image/flat.rs
1//! Image representations for ffi.
2//!
3//! # Usage
4//!
5//! Imagine you want to offer a very simple ffi interface: The caller provides an image buffer and
6//! your program creates a thumbnail from it and dumps that image as `png`. This module is designed
7//! to help you transition from raw memory data to Rust representation.
8//!
9//! ```no_run
10//! use std::ptr;
11//! use std::slice;
12//! use image::Rgb;
13//! use image::flat::{FlatSamples, SampleLayout};
14//! use image::imageops::thumbnail;
15//!
16//! #[no_mangle]
17//! pub extern "C" fn store_rgb8_compressed(
18//! data: *const u8, len: usize,
19//! layout: *const SampleLayout
20//! )
21//! -> bool
22//! {
23//! let samples = unsafe { slice::from_raw_parts(data, len) };
24//! let layout = unsafe { ptr::read(layout) };
25//!
26//! let buffer = FlatSamples {
27//! samples,
28//! layout,
29//! color_hint: None,
30//! };
31//!
32//! let view = match buffer.as_view::<Rgb<u8>>() {
33//! Err(_) => return false, // Invalid layout.
34//! Ok(view) => view,
35//! };
36//!
37//! thumbnail(&view, 64, 64)
38//! .save("output.png")
39//! .map(|_| true)
40//! .unwrap_or_else(|_| false)
41//! }
42//! ```
43//!
44use std::marker::PhantomData;
45use std::ops::{Deref, Index, IndexMut};
46use std::{cmp, error, fmt};
47
48use num_traits::Zero;
49
50use crate::color::ColorType;
51use crate::error::{
52 DecodingError, ImageError, ImageFormatHint, ParameterError, ParameterErrorKind,
53 UnsupportedError, UnsupportedErrorKind,
54};
55use crate::image::{GenericImage, GenericImageView};
56use crate::traits::Pixel;
57use crate::ImageBuffer;
58
59/// A flat buffer over a (multi channel) image.
60///
61/// In contrast to `ImageBuffer`, this representation of a sample collection is much more lenient
62/// in the layout thereof. It also allows grouping by color planes instead of by pixel as long as
63/// the strides of each extent are constant. This struct itself has no invariants on the strides
64/// but not every possible configuration can be interpreted as a [`GenericImageView`] or
65/// [`GenericImage`]. The methods [`as_view`] and [`as_view_mut`] construct the actual implementors
66/// of these traits and perform necessary checks. To manually perform this and other layout checks
67/// use [`is_normal`] or [`has_aliased_samples`].
68///
69/// Instances can be constructed not only by hand. The buffer instances returned by library
70/// functions such as [`ImageBuffer::as_flat_samples`] guarantee that the conversion to a generic
71/// image or generic view succeeds. A very different constructor is [`with_monocolor`]. It uses a
72/// single pixel as the backing storage for an arbitrarily sized read-only raster by mapping each
73/// pixel to the same samples by setting some strides to `0`.
74///
75/// [`GenericImage`]: ../trait.GenericImage.html
76/// [`GenericImageView`]: ../trait.GenericImageView.html
77/// [`ImageBuffer::as_flat_samples`]: ../struct.ImageBuffer.html#method.as_flat_samples
78/// [`is_normal`]: #method.is_normal
79/// [`has_aliased_samples`]: #method.has_aliased_samples
80/// [`as_view`]: #method.as_view
81/// [`as_view_mut`]: #method.as_view_mut
82/// [`with_monocolor`]: #method.with_monocolor
83#[derive(Clone, Debug)]
84pub struct FlatSamples<Buffer> {
85 /// Underlying linear container holding sample values.
86 pub samples: Buffer,
87
88 /// A `repr(C)` description of the layout of buffer samples.
89 pub layout: SampleLayout,
90
91 /// Supplementary color information.
92 ///
93 /// You may keep this as `None` in most cases. This is NOT checked in `View` or other
94 /// converters. It is intended mainly as a way for types that convert to this buffer type to
95 /// attach their otherwise static color information. A dynamic image representation could
96 /// however use this to resolve representational ambiguities such as the order of RGB channels.
97 pub color_hint: Option<ColorType>,
98}
99
100/// A ffi compatible description of a sample buffer.
101#[repr(C)]
102#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
103pub struct SampleLayout {
104 /// The number of channels in the color representation of the image.
105 pub channels: u8,
106
107 /// Add this to an index to get to the sample in the next channel.
108 pub channel_stride: usize,
109
110 /// The width of the represented image.
111 pub width: u32,
112
113 /// Add this to an index to get to the next sample in x-direction.
114 pub width_stride: usize,
115
116 /// The height of the represented image.
117 pub height: u32,
118
119 /// Add this to an index to get to the next sample in y-direction.
120 pub height_stride: usize,
121}
122
123/// Helper struct for an unnamed (stride, length) pair.
124#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
125struct Dim(usize, usize);
126
127impl SampleLayout {
128 /// Describe a row-major image packed in all directions.
129 ///
130 /// The resulting will surely be `NormalForm::RowMajorPacked`. It can therefore be converted to
131 /// safely to an `ImageBuffer` with a large enough underlying buffer.
132 ///
133 /// ```
134 /// # use image::flat::{NormalForm, SampleLayout};
135 /// let layout = SampleLayout::row_major_packed(3, 640, 480);
136 /// assert!(layout.is_normal(NormalForm::RowMajorPacked));
137 /// ```
138 ///
139 /// # Panics
140 ///
141 /// On platforms where `usize` has the same size as `u32` this panics when the resulting stride
142 /// in the `height` direction would be larger than `usize::MAX`. On other platforms
143 /// where it can surely accommodate `u8::MAX * u32::MAX, this can never happen.
144 #[must_use]
145 pub fn row_major_packed(channels: u8, width: u32, height: u32) -> Self {
146 let height_stride = (channels as usize).checked_mul(width as usize).expect(
147 "Row major packed image can not be described because it does not fit into memory",
148 );
149 SampleLayout {
150 channels,
151 channel_stride: 1,
152 width,
153 width_stride: channels as usize,
154 height,
155 height_stride,
156 }
157 }
158
159 /// Describe a column-major image packed in all directions.
160 ///
161 /// The resulting will surely be `NormalForm::ColumnMajorPacked`. This is not particularly
162 /// useful for conversion but can be used to describe such a buffer without pitfalls.
163 ///
164 /// ```
165 /// # use image::flat::{NormalForm, SampleLayout};
166 /// let layout = SampleLayout::column_major_packed(3, 640, 480);
167 /// assert!(layout.is_normal(NormalForm::ColumnMajorPacked));
168 /// ```
169 ///
170 /// # Panics
171 ///
172 /// On platforms where `usize` has the same size as `u32` this panics when the resulting stride
173 /// in the `width` direction would be larger than `usize::MAX`. On other platforms
174 /// where it can surely accommodate `u8::MAX * u32::MAX, this can never happen.
