image/
flat.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
//! Image representations for ffi.
//!
//! # Usage
//!
//! Imagine you want to offer a very simple ffi interface: The caller provides an image buffer and
//! your program creates a thumbnail from it and dumps that image as `png`. This module is designed
//! to help you transition from raw memory data to Rust representation.
//!
//! ```no_run
//! use std::ptr;
//! use std::slice;
//! use image::Rgb;
//! use image::flat::{FlatSamples, SampleLayout};
//! use image::imageops::thumbnail;
//!
//! #[no_mangle]
//! pub extern "C" fn store_rgb8_compressed(
//!     data: *const u8, len: usize,
//!     layout: *const SampleLayout
//! )
//!     -> bool
//! {
//!     let samples = unsafe { slice::from_raw_parts(data, len) };
//!     let layout = unsafe { ptr::read(layout) };
//!
//!     let buffer = FlatSamples {
//!         samples,
//!         layout,
//!         color_hint: None,
//!     };
//!
//!     let view = match buffer.as_view::<Rgb<u8>>() {
//!         Err(_) => return false, // Invalid layout.
//!         Ok(view) => view,
//!     };
//!
//!     thumbnail(&view, 64, 64)
//!         .save("output.png")
//!         .map(|_| true)
//!         .unwrap_or_else(|_| false)
//! }
//! ```
//!
use std::marker::PhantomData;
use std::ops::{Deref, Index, IndexMut};
use std::{cmp, error, fmt};

use num_traits::Zero;

use crate::color::ColorType;
use crate::error::{
    DecodingError, ImageError, ImageFormatHint, ParameterError, ParameterErrorKind,
    UnsupportedError, UnsupportedErrorKind,
};
use crate::image::{GenericImage, GenericImageView};
use crate::traits::Pixel;
use crate::ImageBuffer;

/// A flat buffer over a (multi channel) image.
///
/// In contrast to `ImageBuffer`, this representation of a sample collection is much more lenient
/// in the layout thereof. It also allows grouping by color planes instead of by pixel as long as
/// the strides of each extent are constant. This struct itself has no invariants on the strides
/// but not every possible configuration can be interpreted as a [`GenericImageView`] or
/// [`GenericImage`]. The methods [`as_view`] and [`as_view_mut`] construct the actual implementors
/// of these traits and perform necessary checks. To manually perform this and other layout checks
/// use [`is_normal`] or [`has_aliased_samples`].
///
/// Instances can be constructed not only by hand. The buffer instances returned by library
/// functions such as [`ImageBuffer::as_flat_samples`] guarantee that the conversion to a generic
/// image or generic view succeeds. A very different constructor is [`with_monocolor`]. It uses a
/// single pixel as the backing storage for an arbitrarily sized read-only raster by mapping each
/// pixel to the same samples by setting some strides to `0`.
///
/// [`GenericImage`]: ../trait.GenericImage.html
/// [`GenericImageView`]: ../trait.GenericImageView.html
/// [`ImageBuffer::as_flat_samples`]: ../struct.ImageBuffer.html#method.as_flat_samples
/// [`is_normal`]: #method.is_normal
/// [`has_aliased_samples`]: #method.has_aliased_samples
/// [`as_view`]: #method.as_view
/// [`as_view_mut`]: #method.as_view_mut
/// [`with_monocolor`]: #method.with_monocolor
#[derive(Clone, Debug)]
pub struct FlatSamples<Buffer> {
    /// Underlying linear container holding sample values.
    pub samples: Buffer,

    /// A `repr(C)` description of the layout of buffer samples.
    pub layout: SampleLayout,

    /// Supplementary color information.
    ///
    /// You may keep this as `None` in most cases. This is NOT checked in `View` or other
    /// converters. It is intended mainly as a way for types that convert to this buffer type to
    /// attach their otherwise static color information. A dynamic image representation could
    /// however use this to resolve representational ambiguities such as the order of RGB channels.
    pub color_hint: Option<ColorType>,
}

/// A ffi compatible description of a sample buffer.
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct SampleLayout {
    /// The number of channels in the color representation of the image.
    pub channels: u8,

    /// Add this to an index to get to the sample in the next channel.
    pub channel_stride: usize,

    /// The width of the represented image.
    pub width: u32,

    /// Add this to an index to get to the next sample in x-direction.
    pub width_stride: usize,

    /// The height of the represented image.
    pub height: u32,

    /// Add this to an index to get to the next sample in y-direction.
    pub height_stride: usize,
}

/// Helper struct for an unnamed (stride, length) pair.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
struct Dim(usize, usize);

impl SampleLayout {
    /// Describe a row-major image packed in all directions.
    ///
    /// The resulting will surely be `NormalForm::RowMajorPacked`. It can therefore be converted to
    /// safely to an `ImageBuffer` with a large enough underlying buffer.
    ///
    /// ```
    /// # use image::flat::{NormalForm, SampleLayout};
    /// let layout = SampleLayout::row_major_packed(3, 640, 480);
    /// assert!(layout.is_normal(NormalForm::RowMajorPacked));
    /// ```
    ///
    /// # Panics
    ///
    /// On platforms where `usize` has the same size as `u32` this panics when the resulting stride
    /// in the `height` direction would be larger than `usize::MAX`. On other platforms
    /// where it can surely accommodate `u8::MAX * u32::MAX, this can never happen.
    #[must_use]
    pub fn row_major_packed(channels: u8, width: u32, height: u32) -> Self {
        let height_stride = (channels as usize).checked_mul(width as usize).expect(
            "Row major packed image can not be described because it does not fit into memory",
        );
        SampleLayout {
            channels,
            channel_stride: 1,
            width,
            width_stride: channels as usize,
            height,
            height_stride,
        }
    }

    /// Describe a column-major image packed in all directions.
    ///
    /// The resulting will surely be `NormalForm::ColumnMajorPacked`. This is not particularly
    /// useful for conversion but can be used to describe such a buffer without pitfalls.
    ///
    /// ```
    /// # use image::flat::{NormalForm, SampleLayout};
    /// let layout = SampleLayout::column_major_packed(3, 640, 480);
    /// assert!(layout.is_normal(NormalForm::ColumnMajorPacked));
    /// ```
    ///
    /// # Panics
    ///
    /// On platforms where `usize` has the same size as `u32` this panics when the resulting stride
    /// in the `width` direction would be larger than `usize::MAX`. On other platforms
    /// where it can surely accommodate `u8::MAX * u32::MAX, this can never happen.
    #[must_use]
    pub fn column_major_packed(channels: u8, width: u32, height: u32) -> Self {
        let width_stride = (channels as usize).checked_mul(height as usize).expect(
            "Column major packed image can not be described because it does not fit into memory",
        );
        SampleLayout {
            channels,
            channel_stride: 1,
            height,
            height_stride: channels as usize,
            width,
            width_stride,
        }
    }

    /// Get the strides for indexing matrix-like `[(c, w, h)]`.
    ///
    /// For a row-major layout with grouped samples, this tuple is strictly
    /// increasing.
    #[must_use]
    pub fn strides_cwh(&self) -> (usize, usize, usize) {
        (self.channel_stride, self.width_stride, self.height_stride)
    }

    /// Get the dimensions `(channels, width, height)`.
    ///
    /// The interface is optimized for use with `strides_cwh` instead. The channel extent will be
    /// before width and height.
    #[must_use]
    pub fn extents(&self) -> (usize, usize, usize) {
        (
            self.channels as usize,
            self.width as usize,
            self.height as usize,
        )
    }

