this.output2)
}
}
/// Joins two fallible futures, waiting for both to complete or one of them to error.
///
/// # Examples
///
/// ```
/// use futures_lite::future;
///
/// # spin_on::spin_on(async {
/// let a = async { Ok::<i32, i32>(1) };
/// let b = async { Err::<i32, i32>(2) };
///
/// assert_eq!(future::try_zip(a, b).await, Err(2));
/// # })
/// ```
pub fn try_zip<T1, T2, E, F1, F2>(future1: F1, future2: F2) -> TryZip<F1, T1, F2, T2>
where
F1: Future<Output = Result<T1, E>>,
F2: Future<Output = Result<T2, E>>,
{
TryZip {
future1,
future2,
output1: None,
output2: None,
}
}
pin_project! {
/// Future for the [`try_zip()`] function.
#[derive(Debug)]
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct TryZip<F1, T1, F2, T2> {
#[pin]
future1: F1,
output1: Option<T1>,
#[pin]
future2: F2,
output2: Option<T2>,
}
}
impl<T1, T2, E, F1, F2> Future for TryZip<F1, T1, F2, T2>
where
F1: Future<Output = Result<T1, E>>,
F2: Future<Output = Result<T2, E>>,
{
type Output = Result<(T1, T2), E>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
if this.output1.is_none() {
if let Poll::Ready(out) = this.future1.poll(cx) {
match out {
Ok(t) => *this.output1 = Some(t),
Err(err) => return Poll::Ready(Err(err)),
}
}
}
if this.output2.is_none() {
if let Poll::Ready(out) = this.future2.poll(cx) {
match out {
Ok(t) => *this.output2 = Some(t),
Err(err) => return Poll::Ready(Err(err)),
}
}
}
take_zip_from_parts(this.output1, this.output2).map(Ok)
}
}
/// Returns the result of the future that completes first, preferring `future1` if both are ready.
///
/// If you need to treat the two futures fairly without a preference for either, use the [`race()`]
/// function or the [`FutureExt::race()`] method.
///
/// # Examples
///
/// ```
/// use futures_lite::future::{self, pending, ready};
///
/// # spin_on::spin_on(async {
/// assert_eq!(future::or(ready(1), pending()).await, 1);
/// assert_eq!(future::or(pending(), ready(2)).await, 2);
///
/// // The first future wins.
/// assert_eq!(future::or(ready(1), ready(2)).await, 1);
/// # })
/// ```
pub fn or<T, F1, F2>(future1: F1, future2: F2) -> Or<F1, F2>
where
F1: Future<Output = T>,
F2: Future<Output = T>,
{
Or { future1, future2 }
}
pin_project! {
/// Future for the [`or()`] function and the [`FutureExt::or()`] method.
#[derive(Debug)]
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct Or<F1, F2> {
#[pin]
future1: F1,
#[pin]
future2: F2,
}
}
impl<T, F1, F2> Future for Or<F1, F2>
where
F1: Future<Output = T>,
F2: Future<Output = T>,
{
type Output = T;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
if let Poll::Ready(t) = this.future1.poll(cx) {
return Poll::Ready(t);
}
if let Poll::Ready(t) = this.future2.poll(cx) {
return Poll::Ready(t);
}
Poll::Pending
}
}
/// Returns the result of the future that completes first, with no preference if both are ready.
///
/// Each time [`Race`] is polled, the two inner futures are polled in random order. Therefore, no
/// future takes precedence over the other if both can complete at the same time.
///
/// If you have preference for one of the futures, use the [`or()`] function or the
/// [`FutureExt::or()`] method.
///
/// # Examples
///
/// ```
/// use futures_lite::future::{self, pending, ready};
///
/// # spin_on::spin_on(async {
/// assert_eq!(future::race(ready(1), pending()).await, 1);
/// assert_eq!(future::race(pending(), ready(2)).await, 2);
///
/// // One of the two futures is randomly chosen as the winner.