175 #[must_use]
176 pub fn column_major_packed(channels: u8, width: u32, height: u32) -> Self {
177 let width_stride = (channels as usize).checked_mul(height as usize).expect(
178 "Column major packed image can not be described because it does not fit into memory",
179 );
180 SampleLayout {
181 channels,
182 channel_stride: 1,
183 height,
184 height_stride: channels as usize,
185 width,
186 width_stride,
187 }
188 }
189
190 /// Get the strides for indexing matrix-like `[(c, w, h)]`.
191 ///
192 /// For a row-major layout with grouped samples, this tuple is strictly
193 /// increasing.
194 #[must_use]
195 pub fn strides_cwh(&self) -> (usize, usize, usize) {
196 (self.channel_stride, self.width_stride, self.height_stride)
197 }
198
199 /// Get the dimensions `(channels, width, height)`.
200 ///
201 /// The interface is optimized for use with `strides_cwh` instead. The channel extent will be
202 /// before width and height.
203 #[must_use]
204 pub fn extents(&self) -> (usize, usize, usize) {
205 (
206 self.channels as usize,
207 self.width as usize,
208 self.height as usize,
209 )
210 }
211
212 /// Tuple of bounds in the order of coordinate inputs.
213 ///
214 /// This function should be used whenever working with image coordinates opposed to buffer
215 /// coordinates. The only difference compared to `extents` is the output type.
216 #[must_use]
217 pub fn bounds(&self) -> (u8, u32, u32) {
218 (self.channels, self.width, self.height)
219 }
220
221 /// Get the minimum length of a buffer such that all in-bounds samples have valid indices.
222 ///
223 /// This method will allow zero strides, allowing compact representations of monochrome images.
224 /// To check that no aliasing occurs, try `check_alias_invariants`. For compact images (no
225 /// aliasing and no unindexed samples) this is `width*height*channels`. But for both of the
226 /// other cases, the reasoning is slightly more involved.
227 ///
228 /// # Explanation
229 ///
230 /// Note that there is a difference between `min_length` and the index of the sample
231 /// 'one-past-the-end`. This is due to strides that may be larger than the dimension below.
232 ///
233 /// ## Example with holes
234 ///
235 /// Let's look at an example of a grayscale image with
236 /// * `width_stride = 1`
237 /// * `width = 2`
238 /// * `height_stride = 3`
239 /// * `height = 2`
240 ///
241 /// ```text
242 /// | x x | x x m | $
243 /// min_length m ^
244 /// ^ one-past-the-end $
245 /// ```
246 ///
247 /// The difference is also extreme for empty images with large strides. The one-past-the-end
248 /// sample index is still as large as the largest of these strides while `min_length = 0`.
249 ///
250 /// ## Example with aliasing
251 ///
252 /// The concept gets even more important when you allow samples to alias each other. Here we
253 /// have the buffer of a small grayscale image where this is the case, this time we will first
254 /// show the buffer and then the individual rows below.
255 ///
256 /// * `width_stride = 1`
257 /// * `width = 3`
258 /// * `height_stride = 2`
259 /// * `height = 2`
260 ///
261 /// ```text
262 /// 1 2 3 4 5 m
263 /// |1 2 3| row one
264 /// |3 4 5| row two
265 /// ^ m min_length
266 /// ^ ??? one-past-the-end
267 /// ```
268 ///
269 /// This time 'one-past-the-end' is not even simply the largest stride times the extent of its
270 /// dimension. That still points inside the image because `height*height_stride = 4` but also
271 /// `index_of(1, 2) = 4`.
272 #[must_use]
273 pub fn min_length(&self) -> Option<usize> {
274 if self.width == 0 || self.height == 0 || self.channels == 0 {
275 return Some(0);
276 }
277
278 self.index(self.channels - 1, self.width - 1, self.height - 1)
279 .and_then(|idx| idx.checked_add(1))
280 }
281
282 /// Check if a buffer of length `len` is large enough.
283 #[must_use]
284 pub fn fits(&self, len: usize) -> bool {
285 self.min_length().map_or(false, |min| len >= min)
286 }
287
288 /// The extents of this array, in order of increasing strides.
289 fn increasing_stride_dims(&self) -> [Dim; 3] {
290 // Order extents by strides, then check that each is less equal than the next stride.
291 let mut grouped: [Dim; 3] = [
292 Dim(self.channel_stride, self.channels as usize),
293 Dim(self.width_stride, self.width as usize),
294 Dim(self.height_stride, self.height as usize),
295 ];
296
297 grouped.sort();
298
299 let (min_dim, mid_dim, max_dim) = (grouped[0], grouped[1], grouped[2]);
300 assert!(min_dim.stride() <= mid_dim.stride() && mid_dim.stride() <= max_dim.stride());
301
302 grouped
303 }
304
305 /// If there are any samples aliasing each other.
306 ///
307 /// If this is not the case, it would always be safe to allow mutable access to two different
308 /// samples at the same time. Otherwise, this operation would need additional checks. When one
309 /// dimension overflows `usize` with its stride we also consider this aliasing.
310 #[must_use]
311 pub fn has_aliased_samples(&self) -> bool {
312 let grouped = self.increasing_stride_dims();
313 let (min_dim, mid_dim, max_dim) = (grouped[0], grouped[1], grouped[2]);
314
315 let min_size = match min_dim.checked_len() {
316 None => return true,
317 Some(size) => size,
318 };
319
320 let mid_size = match mid_dim.checked_len() {
321 None => return true,
322 Some(size) => size,
323 };
324
325 if max_dim.checked_len().is_none() {
326 return true;
327 };
328
329 // Each higher dimension must walk over all of one lower dimension.
330 min_size > mid_dim.stride() || mid_size > max_dim.stride()
331 }
332
333 /// Check if a buffer fulfills the requirements of a normal form.
334 ///
335 /// Certain conversions have preconditions on the structure of the sample buffer that are not
336 /// captured (by design) by the type system. These are then checked before the conversion. Such
337 /// checks can all be done in constant time and will not inspect the buffer content. You can
338 /// perform these checks yourself when the conversion is not required at this moment but maybe
339 /// still performed later.
340 #[must_use]
341 pub fn is_normal(&self, form: NormalForm) -> bool {
342 if self.has_aliased_samples() {
343 return false;
344 }
345
346 if form >= NormalForm::PixelPacked && self.channel_stride != 1 {
347 return false;
348 }
349
350 if form >= NormalForm::ImagePacked {
351 // has aliased already checked for overflows.