    /// Tuple of bounds in the order of coordinate inputs.
    ///
    /// This function should be used whenever working with image coordinates opposed to buffer
    /// coordinates. The only difference compared to `extents` is the output type.
    #[must_use]
    pub fn bounds(&self) -> (u8, u32, u32) {
        (self.channels, self.width, self.height)
    }

    /// Get the minimum length of a buffer such that all in-bounds samples have valid indices.
    ///
    /// This method will allow zero strides, allowing compact representations of monochrome images.
    /// To check that no aliasing occurs, try `check_alias_invariants`. For compact images (no
    /// aliasing and no unindexed samples) this is `width*height*channels`. But for both of the
    /// other cases, the reasoning is slightly more involved.
    ///
    /// # Explanation
    ///
    /// Note that there is a difference between `min_length` and the index of the sample
    /// 'one-past-the-end`. This is due to strides that may be larger than the dimension below.
    ///
    /// ## Example with holes
    ///
    /// Let's look at an example of a grayscale image with
    /// * `width_stride = 1`
    /// * `width = 2`
    /// * `height_stride = 3`
    /// * `height = 2`
    ///
    /// ```text
    /// | x x   | x x m | $
    ///  min_length m ^
    ///                   ^ one-past-the-end $
    /// ```
    ///
    /// The difference is also extreme for empty images with large strides. The one-past-the-end
    /// sample index is still as large as the largest of these strides while `min_length = 0`.
    ///
    /// ## Example with aliasing
    ///
    /// The concept gets even more important when you allow samples to alias each other. Here we
    /// have the buffer of a small grayscale image where this is the case, this time we will first
    /// show the buffer and then the individual rows below.
    ///
    /// * `width_stride = 1`
    /// * `width = 3`
    /// * `height_stride = 2`
    /// * `height = 2`
    ///
    /// ```text
    ///  1 2 3 4 5 m
    /// |1 2 3| row one
    ///     |3 4 5| row two
    ///            ^ m min_length
    ///          ^ ??? one-past-the-end
    /// ```
    ///
    /// This time 'one-past-the-end' is not even simply the largest stride times the extent of its
    /// dimension. That still points inside the image because `height*height_stride = 4` but also
    /// `index_of(1, 2) = 4`.
    #[must_use]
    pub fn min_length(&self) -> Option<usize> {
        if self.width == 0 || self.height == 0 || self.channels == 0 {
            return Some(0);
        }

        self.index(self.channels - 1, self.width - 1, self.height - 1)
            .and_then(|idx| idx.checked_add(1))
    }

    /// Check if a buffer of length `len` is large enough.
    #[must_use]
    pub fn fits(&self, len: usize) -> bool {
        self.min_length().map_or(false, |min| len >= min)
    }

    /// The extents of this array, in order of increasing strides.
    fn increasing_stride_dims(&self) -> [Dim; 3] {
        // Order extents by strides, then check that each is less equal than the next stride.
        let mut grouped: [Dim; 3] = [
            Dim(self.channel_stride, self.channels as usize),
            Dim(self.width_stride, self.width as usize),
            Dim(self.height_stride, self.height as usize),
        ];

        grouped.sort();

        let (min_dim, mid_dim, max_dim) = (grouped[0], grouped[1], grouped[2]);
        assert!(min_dim.stride() <= mid_dim.stride() && mid_dim.stride() <= max_dim.stride());

        grouped
    }

    /// If there are any samples aliasing each other.
    ///
    /// If this is not the case, it would always be safe to allow mutable access to two different
    /// samples at the same time. Otherwise, this operation would need additional checks. When one
    /// dimension overflows `usize` with its stride we also consider this aliasing.
    #[must_use]
    pub fn has_aliased_samples(&self) -> bool {
        let grouped = self.increasing_stride_dims();
        let (min_dim, mid_dim, max_dim) = (grouped[0], grouped[1], grouped[2]);

        let min_size = match min_dim.checked_len() {
            None => return true,
            Some(size) => size,
        };

        let mid_size = match mid_dim.checked_len() {
            None => return true,
            Some(size) => size,
        };

        if max_dim.checked_len().is_none() {
            return true;
        };

        // Each higher dimension must walk over all of one lower dimension.
        min_size > mid_dim.stride() || mid_size > max_dim.stride()
    }

    /// Check if a buffer fulfills the requirements of a normal form.
    ///
    /// Certain conversions have preconditions on the structure of the sample buffer that are not
    /// captured (by design) by the type system. These are then checked before the conversion. Such
    /// checks can all be done in constant time and will not inspect the buffer content. You can
    /// perform these checks yourself when the conversion is not required at this moment but maybe
    /// still performed later.
    #[must_use]
    pub fn is_normal(&self, form: NormalForm) -> bool {
        if self.has_aliased_samples() {
            return false;
        }

        if form >= NormalForm::PixelPacked && self.channel_stride != 1 {
            return false;
        }

        if form >= NormalForm::ImagePacked {
            // has aliased already checked for overflows.
            let grouped = self.increasing_stride_dims();
            let (min_dim, mid_dim, max_dim) = (grouped[0], grouped[1], grouped[2]);

            if 1 != min_dim.stride() {
                return false;
            }

            if min_dim.len() != mid_dim.stride() {
                return false;
            }

            if mid_dim.len() != max_dim.stride() {
                return false;
            }
        }

        if form >= NormalForm::RowMajorPacked {
            if self.width_stride != self.channels as usize {
                return false;
            }

            if self.width as usize * self.width_stride != self.height_stride {
                return false;
            }
        }

        if form >= NormalForm::ColumnMajorPacked {
            if self.height_stride != self.channels as usize {
                return false;
            }

            if self.height as usize * self.height_stride != self.width_stride {
                return false;
            }
        }

        true
    }

    /// Check that the pixel and the channel index are in bounds.
    ///
    /// An in-bound coordinate does not yet guarantee that the corresponding calculation of a
    /// buffer index does not overflow. However, if such a buffer large enough to hold all samples
    /// actually exists in memory, this property of course follows.
    #[must_use]
    pub fn in_bounds(&self, channel: u8, x: u32, y: u32) -> bool {
        channel < self.channels && x < self.width && y < self.height
    }

    /// Resolve the index of a particular sample.
    ///
    /// `None` if the index is outside the bounds or does not fit into a `usize`.
    #[must_use]
    pub fn index(&self, channel: u8, x: u32, y: u32) -> Option<usize> {
        if !self.in_bounds(channel, x, y) {
            return None;
        }

        self.index_ignoring_bounds(channel as usize, x as usize, y as usize)
    }

    /// Get the theoretical position of sample (channel, x, y).
    ///
    /// The 'check' is for overflow during index calculation, not that it is contained in the
    /// image. Two samples may return the same index, even when one of them is out of bounds. This
    /// happens when all strides are `0`, i.e. the image is an arbitrarily large monochrome image.
    #[must_use]
    pub fn index_ignoring_bounds(&self, channel: usize, x: usize, y: usize) -> Option<usize> {
        let idx_c = channel.checked_mul(self.channel_stride);
        let idx_x = x.checked_mul(self.width_stride);
        let idx_y = y.checked_mul(self.height_stride);

        let (Some(idx_c), Some(idx_x), Some(idx_y)) = (idx_c, idx_x, idx_y) else {
            return None;
        };

        Some(0usize)
            .and_then(|b| b.checked_add(idx_c))
            .and_then(|b| b.checked_add(idx_x))
            .and_then(|b| b.checked_add(idx_y))
    }