/// let res = future::race(ready(1), ready(2)).await;
/// # })
/// ```
#[cfg(all(feature = "race", feature = "std"))]
pub fn race<T, F1, F2>(future1: F1, future2: F2) -> Race<F1, F2>
where
F1: Future<Output = T>,
F2: Future<Output = T>,
{
Race {
future1,
future2,
rng: Rng::new(),
}
}
/// Race two futures but with a predefined random seed.
///
/// This function is identical to [`race`], but instead of using a random seed from a thread-local
/// RNG, it allows the user to provide a seed. It is useful for when you already have a source of
/// randomness available, or if you want to use a fixed seed.
///
/// See documentation of the [`race`] function for features and caveats.
///
/// # Examples
///
/// ```
/// use futures_lite::future::{self, pending, ready};
///
/// // A fixed seed is used, so the result is deterministic.
/// const SEED: u64 = 0x42;
///
/// # spin_on::spin_on(async {
/// assert_eq!(future::race_with_seed(ready(1), pending(), SEED).await, 1);
/// assert_eq!(future::race_with_seed(pending(), ready(2), SEED).await, 2);
///
/// // One of the two futures is randomly chosen as the winner.
/// let res = future::race_with_seed(ready(1), ready(2), SEED).await;
/// # })
/// ```
#[cfg(feature = "race")]
pub fn race_with_seed<T, F1, F2>(future1: F1, future2: F2, seed: u64) -> Race<F1, F2>
where
F1: Future<Output = T>,
F2: Future<Output = T>,
{
Race {
future1,
future2,
rng: Rng::with_seed(seed),
}
}
#[cfg(feature = "race")]
pin_project! {
/// Future for the [`race()`] function and the [`FutureExt::race()`] method.
#[derive(Debug)]
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct Race<F1, F2> {
#[pin]
future1: F1,
#[pin]
future2: F2,
rng: Rng,
}
}
#[cfg(feature = "race")]
impl<T, F1, F2> Future for Race<F1, F2>
where
F1: Future<Output = T>,
F2: Future<Output = T>,
{
type Output = T;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
if this.rng.bool() {
if let Poll::Ready(t) = this.future1.poll(cx) {
return Poll::Ready(t);
}
if let Poll::Ready(t) = this.future2.poll(cx) {
return Poll::Ready(t);
}
} else {
if let Poll::Ready(t) = this.future2.poll(cx) {
return Poll::Ready(t);
}
if let Poll::Ready(t) = this.future1.poll(cx) {
return Poll::Ready(t);
}
}
Poll::Pending
}
}
#[cfg(feature = "std")]
pin_project! {
/// Future for the [`FutureExt::catch_unwind()`] method.
#[derive(Debug)]
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct CatchUnwind<F> {
#[pin]
inner: F,
}
}
#[cfg(feature = "std")]
impl<F: Future + UnwindSafe> Future for CatchUnwind<F> {
type Output = Result<F::Output, Box<dyn Any + Send>>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
catch_unwind(AssertUnwindSafe(|| this.inner.poll(cx)))?.map(Ok)
}
}
/// Type alias for `Pin<Box<dyn Future<Output = T> + Send + 'static>>`.
///
/// # Examples
///
/// ```
/// use futures_lite::future::{self, FutureExt};
///
/// // These two lines are equivalent:
/// let f1: future::Boxed<i32> = async { 1 + 2 }.boxed();
/// let f2: future::Boxed<i32> = Box::pin(async { 1 + 2 });
/// ```
#[cfg(feature = "alloc")]
pub type Boxed<T> = Pin<Box<dyn Future<Output = T> + Send + 'static>>;
/// Type alias for `Pin<Box<dyn Future<Output = T> + 'static>>`.
///
/// # Examples
///
/// ```
/// use futures_lite::future::{self, FutureExt};
///
/// // These two lines are equivalent:
/// let f1: future::BoxedLocal<i32> = async { 1 + 2 }.boxed_local();
/// let f2: future::BoxedLocal<i32> = Box::pin(async { 1 + 2 });
/// ```
#[cfg(feature = "alloc")]
pub type BoxedLocal<T> = Pin<Box<dyn Future<Output = T> + 'static>>;
/// Extension trait for [`Future`].
pub trait FutureExt: Future {
/// A convenience for calling [`Future::poll()`] on `!`[`Unpin`] types.
fn poll(&mut self, cx: &mut Context<'_>) -> Poll<Self::Output>
where
Self: Unpin,
{
Future::poll(Pin::new(self), cx)
}
/// Returns the result of `self` or `other` future, preferring `self` if both are ready.