352 let grouped = self.increasing_stride_dims();
353 let (min_dim, mid_dim, max_dim) = (grouped[0], grouped[1], grouped[2]);
354
355 if 1 != min_dim.stride() {
356 return false;
357 }
358
359 if min_dim.len() != mid_dim.stride() {
360 return false;
361 }
362
363 if mid_dim.len() != max_dim.stride() {
364 return false;
365 }
366 }
367
368 if form >= NormalForm::RowMajorPacked {
369 if self.width_stride != self.channels as usize {
370 return false;
371 }
372
373 if self.width as usize * self.width_stride != self.height_stride {
374 return false;
375 }
376 }
377
378 if form >= NormalForm::ColumnMajorPacked {
379 if self.height_stride != self.channels as usize {
380 return false;
381 }
382
383 if self.height as usize * self.height_stride != self.width_stride {
384 return false;
385 }
386 }
387
388 true
389 }
390
391 /// Check that the pixel and the channel index are in bounds.
392 ///
393 /// An in-bound coordinate does not yet guarantee that the corresponding calculation of a
394 /// buffer index does not overflow. However, if such a buffer large enough to hold all samples
395 /// actually exists in memory, this property of course follows.
396 #[must_use]
397 pub fn in_bounds(&self, channel: u8, x: u32, y: u32) -> bool {
398 channel < self.channels && x < self.width && y < self.height
399 }
400
401 /// Resolve the index of a particular sample.
402 ///
403 /// `None` if the index is outside the bounds or does not fit into a `usize`.
404 #[must_use]
405 pub fn index(&self, channel: u8, x: u32, y: u32) -> Option<usize> {
406 if !self.in_bounds(channel, x, y) {
407 return None;
408 }
409
410 self.index_ignoring_bounds(channel as usize, x as usize, y as usize)
411 }
412
413 /// Get the theoretical position of sample (channel, x, y).
414 ///
415 /// The 'check' is for overflow during index calculation, not that it is contained in the
416 /// image. Two samples may return the same index, even when one of them is out of bounds. This
417 /// happens when all strides are `0`, i.e. the image is an arbitrarily large monochrome image.
418 #[must_use]
419 pub fn index_ignoring_bounds(&self, channel: usize, x: usize, y: usize) -> Option<usize> {
420 let idx_c = channel.checked_mul(self.channel_stride);
421 let idx_x = x.checked_mul(self.width_stride);
422 let idx_y = y.checked_mul(self.height_stride);
423
424 let (Some(idx_c), Some(idx_x), Some(idx_y)) = (idx_c, idx_x, idx_y) else {
425 return None;
426 };
427
428 Some(0usize)
429 .and_then(|b| b.checked_add(idx_c))
430 .and_then(|b| b.checked_add(idx_x))
431 .and_then(|b| b.checked_add(idx_y))
432 }
433
434 /// Get an index provided it is inbouds.
435 ///
436 /// Assumes that the image is backed by some sufficiently large buffer. Then computation can
437 /// not overflow as we could represent the maximum coordinate. Since overflow is defined either
438 /// way, this method can not be unsafe.
439 ///
440 /// Behavior is *unspecified* if the index is out of bounds or this sample layout would require
441 /// a buffer larger than `isize::MAX` bytes.
442 #[must_use]
443 pub fn in_bounds_index(&self, c: u8, x: u32, y: u32) -> usize {
444 let (c_stride, x_stride, y_stride) = self.strides_cwh();
445 (y as usize * y_stride) + (x as usize * x_stride) + (c as usize * c_stride)
446 }
447
448 /// Shrink the image to the minimum of current and given extents.
449 ///
450 /// This does not modify the strides, so that the resulting sample buffer may have holes
451 /// created by the shrinking operation. Shrinking could also lead to an non-aliasing image when
452 /// samples had aliased each other before.
453 pub fn shrink_to(&mut self, channels: u8, width: u32, height: u32) {
454 self.channels = self.channels.min(channels);
455 self.width = self.width.min(width);
456 self.height = self.height.min(height);
457 }
458}
459
460impl Dim {
461 fn stride(self) -> usize {
462 self.0
463 }
464
465 /// Length of this dimension in memory.
466 fn checked_len(self) -> Option<usize> {
467 self.0.checked_mul(self.1)
468 }
469
470 fn len(self) -> usize {
471 self.0 * self.1
472 }
473}
474
475impl<Buffer> FlatSamples<Buffer> {
476 /// Get the strides for indexing matrix-like `[(c, w, h)]`.
477 ///
478 /// For a row-major layout with grouped samples, this tuple is strictly
479 /// increasing.
480 pub fn strides_cwh(&self) -> (usize, usize, usize) {
481 self.layout.strides_cwh()
482 }
483
484 /// Get the dimensions `(channels, width, height)`.
485 ///
486 /// The interface is optimized for use with `strides_cwh` instead. The channel extent will be
487 /// before width and height.
488 pub fn extents(&self) -> (usize, usize, usize) {
489 self.layout.extents()
490 }
491
492 /// Tuple of bounds in the order of coordinate inputs.
493 ///
494 /// This function should be used whenever working with image coordinates opposed to buffer
495 /// coordinates. The only difference compared to `extents` is the output type.
496 pub fn bounds(&self) -> (u8, u32, u32) {
497 self.layout.bounds()
498 }
499
500 /// Get a reference based version.
501 pub fn as_ref<T>(&self) -> FlatSamples<&[T]>
502 where
503 Buffer: AsRef<[T]>,
504 {
505 FlatSamples {
506 samples: self.samples.as_ref(),
507 layout: self.layout,
508 color_hint: self.color_hint,
509 }
510 }
511
512 /// Get a mutable reference based version.
513 pub fn as_mut<T>(&mut self) -> FlatSamples<&mut [T]>
514 where
515 Buffer: AsMut<[T]>,
516 {
517 FlatSamples {
518 samples: self.samples.as_mut(),
519 layout: self.layout,
520 color_hint: self.color_hint,
521 }
522 }
523
524 /// Copy the data into an owned vector.
525 pub fn to_vec<T>(&self) -> FlatSamples<Vec<T>>
526 where
527 T: Clone,
528 Buffer: AsRef<[T]>,
529 {
530 FlatSamples {
531 samples: self.samples.as_ref().to_vec(),
532 layout: self.layout,
533 color_hint: self.color_hint,
534 }
535 }
536
537 /// Get a reference to a single sample.
538 ///
539 /// This more restrictive than the method based on `std::ops::Index` but guarantees to properly
540 /// check all bounds and not panic as long as `Buffer::as_ref` does not do so.
541 ///
542 /// ```
543 /// # use image::{RgbImage};
544 /// let flat = RgbImage::new(480, 640).into_flat_samples();
545 ///
546 /// // Get the blue channel at (10, 10).
547 /// assert!(flat.get_sample(1, 10, 10).is_some());
548 ///
549 /// // There is no alpha channel.
550 /// assert!(flat.get_sample(3, 10, 10).is_none());
551 /// ```
552 ///
553 /// For cases where a special buffer does not provide `AsRef<[T]>`, consider encapsulating
554 /// bounds checks with `min_length` in a type similar to `View`. Then you may use
555 /// `in_bounds_index` as a small speedup over the index calculation of this method which relies
556 /// on `index_ignoring_bounds` since it can not have a-priori knowledge that the sample
557 /// coordinate is in fact backed by any memory buffer.