    /// Get an index provided it is inbouds.
    ///
    /// Assumes that the image is backed by some sufficiently large buffer. Then computation can
    /// not overflow as we could represent the maximum coordinate. Since overflow is defined either
    /// way, this method can not be unsafe.
    ///
    /// Behavior is *unspecified* if the index is out of bounds or this sample layout would require
    /// a buffer larger than `isize::MAX` bytes.
    #[must_use]
    pub fn in_bounds_index(&self, c: u8, x: u32, y: u32) -> usize {
        let (c_stride, x_stride, y_stride) = self.strides_cwh();
        (y as usize * y_stride) + (x as usize * x_stride) + (c as usize * c_stride)
    }

    /// Shrink the image to the minimum of current and given extents.
    ///
    /// This does not modify the strides, so that the resulting sample buffer may have holes
    /// created by the shrinking operation. Shrinking could also lead to an non-aliasing image when
    /// samples had aliased each other before.
    pub fn shrink_to(&mut self, channels: u8, width: u32, height: u32) {
        self.channels = self.channels.min(channels);
        self.width = self.width.min(width);
        self.height = self.height.min(height);
    }
}

impl Dim {
    fn stride(self) -> usize {
        self.0
    }

    /// Length of this dimension in memory.
    fn checked_len(self) -> Option<usize> {
        self.0.checked_mul(self.1)
    }

    fn len(self) -> usize {
        self.0 * self.1
    }
}

impl<Buffer> FlatSamples<Buffer> {
    /// Get the strides for indexing matrix-like `[(c, w, h)]`.
    ///
    /// For a row-major layout with grouped samples, this tuple is strictly
    /// increasing.
    pub fn strides_cwh(&self) -> (usize, usize, usize) {
        self.layout.strides_cwh()
    }

    /// Get the dimensions `(channels, width, height)`.
    ///
    /// The interface is optimized for use with `strides_cwh` instead. The channel extent will be
    /// before width and height.
    pub fn extents(&self) -> (usize, usize, usize) {
        self.layout.extents()
    }

    /// Tuple of bounds in the order of coordinate inputs.
    ///
    /// This function should be used whenever working with image coordinates opposed to buffer
    /// coordinates. The only difference compared to `extents` is the output type.
    pub fn bounds(&self) -> (u8, u32, u32) {
        self.layout.bounds()
    }

    /// Get a reference based version.
    pub fn as_ref<T>(&self) -> FlatSamples<&[T]>
    where
        Buffer: AsRef<[T]>,
    {
        FlatSamples {
            samples: self.samples.as_ref(),
            layout: self.layout,
            color_hint: self.color_hint,
        }
    }

    /// Get a mutable reference based version.
    pub fn as_mut<T>(&mut self) -> FlatSamples<&mut [T]>
    where
        Buffer: AsMut<[T]>,
    {
        FlatSamples {
            samples: self.samples.as_mut(),
            layout: self.layout,
            color_hint: self.color_hint,
        }
    }

    /// Copy the data into an owned vector.
    pub fn to_vec<T>(&self) -> FlatSamples<Vec<T>>
    where
        T: Clone,
        Buffer: AsRef<[T]>,
    {
        FlatSamples {
            samples: self.samples.as_ref().to_vec(),
            layout: self.layout,
            color_hint: self.color_hint,
        }
    }

    /// Get a reference to a single sample.
    ///
    /// This more restrictive than the method based on `std::ops::Index` but guarantees to properly
    /// check all bounds and not panic as long as `Buffer::as_ref` does not do so.
    ///
    /// ```
    /// # use image::{RgbImage};
    /// let flat = RgbImage::new(480, 640).into_flat_samples();
    ///
    /// // Get the blue channel at (10, 10).
    /// assert!(flat.get_sample(1, 10, 10).is_some());
    ///
    /// // There is no alpha channel.
    /// assert!(flat.get_sample(3, 10, 10).is_none());
    /// ```
    ///
    /// For cases where a special buffer does not provide `AsRef<[T]>`, consider encapsulating
    /// bounds checks with `min_length` in a type similar to `View`. Then you may use
    /// `in_bounds_index` as a small speedup over the index calculation of this method which relies
    /// on `index_ignoring_bounds` since it can not have a-priori knowledge that the sample
    /// coordinate is in fact backed by any memory buffer.
    pub fn get_sample<T>(&self, channel: u8, x: u32, y: u32) -> Option<&T>
    where
        Buffer: AsRef<[T]>,
    {
        self.index(channel, x, y)
            .and_then(|idx| self.samples.as_ref().get(idx))
    }

    /// Get a mutable reference to a single sample.
    ///
    /// This more restrictive than the method based on `std::ops::IndexMut` but guarantees to
    /// properly check all bounds and not panic as long as `Buffer::as_ref` does not do so.
    /// Contrary to conversion to `ViewMut`, this does not require that samples are packed since it
    /// does not need to convert samples to a color representation.
    ///
    /// **WARNING**: Note that of course samples may alias, so that the mutable reference returned
    /// here can in fact modify more than the coordinate in the argument.
    ///
    /// ```
    /// # use image::{RgbImage};
    /// let mut flat = RgbImage::new(480, 640).into_flat_samples();
    ///
    /// // Assign some new color to the blue channel at (10, 10).
    /// *flat.get_mut_sample(1, 10, 10).unwrap() = 255;
    ///
    /// // There is no alpha channel.
    /// assert!(flat.get_mut_sample(3, 10, 10).is_none());
    /// ```
    ///
    /// For cases where a special buffer does not provide `AsRef<[T]>`, consider encapsulating
    /// bounds checks with `min_length` in a type similar to `View`. Then you may use
    /// `in_bounds_index` as a small speedup over the index calculation of this method which relies
    /// on `index_ignoring_bounds` since it can not have a-priori knowledge that the sample
    /// coordinate is in fact backed by any memory buffer.
    pub fn get_mut_sample<T>(&mut self, channel: u8, x: u32, y: u32) -> Option<&mut T>
    where
        Buffer: AsMut<[T]>,
    {
        match self.index(channel, x, y) {
            None => None,
            Some(idx) => self.samples.as_mut().get_mut(idx),
        }
    }

    /// View this buffer as an image over some type of pixel.
    ///
    /// This first ensures that all in-bounds coordinates refer to valid indices in the sample
    /// buffer. It also checks that the specified pixel format expects the same number of channels
    /// that are present in this buffer. Neither are larger nor a smaller number will be accepted.
    /// There is no automatic conversion.
    pub fn as_view<P>(&self) -> Result<View<&[P::Subpixel], P>, Error>
    where
        P: Pixel,
        Buffer: AsRef<[P::Subpixel]>,
    {
        if self.layout.channels != P::CHANNEL_COUNT {
            return Err(Error::ChannelCountMismatch(
                self.layout.channels,
                P::CHANNEL_COUNT,
            ));
        }

        let as_ref = self.samples.as_ref();
        if !self.layout.fits(as_ref.len()) {
            return Err(Error::TooLarge);
        }

        Ok(View {
            inner: FlatSamples {
                samples: as_ref,
                layout: self.layout,
                color_hint: self.color_hint,
            },
            phantom: PhantomData,
        })
    }