///
/// If you need to treat the two futures fairly without a preference for either, use the
/// [`race()`] function or the [`FutureExt::race()`] method.
///
/// # Examples
///
/// ```
/// use futures_lite::future::{pending, ready, FutureExt};
///
/// # spin_on::spin_on(async {
/// assert_eq!(ready(1).or(pending()).await, 1);
/// assert_eq!(pending().or(ready(2)).await, 2);
///
/// // The first future wins.
/// assert_eq!(ready(1).or(ready(2)).await, 1);
/// # })
/// ```
fn or<F>(self, other: F) -> Or<Self, F>
where
Self: Sized,
F: Future<Output = Self::Output>,
{
Or {
future1: self,
future2: other,
}
}
/// Returns the result of `self` or `other` future, with no preference if both are ready.
///
/// Each time [`Race`] is polled, the two inner futures are polled in random order. Therefore,
/// no future takes precedence over the other if both can complete at the same time.
///
/// If you have preference for one of the futures, use the [`or()`] function or the
/// [`FutureExt::or()`] method.
///
/// # Examples
///
/// ```
/// use futures_lite::future::{pending, ready, FutureExt};
///
/// # spin_on::spin_on(async {
/// assert_eq!(ready(1).race(pending()).await, 1);
/// assert_eq!(pending().race(ready(2)).await, 2);
///
/// // One of the two futures is randomly chosen as the winner.
/// let res = ready(1).race(ready(2)).await;
/// # })
/// ```
#[cfg(all(feature = "std", feature = "race"))]
fn race<F>(self, other: F) -> Race<Self, F>
where
Self: Sized,
F: Future<Output = Self::Output>,
{
Race {
future1: self,
future2: other,
rng: Rng::new(),
}
}
/// Catches panics while polling the future.
///
/// # Examples
///
/// ```
/// use futures_lite::future::FutureExt;
///
/// # spin_on::spin_on(async {
/// let fut1 = async {}.catch_unwind();
/// let fut2 = async { panic!() }.catch_unwind();
///
/// assert!(fut1.await.is_ok());
/// assert!(fut2.await.is_err());
/// # })
/// ```
#[cfg(feature = "std")]
fn catch_unwind(self) -> CatchUnwind<Self>
where
Self: Sized + UnwindSafe,
{
CatchUnwind { inner: self }
}
/// Boxes the future and changes its type to `dyn Future + Send + 'a`.
///
/// # Examples
///
/// ```
/// use futures_lite::future::{self, FutureExt};
///
/// # spin_on::spin_on(async {
/// let a = future::ready('a');
/// let b = future::pending();
///
/// // Futures of different types can be stored in
/// // the same collection when they are boxed:
/// let futures = vec![a.boxed(), b.boxed()];
/// # })
/// ```
#[cfg(feature = "alloc")]
fn boxed<'a>(self) -> Pin<Box<dyn Future<Output = Self::Output> + Send + 'a>>
where
Self: Sized + Send + 'a,
{
Box::pin(self)
}
/// Boxes the future and changes its type to `dyn Future + 'a`.
///
/// # Examples
///
/// ```
/// use futures_lite::future::{self, FutureExt};
///
/// # spin_on::spin_on(async {
/// let a = future::ready('a');
/// let b = future::pending();
///
/// // Futures of different types can be stored in
/// // the same collection when they are boxed:
/// let futures = vec![a.boxed_local(), b.boxed_local()];
/// # })
/// ```
#[cfg(feature = "alloc")]
fn boxed_local<'a>(self) -> Pin<Box<dyn Future<Output = Self::Output> + 'a>>
where
Self: Sized + 'a,
{
Box::pin(self)
}
}
impl<F: Future + ?Sized> FutureExt for F {}