558 pub fn get_sample<T>(&self, channel: u8, x: u32, y: u32) -> Option<&T>
559 where
560 Buffer: AsRef<[T]>,
561 {
562 self.index(channel, x, y)
563 .and_then(|idx| self.samples.as_ref().get(idx))
564 }
565
566 /// Get a mutable reference to a single sample.
567 ///
568 /// This more restrictive than the method based on `std::ops::IndexMut` but guarantees to
569 /// properly check all bounds and not panic as long as `Buffer::as_ref` does not do so.
570 /// Contrary to conversion to `ViewMut`, this does not require that samples are packed since it
571 /// does not need to convert samples to a color representation.
572 ///
573 /// **WARNING**: Note that of course samples may alias, so that the mutable reference returned
574 /// here can in fact modify more than the coordinate in the argument.
575 ///
576 /// ```
577 /// # use image::{RgbImage};
578 /// let mut flat = RgbImage::new(480, 640).into_flat_samples();
579 ///
580 /// // Assign some new color to the blue channel at (10, 10).
581 /// *flat.get_mut_sample(1, 10, 10).unwrap() = 255;
582 ///
583 /// // There is no alpha channel.
584 /// assert!(flat.get_mut_sample(3, 10, 10).is_none());
585 /// ```
586 ///
587 /// For cases where a special buffer does not provide `AsRef<[T]>`, consider encapsulating
588 /// bounds checks with `min_length` in a type similar to `View`. Then you may use
589 /// `in_bounds_index` as a small speedup over the index calculation of this method which relies
590 /// on `index_ignoring_bounds` since it can not have a-priori knowledge that the sample
591 /// coordinate is in fact backed by any memory buffer.
592 pub fn get_mut_sample<T>(&mut self, channel: u8, x: u32, y: u32) -> Option<&mut T>
593 where
594 Buffer: AsMut<[T]>,
595 {
596 match self.index(channel, x, y) {
597 None => None,
598 Some(idx) => self.samples.as_mut().get_mut(idx),
599 }
600 }
601
602 /// View this buffer as an image over some type of pixel.
603 ///
604 /// This first ensures that all in-bounds coordinates refer to valid indices in the sample
605 /// buffer. It also checks that the specified pixel format expects the same number of channels
606 /// that are present in this buffer. Neither are larger nor a smaller number will be accepted.
607 /// There is no automatic conversion.
608 pub fn as_view<P>(&self) -> Result<View<&[P::Subpixel], P>, Error>
609 where
610 P: Pixel,
611 Buffer: AsRef<[P::Subpixel]>,
612 {
613 if self.layout.channels != P::CHANNEL_COUNT {
614 return Err(Error::ChannelCountMismatch(
615 self.layout.channels,
616 P::CHANNEL_COUNT,
617 ));
618 }
619
620 let as_ref = self.samples.as_ref();
621 if !self.layout.fits(as_ref.len()) {
622 return Err(Error::TooLarge);
623 }
624
625 Ok(View {
626 inner: FlatSamples {
627 samples: as_ref,
628 layout: self.layout,
629 color_hint: self.color_hint,
630 },
631 phantom: PhantomData,
632 })
633 }
634
635 /// View this buffer but keep mutability at a sample level.
636 ///
637 /// This is similar to `as_view` but subtly different from `as_view_mut`. The resulting type
638 /// can be used as a `GenericImage` with the same prior invariants needed as for `as_view`.
639 /// It can not be used as a mutable `GenericImage` but does not need channels to be packed in
640 /// their pixel representation.
641 ///
642 /// This first ensures that all in-bounds coordinates refer to valid indices in the sample
643 /// buffer. It also checks that the specified pixel format expects the same number of channels
644 /// that are present in this buffer. Neither are larger nor a smaller number will be accepted.
645 /// There is no automatic conversion.
646 ///
647 /// **WARNING**: Note that of course samples may alias, so that the mutable reference returned
648 /// for one sample can in fact modify other samples as well. Sometimes exactly this is
649 /// intended.
650 pub fn as_view_with_mut_samples<P>(&mut self) -> Result<View<&mut [P::Subpixel], P>, Error>
651 where
652 P: Pixel,
653 Buffer: AsMut<[P::Subpixel]>,
654 {
655 if self.layout.channels != P::CHANNEL_COUNT {
656 return Err(Error::ChannelCountMismatch(
657 self.layout.channels,
658 P::CHANNEL_COUNT,
659 ));
660 }
661
662 let as_mut = self.samples.as_mut();
663 if !self.layout.fits(as_mut.len()) {
664 return Err(Error::TooLarge);
665 }
666
667 Ok(View {
668 inner: FlatSamples {
669 samples: as_mut,
670 layout: self.layout,
671 color_hint: self.color_hint,
672 },
673 phantom: PhantomData,
674 })
675 }
676
677 /// Interpret this buffer as a mutable image.
678 ///
679 /// To succeed, the pixels in this buffer may not alias each other and the samples of each
680 /// pixel must be packed (i.e. `channel_stride` is `1`). The number of channels must be
681 /// consistent with the channel count expected by the pixel format.
682 ///
683 /// This is similar to an `ImageBuffer` except it is a temporary view that is not normalized as
684 /// strongly. To get an owning version, consider copying the data into an `ImageBuffer`. This
685 /// provides many more operations, is possibly faster (if not you may want to open an issue) is
686 /// generally polished. You can also try to convert this buffer inline, see
687 /// `ImageBuffer::from_raw`.
688 pub fn as_view_mut<P>(&mut self) -> Result<ViewMut<&mut [P::Subpixel], P>, Error>
689 where
690 P: Pixel,
691 Buffer: AsMut<[P::Subpixel]>,
692 {
693 if !self.layout.is_normal(NormalForm::PixelPacked) {
694 return Err(Error::NormalFormRequired(NormalForm::PixelPacked));
695 }
696
697 if self.layout.channels != P::CHANNEL_COUNT {
698 return Err(Error::ChannelCountMismatch(
699 self.layout.channels,
700 P::CHANNEL_COUNT,
701 ));
702 }
703
704 let as_mut = self.samples.as_mut();
705 if !self.layout.fits(as_mut.len()) {
706 return Err(Error::TooLarge);
707 }
708
709 Ok(ViewMut {
710 inner: FlatSamples {
711 samples: as_mut,
712 layout: self.layout,
713 color_hint: self.color_hint,
714 },
715 phantom: PhantomData,
716 })
717 }
718
719 /// View the samples as a slice.
720 ///
721 /// The slice is not limited to the region of the image and not all sample indices are valid
722 /// indices into this buffer. See `image_mut_slice` as an alternative.