    /// View this buffer but keep mutability at a sample level.
    ///
    /// This is similar to `as_view` but subtly different from `as_view_mut`. The resulting type
    /// can be used as a `GenericImage` with the same prior invariants needed as for `as_view`.
    /// It can not be used as a mutable `GenericImage` but does not need channels to be packed in
    /// their pixel representation.
    ///
    /// This first ensures that all in-bounds coordinates refer to valid indices in the sample
    /// buffer. It also checks that the specified pixel format expects the same number of channels
    /// that are present in this buffer. Neither are larger nor a smaller number will be accepted.
    /// There is no automatic conversion.
    ///
    /// **WARNING**: Note that of course samples may alias, so that the mutable reference returned
    /// for one sample can in fact modify other samples as well. Sometimes exactly this is
    /// intended.
    pub fn as_view_with_mut_samples<P>(&mut self) -> Result<View<&mut [P::Subpixel], P>, Error>
    where
        P: Pixel,
        Buffer: AsMut<[P::Subpixel]>,
    {
        if self.layout.channels != P::CHANNEL_COUNT {
            return Err(Error::ChannelCountMismatch(
                self.layout.channels,
                P::CHANNEL_COUNT,
            ));
        }

        let as_mut = self.samples.as_mut();
        if !self.layout.fits(as_mut.len()) {
            return Err(Error::TooLarge);
        }

        Ok(View {
            inner: FlatSamples {
                samples: as_mut,
                layout: self.layout,
                color_hint: self.color_hint,
            },
            phantom: PhantomData,
        })
    }

    /// Interpret this buffer as a mutable image.
    ///
    /// To succeed, the pixels in this buffer may not alias each other and the samples of each
    /// pixel must be packed (i.e. `channel_stride` is `1`). The number of channels must be
    /// consistent with the channel count expected by the pixel format.
    ///
    /// This is similar to an `ImageBuffer` except it is a temporary view that is not normalized as
    /// strongly. To get an owning version, consider copying the data into an `ImageBuffer`. This
    /// provides many more operations, is possibly faster (if not you may want to open an issue) is
    /// generally polished. You can also try to convert this buffer inline, see
    /// `ImageBuffer::from_raw`.
    pub fn as_view_mut<P>(&mut self) -> Result<ViewMut<&mut [P::Subpixel], P>, Error>
    where
        P: Pixel,
        Buffer: AsMut<[P::Subpixel]>,
    {
        if !self.layout.is_normal(NormalForm::PixelPacked) {
            return Err(Error::NormalFormRequired(NormalForm::PixelPacked));
        }

        if self.layout.channels != P::CHANNEL_COUNT {
            return Err(Error::ChannelCountMismatch(
                self.layout.channels,
                P::CHANNEL_COUNT,
            ));
        }

        let as_mut = self.samples.as_mut();
        if !self.layout.fits(as_mut.len()) {
            return Err(Error::TooLarge);
        }

        Ok(ViewMut {
            inner: FlatSamples {
                samples: as_mut,
                layout: self.layout,
                color_hint: self.color_hint,
            },
            phantom: PhantomData,
        })
    }

    /// View the samples as a slice.
    ///
    /// The slice is not limited to the region of the image and not all sample indices are valid
    /// indices into this buffer. See `image_mut_slice` as an alternative.
    pub fn as_slice<T>(&self) -> &[T]
    where
        Buffer: AsRef<[T]>,
    {
        self.samples.as_ref()
    }

    /// View the samples as a slice.
    ///
    /// The slice is not limited to the region of the image and not all sample indices are valid
    /// indices into this buffer. See `image_mut_slice` as an alternative.
    pub fn as_mut_slice<T>(&mut self) -> &mut [T]
    where
        Buffer: AsMut<[T]>,
    {
        self.samples.as_mut()
    }

    /// Return the portion of the buffer that holds sample values.
    ///
    /// This may fail when the coordinates in this image are either out-of-bounds of the underlying
    /// buffer or can not be represented. Note that the slice may have holes that do not correspond
    /// to any sample in the image represented by it.
    pub fn image_slice<T>(&self) -> Option<&[T]>
    where
        Buffer: AsRef<[T]>,
    {
        let min_length = match self.min_length() {
            None => return None,
            Some(index) => index,
        };

        let slice = self.samples.as_ref();
        if slice.len() < min_length {
            return None;
        }

        Some(&slice[..min_length])
    }

    /// Mutable portion of the buffer that holds sample values.
    pub fn image_mut_slice<T>(&mut self) -> Option<&mut [T]>
    where
        Buffer: AsMut<[T]>,
    {
        let min_length = match self.min_length() {
            None => return None,
            Some(index) => index,
        };

        let slice = self.samples.as_mut();
        if slice.len() < min_length {
            return None;
        }

        Some(&mut slice[..min_length])
    }

    /// Move the data into an image buffer.
    ///
    /// This does **not** convert the sample layout. The buffer needs to be in packed row-major form
    /// before calling this function. In case of an error, returns the buffer again so that it does
    /// not release any allocation.
    pub fn try_into_buffer<P>(self) -> Result<ImageBuffer<P, Buffer>, (Error, Self)>
    where
        P: Pixel + 'static,
        P::Subpixel: 'static,
        Buffer: Deref<Target = [P::Subpixel]>,
    {
        if !self.is_normal(NormalForm::RowMajorPacked) {
            return Err((Error::NormalFormRequired(NormalForm::RowMajorPacked), self));
        }

        if self.layout.channels != P::CHANNEL_COUNT {
            return Err((
                Error::ChannelCountMismatch(self.layout.channels, P::CHANNEL_COUNT),
                self,
            ));
        }

        if !self.fits(self.samples.deref().len()) {
            return Err((Error::TooLarge, self));
        }

        Ok(
            ImageBuffer::from_raw(self.layout.width, self.layout.height, self.samples)
                .unwrap_or_else(|| {
                    panic!("Preconditions should have been ensured before conversion")
                }),
        )
    }

    /// Get the minimum length of a buffer such that all in-bounds samples have valid indices.
    ///
    /// This method will allow zero strides, allowing compact representations of monochrome images.
    /// To check that no aliasing occurs, try `check_alias_invariants`. For compact images (no
    /// aliasing and no unindexed samples) this is `width*height*channels`. But for both of the
    /// other cases, the reasoning is slightly more involved.
    ///
    /// # Explanation
    ///
    /// Note that there is a difference between `min_length` and the index of the sample
    /// 'one-past-the-end`. This is due to strides that may be larger than the dimension below.
    ///
    /// ## Example with holes
    ///
    /// Let's look at an example of a grayscale image with
    /// * `width_stride = 1`
    /// * `width = 2`
    /// * `height_stride = 3`
    /// * `height = 2`
    ///
    /// ```text
    /// | x x   | x x m | $
    ///  min_length m ^
    ///                   ^ one-past-the-end $
    /// ```
    ///
    /// The difference is also extreme for empty images with large strides. The one-past-the-end
    /// sample index is still as large as the largest of these strides while `min_length = 0`.
    ///
    /// ## Example with aliasing
    ///
    /// The concept gets even more important when you allow samples to alias each other. Here we
    /// have the buffer of a small grayscale image where this is the case, this time we will first
    /// show the buffer and then the individual rows below.
    ///
    /// * `width_stride = 1`
    /// * `width = 3`
    /// * `height_stride = 2`
    /// * `height = 2`
    ///
    /// ```text
    ///  1 2 3 4 5 m
    /// |1 2 3| row one
    ///     |3 4 5| row two
    ///            ^ m min_length
    ///          ^ ??? one-past-the-end
    /// ```
    ///
    /// This time 'one-past-the-end' is not even simply the largest stride times the extent of its
    /// dimension. That still points inside the image because `height*height_stride = 4` but also
    /// `index_of(1, 2) = 4`.
    pub fn min_length(&self) -> Option<usize> {
        self.layout.min_length()
    }

    /// Check if a buffer of length `len` is large enough.
    pub fn fits(&self, len: usize) -> bool {
        self.layout.fits(len)
    }