723 pub fn as_slice<T>(&self) -> &[T]
724 where
725 Buffer: AsRef<[T]>,
726 {
727 self.samples.as_ref()
728 }
729
730 /// View the samples as a slice.
731 ///
732 /// The slice is not limited to the region of the image and not all sample indices are valid
733 /// indices into this buffer. See `image_mut_slice` as an alternative.
734 pub fn as_mut_slice<T>(&mut self) -> &mut [T]
735 where
736 Buffer: AsMut<[T]>,
737 {
738 self.samples.as_mut()
739 }
740
741 /// Return the portion of the buffer that holds sample values.
742 ///
743 /// This may fail when the coordinates in this image are either out-of-bounds of the underlying
744 /// buffer or can not be represented. Note that the slice may have holes that do not correspond
745 /// to any sample in the image represented by it.
746 pub fn image_slice<T>(&self) -> Option<&[T]>
747 where
748 Buffer: AsRef<[T]>,
749 {
750 let min_length = match self.min_length() {
751 None => return None,
752 Some(index) => index,
753 };
754
755 let slice = self.samples.as_ref();
756 if slice.len() < min_length {
757 return None;
758 }
759
760 Some(&slice[..min_length])
761 }
762
763 /// Mutable portion of the buffer that holds sample values.
764 pub fn image_mut_slice<T>(&mut self) -> Option<&mut [T]>
765 where
766 Buffer: AsMut<[T]>,
767 {
768 let min_length = match self.min_length() {
769 None => return None,
770 Some(index) => index,
771 };
772
773 let slice = self.samples.as_mut();
774 if slice.len() < min_length {
775 return None;
776 }
777
778 Some(&mut slice[..min_length])
779 }
780
781 /// Move the data into an image buffer.
782 ///
783 /// This does **not** convert the sample layout. The buffer needs to be in packed row-major form
784 /// before calling this function. In case of an error, returns the buffer again so that it does
785 /// not release any allocation.
786 pub fn try_into_buffer<P>(self) -> Result<ImageBuffer<P, Buffer>, (Error, Self)>
787 where
788 P: Pixel + 'static,
789 P::Subpixel: 'static,
790 Buffer: Deref<Target = [P::Subpixel]>,
791 {
792 if !self.is_normal(NormalForm::RowMajorPacked) {
793 return Err((Error::NormalFormRequired(NormalForm::RowMajorPacked), self));
794 }
795
796 if self.layout.channels != P::CHANNEL_COUNT {
797 return Err((
798 Error::ChannelCountMismatch(self.layout.channels, P::CHANNEL_COUNT),
799 self,
800 ));
801 }
802
803 if !self.fits(self.samples.deref().len()) {
804 return Err((Error::TooLarge, self));
805 }
806
807 Ok(
808 ImageBuffer::from_raw(self.layout.width, self.layout.height, self.samples)
809 .unwrap_or_else(|| {
810 panic!("Preconditions should have been ensured before conversion")
811 }),
812 )
813 }
814
815 /// Get the minimum length of a buffer such that all in-bounds samples have valid indices.
816 ///
817 /// This method will allow zero strides, allowing compact representations of monochrome images.
818 /// To check that no aliasing occurs, try `check_alias_invariants`. For compact images (no
819 /// aliasing and no unindexed samples) this is `width*height*channels`. But for both of the
820 /// other cases, the reasoning is slightly more involved.
821 ///
822 /// # Explanation
823 ///
824 /// Note that there is a difference between `min_length` and the index of the sample
825 /// 'one-past-the-end`. This is due to strides that may be larger than the dimension below.
826 ///
827 /// ## Example with holes
828 ///
829 /// Let's look at an example of a grayscale image with
830 /// * `width_stride = 1`
831 /// * `width = 2`
832 /// * `height_stride = 3`
833 /// * `height = 2`
834 ///
835 /// ```text
836 /// | x x | x x m | $
837 /// min_length m ^
838 /// ^ one-past-the-end $
839 /// ```
840 ///
841 /// The difference is also extreme for empty images with large strides. The one-past-the-end
842 /// sample index is still as large as the largest of these strides while `min_length = 0`.
843 ///
844 /// ## Example with aliasing
845 ///
846 /// The concept gets even more important when you allow samples to alias each other. Here we
847 /// have the buffer of a small grayscale image where this is the case, this time we will first
848 /// show the buffer and then the individual rows below.
849 ///
850 /// * `width_stride = 1`
851 /// * `width = 3`
852 /// * `height_stride = 2`
853 /// * `height = 2`
854 ///
855 /// ```text
856 /// 1 2 3 4 5 m
857 /// |1 2 3| row one
858 /// |3 4 5| row two
859 /// ^ m min_length
860 /// ^ ??? one-past-the-end
861 /// ```
862 ///
863 /// This time 'one-past-the-end' is not even simply the largest stride times the extent of its
864 /// dimension. That still points inside the image because `height*height_stride = 4` but also
865 /// `index_of(1, 2) = 4`.
866 pub fn min_length(&self) -> Option<usize> {
867 self.layout.min_length()
868 }
869
870 /// Check if a buffer of length `len` is large enough.
871 pub fn fits(&self, len: usize) -> bool {
872 self.layout.fits(len)
873 }
874
875 /// If there are any samples aliasing each other.
876 ///
877 /// If this is not the case, it would always be safe to allow mutable access to two different
878 /// samples at the same time. Otherwise, this operation would need additional checks. When one
879 /// dimension overflows `usize` with its stride we also consider this aliasing.
880 pub fn has_aliased_samples(&self) -> bool {
881 self.layout.has_aliased_samples()
882 }
883
884 /// Check if a buffer fulfills the requirements of a normal form.
885 ///
886 /// Certain conversions have preconditions on the structure of the sample buffer that are not
887 /// captured (by design) by the type system. These are then checked before the conversion. Such
888 /// checks can all be done in constant time and will not inspect the buffer content. You can
889 /// perform these checks yourself when the conversion is not required at this moment but maybe
890 /// still performed later.
891 pub fn is_normal(&self, form: NormalForm) -> bool {
892 self.layout.is_normal(form)
893 }
894
895 /// Check that the pixel and the channel index are in bounds.
896 ///
897 /// An in-bound coordinate does not yet guarantee that the corresponding calculation of a
898 /// buffer index does not overflow. However, if such a buffer large enough to hold all samples
899 /// actually exists in memory, this property of course follows.
900 pub fn in_bounds(&self, channel: u8, x: u32, y: u32) -> bool {
901 self.layout.in_bounds(channel, x, y)
902 }
903
904 /// Resolve the index of a particular sample.
905 ///
906 /// `None` if the index is outside the bounds or does not fit into a `usize`.
907 pub fn index(&self, channel: u8, x: u32, y: u32) -> Option<usize> {
908 self.layout.index(channel, x, y)
909 }
910
911 /// Get the theoretical position of sample (x, y, channel).
912 ///
913 /// The 'check' is for overflow during index calculation, not that it is contained in the
914 /// image. Two samples may return the same index, even when one of them is out of bounds. This
915 /// happens when all strides are `0`, i.e. the image is an arbitrarily large monochrome image.
916 pub fn index_ignoring_bounds(&self, channel: usize, x: usize, y: usize) -> Option<usize> {
917 self.layout.index_ignoring_bounds(channel, x, y)
918 }
919
920 /// Get an index provided it is inbouds.
921 ///
922 /// Assumes that the image is backed by some sufficiently large buffer. Then computation can
923 /// not overflow as we could represent the maximum coordinate. Since overflow is defined either
924 /// way, this method can not be unsafe.
925 pub fn in_bounds_index(&self, channel: u8, x: u32, y: u32) -> usize {
926 self.layout.in_bounds_index(channel, x, y)
927 }
928
929 /// Shrink the image to the minimum of current and given extents.
930 ///
931 /// This does not modify the strides, so that the resulting sample buffer may have holes
932 /// created by the shrinking operation. Shrinking could also lead to an non-aliasing image when
933 /// samples had aliased each other before.
934 pub fn shrink_to(&mut self, channels: u8, width: u32, height: u32) {
935 self.layout.shrink_to(channels, width, height);
936 }
937}
938
939impl<'buf, Subpixel> FlatSamples<&'buf [Subpixel]> {
940 /// Create a monocolor image from a single pixel.
941 ///
942 /// This can be used as a very cheap source of a `GenericImageView` with an arbitrary number of
943 /// pixels of a single color, without any dynamic allocation.
944 ///
945 /// ## Examples
946 ///
947 /// ```
948 /// # fn paint_something<T>(_: T) {}
949 /// use image::{flat::FlatSamples, GenericImage, RgbImage, Rgb};
950 ///
951 /// let background = Rgb([20, 20, 20]);
952 /// let bg = FlatSamples::with_monocolor(&background, 200, 200);;
953 ///
954 /// let mut image = RgbImage::new(200, 200);
955 /// paint_something(&mut image);
956 ///
957 /// // Reset the canvas
958 /// image.copy_from(&bg.as_view().unwrap(), 0, 0);
959 /// ```
960 pub fn with_monocolor<P>(pixel: &'buf P, width: u32, height: u32) -> Self
961 where
962 P: Pixel<Subpixel = Subpixel>,
963 Subpixel: crate::Primitive,
964 {
965 FlatSamples {
966 samples: pixel.channels(),
967 layout: SampleLayout {
968 channels: P::CHANNEL_COUNT,
969 channel_stride: 1,
970 width,
971 width_stride: 0,
972 height,
973 height_stride: 0,
974 },
975
976 // TODO this value is never set. It should be set in all places where the Pixel type implements PixelWithColorType
977 color_hint: None,
978 }
979 }
980}
981
982/// A flat buffer that can be used as an image view.
983///
984/// This is a nearly trivial wrapper around a buffer but at least sanitizes by checking the buffer
985/// length first and constraining the pixel type.
986///
987/// Note that this does not eliminate panics as the `AsRef<[T]>` implementation of `Buffer` may be
988/// unreliable, i.e. return different buffers at different times. This of course is a non-issue for
989/// all common collections where the bounds check once must be enough.
990///
991/// # Inner invariants
992///
993/// * For all indices inside bounds, the corresponding index is valid in the buffer
994/// * `P::channel_count()` agrees with `self.inner.layout.channels`
995///
996#[derive(Clone, Debug)]
997pub struct View<Buffer, P: Pixel>
998where
999 Buffer: AsRef<[P::Subpixel]>,
1000{
1001 inner: FlatSamples<Buffer>,
1002 phantom: PhantomData<P>,
1003}
1004
1005/// A mutable owning version of a flat buffer.
1006///
1007/// While this wraps a buffer similar to `ImageBuffer`, this is mostly intended as a utility. The
1008/// library endorsed normalized representation is still `ImageBuffer`. Also, the implementation of
1009/// `AsMut<[P::Subpixel]>` must always yield the same buffer. Therefore there is no public way to
1010/// construct this with an owning buffer.
1011///
1012/// # Inner invariants
1013///
1014/// * For all indices inside bounds, the corresponding index is valid in the buffer
1015/// * There is no aliasing of samples
1016/// * The samples are packed, i.e. `self.inner.layout.sample_stride == 1`
1017/// * `P::channel_count()` agrees with `self.inner.layout.channels`
1018///
1019#[derive(Clone, Debug)]
1020pub struct ViewMut<Buffer, P: Pixel>
1021where
1022 Buffer: AsMut<[P::Subpixel]>,
1023{
1024 inner: FlatSamples<Buffer>,
1025 phantom: PhantomData<P>,
1026}
1027
1028/// Denotes invalid flat sample buffers when trying to convert to stricter types.
1029///
1030/// The biggest use case being `ImageBuffer` which expects closely packed
1031/// samples in a row major matrix representation. But this error type may be
1032/// resused for other import functions. A more versatile user may also try to
1033/// correct the underlying representation depending on the error variant.
1034#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
1035pub enum Error {
1036 /// The represented image was too large.
1037 ///
1038 /// The optional value denotes a possibly accepted maximal bound.
1039 TooLarge,
1040
1041 /// The represented image can not use this representation.
1042 ///
1043 /// Has an additional value of the normalized form that would be accepted.
1044 NormalFormRequired(NormalForm),
1045
1046 /// The color format did not match the channel count.
1047 ///
1048 /// In some cases you might be able to fix this by lowering the reported pixel count of the
1049 /// buffer without touching the strides.
1050 ///
1051 /// In very special circumstances you *may* do the opposite. This is **VERY** dangerous but not
1052 /// directly memory unsafe although that will likely alias pixels. One scenario is when you
1053 /// want to construct an `Rgba` image but have only 3 bytes per pixel and for some reason don't
1054 /// care about the value of the alpha channel even though you need `Rgba`.
1055 ChannelCountMismatch(u8, u8),
1056
1057 /// Deprecated - `ChannelCountMismatch` is used instead
1058 WrongColor(ColorType),
1059}
1060
1061/// Different normal forms of buffers.
1062///
1063/// A normal form is an unaliased buffer with some additional constraints. The `ÌmageBuffer` uses
1064/// row major form with packed samples.
1065#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
1066pub enum NormalForm {
1067 /// No pixel aliases another.
1068 ///
1069 /// Unaliased also guarantees that all index calculations in the image bounds using
1070 /// `dim_index*dim_stride` (such as `x*width_stride + y*height_stride`) do not overflow.
1071 Unaliased,
1072
1073 /// At least pixels are packed.
1074 ///
1075 /// Images of these types can wrap `[T]`-slices into the standard color types. This is a
1076 /// precondition for `GenericImage` which requires by-reference access to pixels.