    /// If there are any samples aliasing each other.
    ///
    /// If this is not the case, it would always be safe to allow mutable access to two different
    /// samples at the same time. Otherwise, this operation would need additional checks. When one
    /// dimension overflows `usize` with its stride we also consider this aliasing.
    pub fn has_aliased_samples(&self) -> bool {
        self.layout.has_aliased_samples()
    }

    /// Check if a buffer fulfills the requirements of a normal form.
    ///
    /// Certain conversions have preconditions on the structure of the sample buffer that are not
    /// captured (by design) by the type system. These are then checked before the conversion. Such
    /// checks can all be done in constant time and will not inspect the buffer content. You can
    /// perform these checks yourself when the conversion is not required at this moment but maybe
    /// still performed later.
    pub fn is_normal(&self, form: NormalForm) -> bool {
        self.layout.is_normal(form)
    }

    /// Check that the pixel and the channel index are in bounds.
    ///
    /// An in-bound coordinate does not yet guarantee that the corresponding calculation of a
    /// buffer index does not overflow. However, if such a buffer large enough to hold all samples
    /// actually exists in memory, this property of course follows.
    pub fn in_bounds(&self, channel: u8, x: u32, y: u32) -> bool {
        self.layout.in_bounds(channel, x, y)
    }

    /// Resolve the index of a particular sample.
    ///
    /// `None` if the index is outside the bounds or does not fit into a `usize`.
    pub fn index(&self, channel: u8, x: u32, y: u32) -> Option<usize> {
        self.layout.index(channel, x, y)
    }

    /// Get the theoretical position of sample (x, y, channel).
    ///
    /// The 'check' is for overflow during index calculation, not that it is contained in the
    /// image. Two samples may return the same index, even when one of them is out of bounds. This
    /// happens when all strides are `0`, i.e. the image is an arbitrarily large monochrome image.
    pub fn index_ignoring_bounds(&self, channel: usize, x: usize, y: usize) -> Option<usize> {
        self.layout.index_ignoring_bounds(channel, x, y)
    }

    /// Get an index provided it is inbouds.
    ///
    /// Assumes that the image is backed by some sufficiently large buffer. Then computation can
    /// not overflow as we could represent the maximum coordinate. Since overflow is defined either
    /// way, this method can not be unsafe.
    pub fn in_bounds_index(&self, channel: u8, x: u32, y: u32) -> usize {
        self.layout.in_bounds_index(channel, x, y)
    }

    /// Shrink the image to the minimum of current and given extents.
    ///
    /// This does not modify the strides, so that the resulting sample buffer may have holes
    /// created by the shrinking operation. Shrinking could also lead to an non-aliasing image when
    /// samples had aliased each other before.
    pub fn shrink_to(&mut self, channels: u8, width: u32, height: u32) {
        self.layout.shrink_to(channels, width, height);
    }
}

impl<'buf, Subpixel> FlatSamples<&'buf [Subpixel]> {
    /// Create a monocolor image from a single pixel.
    ///
    /// This can be used as a very cheap source of a `GenericImageView` with an arbitrary number of
    /// pixels of a single color, without any dynamic allocation.
    ///
    /// ## Examples
    ///
    /// ```
    /// # fn paint_something<T>(_: T) {}
    /// use image::{flat::FlatSamples, GenericImage, RgbImage, Rgb};
    ///
    /// let background = Rgb([20, 20, 20]);
    /// let bg = FlatSamples::with_monocolor(&background, 200, 200);;
    ///
    /// let mut image = RgbImage::new(200, 200);
    /// paint_something(&mut image);
    ///
    /// // Reset the canvas
    /// image.copy_from(&bg.as_view().unwrap(), 0, 0);
    /// ```
    pub fn with_monocolor<P>(pixel: &'buf P, width: u32, height: u32) -> Self
    where
        P: Pixel<Subpixel = Subpixel>,
        Subpixel: crate::Primitive,
    {
        FlatSamples {
            samples: pixel.channels(),
            layout: SampleLayout {
                channels: P::CHANNEL_COUNT,
                channel_stride: 1,
                width,
                width_stride: 0,
                height,
                height_stride: 0,
            },

            // TODO this value is never set. It should be set in all places where the Pixel type implements PixelWithColorType
            color_hint: None,
        }
    }
}

/// A flat buffer that can be used as an image view.
///
/// This is a nearly trivial wrapper around a buffer but at least sanitizes by checking the buffer
/// length first and constraining the pixel type.
///
/// Note that this does not eliminate panics as the `AsRef<[T]>` implementation of `Buffer` may be
/// unreliable, i.e. return different buffers at different times. This of course is a non-issue for
/// all common collections where the bounds check once must be enough.
///
/// # Inner invariants
///
/// * For all indices inside bounds, the corresponding index is valid in the buffer
/// * `P::channel_count()` agrees with `self.inner.layout.channels`
///
#[derive(Clone, Debug)]
pub struct View<Buffer, P: Pixel>
where
    Buffer: AsRef<[P::Subpixel]>,
{
    inner: FlatSamples<Buffer>,
    phantom: PhantomData<P>,
}

/// A mutable owning version of a flat buffer.
///
/// While this wraps a buffer similar to `ImageBuffer`, this is mostly intended as a utility. The
/// library endorsed normalized representation is still `ImageBuffer`. Also, the implementation of
/// `AsMut<[P::Subpixel]>` must always yield the same buffer. Therefore there is no public way to
/// construct this with an owning buffer.
///
/// # Inner invariants
///
/// * For all indices inside bounds, the corresponding index is valid in the buffer
/// * There is no aliasing of samples
/// * The samples are packed, i.e. `self.inner.layout.sample_stride == 1`
/// * `P::channel_count()` agrees with `self.inner.layout.channels`
///
#[derive(Clone, Debug)]
pub struct ViewMut<Buffer, P: Pixel>
where
    Buffer: AsMut<[P::Subpixel]>,
{
    inner: FlatSamples<Buffer>,
    phantom: PhantomData<P>,
}

/// Denotes invalid flat sample buffers when trying to convert to stricter types.
///
/// The biggest use case being `ImageBuffer` which expects closely packed
/// samples in a row major matrix representation. But this error type may be
/// resused for other import functions. A more versatile user may also try to
/// correct the underlying representation depending on the error variant.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum Error {
    /// The represented image was too large.
    ///
    /// The optional value denotes a possibly accepted maximal bound.
    TooLarge,

    /// The represented image can not use this representation.
    ///
    /// Has an additional value of the normalized form that would be accepted.
    NormalFormRequired(NormalForm),

    /// The color format did not match the channel count.
    ///
    /// In some cases you might be able to fix this by lowering the reported pixel count of the
    /// buffer without touching the strides.
    ///
    /// In very special circumstances you *may* do the opposite. This is **VERY** dangerous but not
    /// directly memory unsafe although that will likely alias pixels. One scenario is when you
    /// want to construct an `Rgba` image but have only 3 bytes per pixel and for some reason don't
    /// care about the value of the alpha channel even though you need `Rgba`.
    ChannelCountMismatch(u8, u8),

    /// Deprecated - `ChannelCountMismatch` is used instead
    WrongColor(ColorType),
}

/// Different normal forms of buffers.
///
/// A normal form is an unaliased buffer with some additional constraints.  The `ÌmageBuffer` uses
/// row major form with packed samples.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum NormalForm {
    /// No pixel aliases another.
    ///
    /// Unaliased also guarantees that all index calculations in the image bounds using
    /// `dim_index*dim_stride` (such as `x*width_stride + y*height_stride`) do not overflow.
    Unaliased,