1077 PixelPacked,
1078
1079 /// All samples are packed.
1080 ///
1081 /// This is orthogonal to `PixelPacked`. It requires that there are no holes in the image but
1082 /// it is not necessary that the pixel samples themselves are adjacent. An example of this
1083 /// behaviour is a planar image layout.
1084 ImagePacked,
1085
1086 /// The samples are in row-major form and all samples are packed.
1087 ///
1088 /// In addition to `PixelPacked` and `ImagePacked` this also asserts that the pixel matrix is
1089 /// in row-major form.
1090 RowMajorPacked,
1091
1092 /// The samples are in column-major form and all samples are packed.
1093 ///
1094 /// In addition to `PixelPacked` and `ImagePacked` this also asserts that the pixel matrix is
1095 /// in column-major form.
1096 ColumnMajorPacked,
1097}
1098
1099impl<Buffer, P: Pixel> View<Buffer, P>
1100where
1101 Buffer: AsRef<[P::Subpixel]>,
1102{
1103 /// Take out the sample buffer.
1104 ///
1105 /// Gives up the normalization invariants on the buffer format.
1106 pub fn into_inner(self) -> FlatSamples<Buffer> {
1107 self.inner
1108 }
1109
1110 /// Get a reference on the inner sample descriptor.
1111 ///
1112 /// There is no mutable counterpart as modifying the buffer format, including strides and
1113 /// lengths, could invalidate the accessibility invariants of the `View`. It is not specified
1114 /// if the inner buffer is the same as the buffer of the image from which this view was
1115 /// created. It might have been truncated as an optimization.
1116 pub fn flat(&self) -> &FlatSamples<Buffer> {
1117 &self.inner
1118 }
1119
1120 /// Get a reference on the inner buffer.
1121 ///
1122 /// There is no mutable counter part since it is not intended to allow you to reassign the
1123 /// buffer or otherwise change its size or properties.
1124 pub fn samples(&self) -> &Buffer {
1125 &self.inner.samples
1126 }
1127
1128 /// Get a reference to a selected subpixel if it is in-bounds.
1129 ///
1130 /// This method will return `None` when the sample is out-of-bounds. All errors that could
1131 /// occur due to overflow have been eliminated while construction the `View`.
1132 pub fn get_sample(&self, channel: u8, x: u32, y: u32) -> Option<&P::Subpixel> {
1133 if !self.inner.in_bounds(channel, x, y) {
1134 return None;
1135 }
1136
1137 let index = self.inner.in_bounds_index(channel, x, y);
1138 // Should always be `Some(_)` but checking is more costly.
1139 self.samples().as_ref().get(index)
1140 }
1141
1142 /// Get a mutable reference to a selected subpixel if it is in-bounds.
1143 ///
1144 /// This is relevant only when constructed with `FlatSamples::as_view_with_mut_samples`. This
1145 /// method will return `None` when the sample is out-of-bounds. All errors that could occur due
1146 /// to overflow have been eliminated while construction the `View`.
1147 ///
1148 /// **WARNING**: Note that of course samples may alias, so that the mutable reference returned
1149 /// here can in fact modify more than the coordinate in the argument.
1150 pub fn get_mut_sample(&mut self, channel: u8, x: u32, y: u32) -> Option<&mut P::Subpixel>
1151 where
1152 Buffer: AsMut<[P::Subpixel]>,
1153 {
1154 if !self.inner.in_bounds(channel, x, y) {
1155 return None;
1156 }
1157
1158 let index = self.inner.in_bounds_index(channel, x, y);
1159 // Should always be `Some(_)` but checking is more costly.
1160 self.inner.samples.as_mut().get_mut(index)
1161 }
1162
1163 /// Get the minimum length of a buffer such that all in-bounds samples have valid indices.
1164 ///
1165 /// See `FlatSamples::min_length`. This method will always succeed.
1166 pub fn min_length(&self) -> usize {
1167 self.inner.min_length().unwrap()
1168 }
1169
1170 /// Return the portion of the buffer that holds sample values.
1171 ///
1172 /// While this can not fail–the validity of all coordinates has been validated during the
1173 /// conversion from `FlatSamples`–the resulting slice may still contain holes.
1174 pub fn image_slice(&self) -> &[P::Subpixel] {
1175 &self.samples().as_ref()[..self.min_length()]
1176 }
1177
1178 /// Return the mutable portion of the buffer that holds sample values.
1179 ///
1180 /// This is relevant only when constructed with `FlatSamples::as_view_with_mut_samples`. While
1181 /// this can not fail–the validity of all coordinates has been validated during the conversion
1182 /// from `FlatSamples`–the resulting slice may still contain holes.
1183 pub fn image_mut_slice(&mut self) -> &mut [P::Subpixel]
1184 where
1185 Buffer: AsMut<[P::Subpixel]>,
1186 {
1187 let min_length = self.min_length();
1188 &mut self.inner.samples.as_mut()[..min_length]
1189 }
1190
1191 /// Shrink the inner image.
1192 ///
1193 /// The new dimensions will be the minimum of the previous dimensions. Since the set of
1194 /// in-bounds pixels afterwards is a subset of the current ones, this is allowed on a `View`.
1195 /// Note that you can not change the number of channels as an intrinsic property of `P`.
1196 pub fn shrink_to(&mut self, width: u32, height: u32) {
1197 let channels = self.inner.layout.channels;
1198 self.inner.shrink_to(channels, width, height);
1199 }
1200
1201 /// Try to convert this into an image with mutable pixels.
1202 ///
1203 /// The resulting image implements `GenericImage` in addition to `GenericImageView`. While this
1204 /// has mutable samples, it does not enforce that pixel can not alias and that samples are
1205 /// packed enough for a mutable pixel reference. This is slightly cheaper than the chain
1206 /// `self.into_inner().as_view_mut()` and keeps the `View` alive on failure.
1207 ///
1208 /// ```
1209 /// # use image::RgbImage;
1210 /// # use image::Rgb;
1211 /// let mut buffer = RgbImage::new(480, 640).into_flat_samples();
1212 /// let view = buffer.as_view_with_mut_samples::<Rgb<u8>>().unwrap();
1213 ///
1214 /// // Inspect some pixels, …
1215 ///
1216 /// // Doesn't fail because it was originally an `RgbImage`.
1217 /// let view_mut = view.try_upgrade().unwrap();
1218 /// ```
1219 pub fn try_upgrade(self) -> Result<ViewMut<Buffer, P>, (Error, Self)>
1220 where
1221 Buffer: AsMut<[P::Subpixel]>,
1222 {
1223 if !self.inner.is_normal(NormalForm::PixelPacked) {
1224 return Err((Error::NormalFormRequired(NormalForm::PixelPacked), self));
1225 }
1226
1227 // No length check or channel count check required, all the same.