    /// At least pixels are packed.
    ///
    /// Images of these types can wrap `[T]`-slices into the standard color types. This is a
    /// precondition for `GenericImage` which requires by-reference access to pixels.
    PixelPacked,

    /// All samples are packed.
    ///
    /// This is orthogonal to `PixelPacked`. It requires that there are no holes in the image but
    /// it is not necessary that the pixel samples themselves are adjacent. An example of this
    /// behaviour is a planar image layout.
    ImagePacked,

    /// The samples are in row-major form and all samples are packed.
    ///
    /// In addition to `PixelPacked` and `ImagePacked` this also asserts that the pixel matrix is
    /// in row-major form.
    RowMajorPacked,

    /// The samples are in column-major form and all samples are packed.
    ///
    /// In addition to `PixelPacked` and `ImagePacked` this also asserts that the pixel matrix is
    /// in column-major form.
    ColumnMajorPacked,
}

impl<Buffer, P: Pixel> View<Buffer, P>
where
    Buffer: AsRef<[P::Subpixel]>,
{
    /// Take out the sample buffer.
    ///
    /// Gives up the normalization invariants on the buffer format.
    pub fn into_inner(self) -> FlatSamples<Buffer> {
        self.inner
    }

    /// Get a reference on the inner sample descriptor.
    ///
    /// There is no mutable counterpart as modifying the buffer format, including strides and
    /// lengths, could invalidate the accessibility invariants of the `View`. It is not specified
    /// if the inner buffer is the same as the buffer of the image from which this view was
    /// created. It might have been truncated as an optimization.
    pub fn flat(&self) -> &FlatSamples<Buffer> {
        &self.inner
    }

    /// Get a reference on the inner buffer.
    ///
    /// There is no mutable counter part since it is not intended to allow you to reassign the
    /// buffer or otherwise change its size or properties.
    pub fn samples(&self) -> &Buffer {
        &self.inner.samples
    }

    /// Get a reference to a selected subpixel if it is in-bounds.
    ///
    /// This method will return `None` when the sample is out-of-bounds. All errors that could
    /// occur due to overflow have been eliminated while construction the `View`.
    pub fn get_sample(&self, channel: u8, x: u32, y: u32) -> Option<&P::Subpixel> {
        if !self.inner.in_bounds(channel, x, y) {
            return None;
        }

        let index = self.inner.in_bounds_index(channel, x, y);
        // Should always be `Some(_)` but checking is more costly.
        self.samples().as_ref().get(index)
    }

    /// Get a mutable reference to a selected subpixel if it is in-bounds.
    ///
    /// This is relevant only when constructed with `FlatSamples::as_view_with_mut_samples`.  This
    /// method will return `None` when the sample is out-of-bounds. All errors that could occur due
    /// to overflow have been eliminated while construction the `View`.
    ///
    /// **WARNING**: Note that of course samples may alias, so that the mutable reference returned
    /// here can in fact modify more than the coordinate in the argument.
    pub fn get_mut_sample(&mut self, channel: u8, x: u32, y: u32) -> Option<&mut P::Subpixel>
    where
        Buffer: AsMut<[P::Subpixel]>,
    {
        if !self.inner.in_bounds(channel, x, y) {
            return None;
        }

        let index = self.inner.in_bounds_index(channel, x, y);
        // Should always be `Some(_)` but checking is more costly.
        self.inner.samples.as_mut().get_mut(index)
    }

    /// Get the minimum length of a buffer such that all in-bounds samples have valid indices.
    ///
    /// See `FlatSamples::min_length`. This method will always succeed.
    pub fn min_length(&self) -> usize {
        self.inner.min_length().unwrap()
    }

    /// Return the portion of the buffer that holds sample values.
    ///
    /// While this can not fail–the validity of all coordinates has been validated during the
    /// conversion from `FlatSamples`–the resulting slice may still contain holes.
    pub fn image_slice(&self) -> &[P::Subpixel] {
        &self.samples().as_ref()[..self.min_length()]
    }

    /// Return the mutable portion of the buffer that holds sample values.
    ///
    /// This is relevant only when constructed with `FlatSamples::as_view_with_mut_samples`. While
    /// this can not fail–the validity of all coordinates has been validated during the conversion
    /// from `FlatSamples`–the resulting slice may still contain holes.
    pub fn image_mut_slice(&mut self) -> &mut [P::Subpixel]
    where
        Buffer: AsMut<[P::Subpixel]>,
    {
        let min_length = self.min_length();
        &mut self.inner.samples.as_mut()[..min_length]
    }

    /// Shrink the inner image.
    ///
    /// The new dimensions will be the minimum of the previous dimensions. Since the set of
    /// in-bounds pixels afterwards is a subset of the current ones, this is allowed on a `View`.
    /// Note that you can not change the number of channels as an intrinsic property of `P`.
    pub fn shrink_to(&mut self, width: u32, height: u32) {
        let channels = self.inner.layout.channels;
        self.inner.shrink_to(channels, width, height);
    }

    /// Try to convert this into an image with mutable pixels.
    ///
    /// The resulting image implements `GenericImage` in addition to `GenericImageView`. While this
    /// has mutable samples, it does not enforce that pixel can not alias and that samples are
    /// packed enough for a mutable pixel reference. This is slightly cheaper than the chain
    /// `self.into_inner().as_view_mut()` and keeps the `View` alive on failure.
    ///
    /// ```
    /// # use image::RgbImage;
    /// # use image::Rgb;
    /// let mut buffer = RgbImage::new(480, 640).into_flat_samples();
    /// let view = buffer.as_view_with_mut_samples::<Rgb<u8>>().unwrap();
    ///
    /// // Inspect some pixels, …
    ///
    /// // Doesn't fail because it was originally an `RgbImage`.
    /// let view_mut = view.try_upgrade().unwrap();
    /// ```
    pub fn try_upgrade(self) -> Result<ViewMut<Buffer, P>, (Error, Self)>
    where
        Buffer: AsMut<[P::Subpixel]>,
    {
        if !self.inner.is_normal(NormalForm::PixelPacked) {
            return Err((Error::NormalFormRequired(NormalForm::PixelPacked), self));
        }

        // No length check or channel count check required, all the same.
        Ok(ViewMut {
            inner: self.inner,
            phantom: PhantomData,
        })
    }
}

impl<Buffer, P: Pixel> ViewMut<Buffer, P>
where
    Buffer: AsMut<[P::Subpixel]>,
{
    /// Take out the sample buffer.
    ///
    /// Gives up the normalization invariants on the buffer format.
    pub fn into_inner(self) -> FlatSamples<Buffer> {
        self.inner
    }

    /// Get a reference on the sample buffer descriptor.
    ///
    /// There is no mutable counterpart as modifying the buffer format, including strides and
    /// lengths, could invalidate the accessibility invariants of the `View`. It is not specified
    /// if the inner buffer is the same as the buffer of the image from which this view was
    /// created. It might have been truncated as an optimization.
    pub fn flat(&self) -> &FlatSamples<Buffer> {
        &self.inner
    }

    /// Get a reference on the inner buffer.
    ///
    /// There is no mutable counter part since it is not intended to allow you to reassign the
    /// buffer or otherwise change its size or properties. However, its contents can be accessed
    /// mutable through a slice with `image_mut_slice`.
    pub fn samples(&self) -> &Buffer {
        &self.inner.samples
    }

    /// Get the minimum length of a buffer such that all in-bounds samples have valid indices.
    ///
    /// See `FlatSamples::min_length`. This method will always succeed.
    pub fn min_length(&self) -> usize {
        self.inner.min_length().unwrap()
    }

    /// Get a reference to a selected subpixel.
    ///
    /// This method will return `None` when the sample is out-of-bounds. All errors that could
    /// occur due to overflow have been eliminated while construction the `View`.
    pub fn get_sample(&self, channel: u8, x: u32, y: u32) -> Option<&P::Subpixel>
    where
        Buffer: AsRef<[P::Subpixel]>,
    {
        if !self.inner.in_bounds(channel, x, y) {
            return None;
        }

        let index = self.inner.in_bounds_index(channel, x, y);
        // Should always be `Some(_)` but checking is more costly.
        self.samples().as_ref().get(index)
    }

    /// Get a mutable reference to a selected sample.
    ///
    /// This method will return `None` when the sample is out-of-bounds. All errors that could
    /// occur due to overflow have been eliminated while construction the `View`.
    pub fn get_mut_sample(&mut self, channel: u8, x: u32, y: u32) -> Option<&mut P::Subpixel> {
        if !self.inner.in_bounds(channel, x, y) {
            return None;
        }

        let index = self.inner.in_bounds_index(channel, x, y);
        // Should always be `Some(_)` but checking is more costly.
        self.inner.samples.as_mut().get_mut(index)
    }

    /// Return the portion of the buffer that holds sample values.
    ///
    /// While this can not fail–the validity of all coordinates has been validated during the
    /// conversion from `FlatSamples`–the resulting slice may still contain holes.
    pub fn image_slice(&self) -> &[P::Subpixel]
    where
        Buffer: AsRef<[P::Subpixel]>,
    {
        &self.inner.samples.as_ref()[..self.min_length()]
    }

    /// Return the mutable buffer that holds sample values.
    pub fn image_mut_slice(&mut self) -> &mut [P::Subpixel] {
        let length = self.min_length();
        &mut self.inner.samples.as_mut()[..length]
    }

    /// Shrink the inner image.
    ///
    /// The new dimensions will be the minimum of the previous dimensions. Since the set of
    /// in-bounds pixels afterwards is a subset of the current ones, this is allowed on a `View`.
    /// Note that you can not change the number of channels as an intrinsic property of `P`.
    pub fn shrink_to(&mut self, width: u32, height: u32) {
        let channels = self.inner.layout.channels;
        self.inner.shrink_to(channels, width, height);
    }
}

// The out-of-bounds panic for single sample access similar to `slice::index`.
#[inline(never)]
#[cold]
fn panic_cwh_out_of_bounds(
    (c, x, y): (u8, u32, u32),
    bounds: (u8, u32, u32),
    strides: (usize, usize, usize),
) -> ! {
    panic!(
        "Sample coordinates {:?} out of sample matrix bounds {:?} with strides {:?}",
        (c, x, y),
        bounds,
        strides
    )
}

// The out-of-bounds panic for pixel access similar to `slice::index`.
#[inline(never)]
#[cold]
fn panic_pixel_out_of_bounds((x, y): (u32, u32), bounds: (u32, u32)) -> ! {
    panic!("Image index {:?} out of bounds {:?}", (x, y), bounds)
}

impl<Buffer> Index<(u8, u32, u32)> for FlatSamples<Buffer>
where
    Buffer: Index<usize>,
{
    type Output = Buffer::Output;

    /// Return a reference to a single sample at specified coordinates.
    ///
    /// # Panics
    ///
    /// When the coordinates are out of bounds or the index calculation fails.
    fn index(&self, (c, x, y): (u8, u32, u32)) -> &Self::Output {
        let bounds = self.bounds();
        let strides = self.strides_cwh();
        let index = self
            .index(c, x, y)
            .unwrap_or_else(|| panic_cwh_out_of_bounds((c, x, y), bounds, strides));
        &self.samples[index]
    }
}

impl<Buffer> IndexMut<(u8, u32, u32)> for FlatSamples<Buffer>
where
    Buffer: IndexMut<usize>,
{
    /// Return a mutable reference to a single sample at specified coordinates.
    ///
    /// # Panics
    ///
    /// When the coordinates are out of bounds or the index calculation fails.
    fn index_mut(&mut self, (c, x, y): (u8, u32, u32)) -> &mut Self::Output {
        let bounds = self.bounds();
        let strides = self.strides_cwh();
        let index = self
            .index(c, x, y)
            .unwrap_or_else(|| panic_cwh_out_of_bounds((c, x, y), bounds, strides));
        &mut self.samples[index]
    }
}

impl<Buffer, P: Pixel> GenericImageView for View<Buffer, P>
where
    Buffer: AsRef<[P::Subpixel]>,
{
    type Pixel = P;

    fn dimensions(&self) -> (u32, u32) {
        (self.inner.layout.width, self.inner.layout.height)
    }

    fn get_pixel(&self, x: u32, y: u32) -> Self::Pixel {
        if !self.inner.in_bounds(0, x, y) {
            panic_pixel_out_of_bounds((x, y), self.dimensions())
        }

        let image = self.inner.samples.as_ref();
        let base_index = self.inner.in_bounds_index(0, x, y);
        let channels = P::CHANNEL_COUNT as usize;

        let mut buffer = [Zero::zero(); 256];
        buffer
            .iter_mut()
            .enumerate()
            .take(channels)
            .for_each(|(c, to)| {
                let index = base_index + c * self.inner.layout.channel_stride;
                *to = image[index];
            });

        *P::from_slice(&buffer[..channels])
    }
}

impl<Buffer, P: Pixel> GenericImageView for ViewMut<Buffer, P>
where
    Buffer: AsMut<[P::Subpixel]> + AsRef<[P::Subpixel]>,
{
    type Pixel = P;

    fn dimensions(&self) -> (u32, u32) {
        (self.inner.layout.width, self.inner.layout.height)
    }

    fn get_pixel(&self, x: u32, y: u32) -> Self::Pixel {
        if !self.inner.in_bounds(0, x, y) {
            panic_pixel_out_of_bounds((x, y), self.dimensions())
        }

        let image = self.inner.samples.as_ref();
        let base_index = self.inner.in_bounds_index(0, x, y);
        let channels = P::CHANNEL_COUNT as usize;

        let mut buffer = [Zero::zero(); 256];
        buffer
            .iter_mut()
            .enumerate()
            .take(channels)
            .for_each(|(c, to)| {
                let index = base_index + c * self.inner.layout.channel_stride;
                *to = image[index];
            });

        *P::from_slice(&buffer[..channels])
    }
}

impl<Buffer, P: Pixel> GenericImage for ViewMut<Buffer, P>
where
    Buffer: AsMut<[P::Subpixel]> + AsRef<[P::Subpixel]>,
{
    fn get_pixel_mut(&mut self, x: u32, y: u32) -> &mut Self::Pixel {
        if !self.inner.in_bounds(0, x, y) {
            panic_pixel_out_of_bounds((x, y), self.dimensions())
        }

        let base_index = self.inner.in_bounds_index(0, x, y);
        let channel_count = <P as Pixel>::CHANNEL_COUNT as usize;
        let pixel_range = base_index..base_index + channel_count;
        P::from_slice_mut(&mut self.inner.samples.as_mut()[pixel_range])
    }

    #[allow(deprecated)]
    fn put_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel) {
        *self.get_pixel_mut(x, y) = pixel;
    }

    #[allow(deprecated)]
    fn blend_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel) {
        self.get_pixel_mut(x, y).blend(&pixel);
    }
}

impl From<Error> for ImageError {
    fn from(error: Error) -> ImageError {
        #[derive(Debug)]
        struct NormalFormRequiredError(NormalForm);
        impl fmt::Display for NormalFormRequiredError {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                write!(f, "Required sample buffer in normal form {:?}", self.0)
            }
        }
        impl error::Error for NormalFormRequiredError {}

        match error {
            Error::TooLarge => ImageError::Parameter(ParameterError::from_kind(
                ParameterErrorKind::DimensionMismatch,
            )),
            Error::NormalFormRequired(form) => ImageError::Decoding(DecodingError::new(
                ImageFormatHint::Unknown,
                NormalFormRequiredError(form),
            )),
            Error::ChannelCountMismatch(_lc, _pc) => ImageError::Parameter(
                ParameterError::from_kind(ParameterErrorKind::DimensionMismatch),
            ),
            Error::WrongColor(color) => {
                ImageError::Unsupported(UnsupportedError::from_format_and_kind(
                    ImageFormatHint::Unknown,
                    UnsupportedErrorKind::Color(color.into()),
                ))
            }
        }
    }
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            Error::TooLarge => write!(f, "The layout is too large"),
            Error::NormalFormRequired(form) => write!(
                f,
                "The layout needs to {}",
                match form {
                    NormalForm::ColumnMajorPacked => "be packed and in column major form",
                    NormalForm::ImagePacked => "be fully packed",
                    NormalForm::PixelPacked => "have packed pixels",
                    NormalForm::RowMajorPacked => "be packed and in row major form",
                    NormalForm::Unaliased => "not have any aliasing channels",
                }
            ),
            Error::ChannelCountMismatch(layout_channels, pixel_channels) => {
                write!(f, "The channel count of the chosen pixel (={pixel_channels}) does agree with the layout (={layout_channels})")
            }
            Error::WrongColor(color) => {
                write!(f, "The chosen color type does not match the hint {color:?}")
            }
        }
    }
}

impl error::Error for Error {}

impl PartialOrd for NormalForm {
    /// Compares the logical preconditions.
    ///
    /// `a < b` if the normal form `a` has less preconditions than `b`.
    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
        match (*self, *other) {
            (NormalForm::Unaliased, NormalForm::Unaliased) => Some(cmp::Ordering::Equal),
            (NormalForm::PixelPacked, NormalForm::PixelPacked) => Some(cmp::Ordering::Equal),
            (NormalForm::ImagePacked, NormalForm::ImagePacked) => Some(cmp::Ordering::Equal),
            (NormalForm::RowMajorPacked, NormalForm::RowMajorPacked) => Some(cmp::Ordering::Equal),
            (NormalForm::ColumnMajorPacked, NormalForm::ColumnMajorPacked) => {
                Some(cmp::Ordering::Equal)
            }

            (NormalForm::Unaliased, _) => Some(cmp::Ordering::Less),
            (_, NormalForm::Unaliased) => Some(cmp::Ordering::Greater),

            (NormalForm::PixelPacked, NormalForm::ColumnMajorPacked) => Some(cmp::Ordering::Less),
            (NormalForm::PixelPacked, NormalForm::RowMajorPacked) => Some(cmp::Ordering::Less),
            (NormalForm::RowMajorPacked, NormalForm::PixelPacked) => Some(cmp::Ordering::Greater),
            (NormalForm::ColumnMajorPacked, NormalForm::PixelPacked) => {
                Some(cmp::Ordering::Greater)
            }

            (NormalForm::ImagePacked, NormalForm::ColumnMajorPacked) => Some(cmp::Ordering::Less),
            (NormalForm::ImagePacked, NormalForm::RowMajorPacked) => Some(cmp::Ordering::Less),
            (NormalForm::RowMajorPacked, NormalForm::ImagePacked) => Some(cmp::Ordering::Greater),
            (NormalForm::ColumnMajorPacked, NormalForm::ImagePacked) => {
                Some(cmp::Ordering::Greater)
            }

            (NormalForm::ImagePacked, NormalForm::PixelPacked) => None,
            (NormalForm::PixelPacked, NormalForm::ImagePacked) => None,
            (NormalForm::RowMajorPacked, NormalForm::ColumnMajorPacked) => None,
            (NormalForm::ColumnMajorPacked, NormalForm::RowMajorPacked) => None,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::buffer_::GrayAlphaImage;
    use crate::color::{LumaA, Rgb};

    #[test]
    fn aliasing_view() {
        let buffer = FlatSamples {
            samples: &[42],
            layout: SampleLayout {
                channels: 3,
                channel_stride: 0,
                width: 100,
                width_stride: 0,
                height: 100,
                height_stride: 0,
            },
            color_hint: None,
        };

        let view = buffer.as_view::<Rgb<u8>>().expect("This is a valid view");
        let pixel_count = view
            .pixels()
            .inspect(|pixel| assert!(pixel.2 == Rgb([42, 42, 42])))
            .count();
        assert_eq!(pixel_count, 100 * 100);
    }

    #[test]
    fn mutable_view() {
        let mut buffer = FlatSamples {
            samples: [0; 18],
            layout: SampleLayout {
                channels: 2,
                channel_stride: 1,
                width: 3,
                width_stride: 2,
                height: 3,
                height_stride: 6,
            },
            color_hint: None,
        };

        {
            let mut view = buffer
                .as_view_mut::<LumaA<u16>>()
                .expect("This should be a valid mutable buffer");
            assert_eq!(view.dimensions(), (3, 3));
            #[allow(deprecated)]
            for i in 0..9 {
                *view.get_pixel_mut(i % 3, i / 3) = LumaA([2 * i as u16, 2 * i as u16 + 1]);
            }
        }

        buffer
            .samples
            .iter()
            .enumerate()
            .for_each(|(idx, sample)| assert_eq!(idx, *sample as usize));
    }

    #[test]
    fn normal_forms() {
        assert!(FlatSamples {
            samples: [0u8; 0],
            layout: SampleLayout {
                channels: 2,
                channel_stride: 1,
                width: 3,
                width_stride: 9,
                height: 3,
                height_stride: 28,
            },
            color_hint: None,
        }
        .is_normal(NormalForm::PixelPacked));

        assert!(FlatSamples {
            samples: [0u8; 0],
            layout: SampleLayout {
                channels: 2,
                channel_stride: 8,
                width: 4,
                width_stride: 1,
                height: 2,
                height_stride: 4,
            },
            color_hint: None,
        }
        .is_normal(NormalForm::ImagePacked));

        assert!(FlatSamples {
            samples: [0u8; 0],
            layout: SampleLayout {
                channels: 2,
                channel_stride: 1,
                width: 4,
                width_stride: 2,
                height: 2,
                height_stride: 8,
            },
            color_hint: None,
        }
        .is_normal(NormalForm::RowMajorPacked));

        assert!(FlatSamples {
            samples: [0u8; 0],
            layout: SampleLayout {
                channels: 2,
                channel_stride: 1,
                width: 4,
                width_stride: 4,
                height: 2,
                height_stride: 2,
            },
            color_hint: None,
        }
        .is_normal(NormalForm::ColumnMajorPacked));
    }

    #[test]
    fn image_buffer_conversion() {
        let expected_layout = SampleLayout {
            channels: 2,
            channel_stride: 1,
            width: 4,
            width_stride: 2,
            height: 2,
            height_stride: 8,
        };

        let initial = GrayAlphaImage::new(expected_layout.width, expected_layout.height);
        let buffer = initial.into_flat_samples();

        assert_eq!(buffer.layout, expected_layout);

        let _: GrayAlphaImage = buffer.try_into_buffer().unwrap_or_else(|(error, _)| {
            panic!("Expected buffer to be convertible but {:?}", error)
        });
    }
}