1228 Ok(ViewMut {
1229 inner: self.inner,
1230 phantom: PhantomData,
1231 })
1232 }
1233}
1234
1235impl<Buffer, P: Pixel> ViewMut<Buffer, P>
1236where
1237 Buffer: AsMut<[P::Subpixel]>,
1238{
1239 /// Take out the sample buffer.
1240 ///
1241 /// Gives up the normalization invariants on the buffer format.
1242 pub fn into_inner(self) -> FlatSamples<Buffer> {
1243 self.inner
1244 }
1245
1246 /// Get a reference on the sample buffer descriptor.
1247 ///
1248 /// There is no mutable counterpart as modifying the buffer format, including strides and
1249 /// lengths, could invalidate the accessibility invariants of the `View`. It is not specified
1250 /// if the inner buffer is the same as the buffer of the image from which this view was
1251 /// created. It might have been truncated as an optimization.
1252 pub fn flat(&self) -> &FlatSamples<Buffer> {
1253 &self.inner
1254 }
1255
1256 /// Get a reference on the inner buffer.
1257 ///
1258 /// There is no mutable counter part since it is not intended to allow you to reassign the
1259 /// buffer or otherwise change its size or properties. However, its contents can be accessed
1260 /// mutable through a slice with `image_mut_slice`.
1261 pub fn samples(&self) -> &Buffer {
1262 &self.inner.samples
1263 }
1264
1265 /// Get the minimum length of a buffer such that all in-bounds samples have valid indices.
1266 ///
1267 /// See `FlatSamples::min_length`. This method will always succeed.
1268 pub fn min_length(&self) -> usize {
1269 self.inner.min_length().unwrap()
1270 }
1271
1272 /// Get a reference to a selected subpixel.
1273 ///
1274 /// This method will return `None` when the sample is out-of-bounds. All errors that could
1275 /// occur due to overflow have been eliminated while construction the `View`.
1276 pub fn get_sample(&self, channel: u8, x: u32, y: u32) -> Option<&P::Subpixel>
1277 where
1278 Buffer: AsRef<[P::Subpixel]>,
1279 {
1280 if !self.inner.in_bounds(channel, x, y) {
1281 return None;
1282 }
1283
1284 let index = self.inner.in_bounds_index(channel, x, y);
1285 // Should always be `Some(_)` but checking is more costly.
1286 self.samples().as_ref().get(index)
1287 }
1288
1289 /// Get a mutable reference to a selected sample.
1290 ///
1291 /// This method will return `None` when the sample is out-of-bounds. All errors that could
1292 /// occur due to overflow have been eliminated while construction the `View`.
1293 pub fn get_mut_sample(&mut self, channel: u8, x: u32, y: u32) -> Option<&mut P::Subpixel> {
1294 if !self.inner.in_bounds(channel, x, y) {
1295 return None;
1296 }
1297
1298 let index = self.inner.in_bounds_index(channel, x, y);
1299 // Should always be `Some(_)` but checking is more costly.
1300 self.inner.samples.as_mut().get_mut(index)
1301 }
1302
1303 /// Return the portion of the buffer that holds sample values.
1304 ///
1305 /// While this can not fail–the validity of all coordinates has been validated during the
1306 /// conversion from `FlatSamples`–the resulting slice may still contain holes.
1307 pub fn image_slice(&self) -> &[P::Subpixel]
1308 where
1309 Buffer: AsRef<[P::Subpixel]>,
1310 {
1311 &self.inner.samples.as_ref()[..self.min_length()]
1312 }
1313
1314 /// Return the mutable buffer that holds sample values.
1315 pub fn image_mut_slice(&mut self) -> &mut [P::Subpixel] {
1316 let length = self.min_length();
1317 &mut self.inner.samples.as_mut()[..length]
1318 }
1319
1320 /// Shrink the inner image.
1321 ///
1322 /// The new dimensions will be the minimum of the previous dimensions. Since the set of
1323 /// in-bounds pixels afterwards is a subset of the current ones, this is allowed on a `View`.
1324 /// Note that you can not change the number of channels as an intrinsic property of `P`.
1325 pub fn shrink_to(&mut self, width: u32, height: u32) {
1326 let channels = self.inner.layout.channels;
1327 self.inner.shrink_to(channels, width, height);
1328 }
1329}
1330
1331// The out-of-bounds panic for single sample access similar to `slice::index`.
1332#[inline(never)]
1333#[cold]
1334fn panic_cwh_out_of_bounds(
1335 (c, x, y): (u8, u32, u32),
1336 bounds: (u8, u32, u32),
1337 strides: (usize, usize, usize),
1338) -> ! {
1339 panic!(
1340 "Sample coordinates {:?} out of sample matrix bounds {:?} with strides {:?}",
1341 (c, x, y),
1342 bounds,
1343 strides
1344 )
1345}
1346
1347// The out-of-bounds panic for pixel access similar to `slice::index`.
1348#[inline(never)]
1349#[cold]
1350fn panic_pixel_out_of_bounds((x, y): (u32, u32), bounds: (u32, u32)) -> ! {
1351 panic!("Image index {:?} out of bounds {:?}", (x, y), bounds)
1352}
1353
1354impl<Buffer> Index<(u8, u32, u32)> for FlatSamples<Buffer>
1355where
1356 Buffer: Index<usize>,
1357{
1358 type Output = Buffer::Output;
1359
1360 /// Return a reference to a single sample at specified coordinates.
1361 ///
1362 /// # Panics
1363 ///
1364 /// When the coordinates are out of bounds or the index calculation fails.
1365 fn index(&self, (c, x, y): (u8, u32, u32)) -> &Self::Output {
1366 let bounds = self.bounds();
1367 let strides = self.strides_cwh();
1368 let index = self
1369 .index(c, x, y)
1370 .unwrap_or_else(|| panic_cwh_out_of_bounds((c, x, y), bounds, strides));
1371 &self.samples[index]
1372 }
1373}
1374
1375impl<Buffer> IndexMut<(u8, u32, u32)> for FlatSamples<Buffer>
1376where
1377 Buffer: IndexMut<usize>,
1378{
1379 /// Return a mutable reference to a single sample at specified coordinates.
1380 ///
1381 /// # Panics
1382 ///
1383 /// When the coordinates are out of bounds or the index calculation fails.
1384 fn index_mut(&mut self, (c, x, y): (u8, u32, u32)) -> &mut Self::Output {
1385 let bounds = self.bounds();
1386 let strides = self.strides_cwh();
1387 let index = self
1388 .index(c, x, y)
1389 .unwrap_or_else(|| panic_cwh_out_of_bounds((c, x, y), bounds, strides));
1390 &mut self.samples[index]
1391 }
1392}
1393
1394impl<Buffer, P: Pixel> GenericImageView for View<Buffer, P>
1395where
1396 Buffer: AsRef<[P::Subpixel]>,
1397{
1398 type Pixel = P;
1399
1400 fn dimensions(&self) -> (u32, u32) {
1401 (self.inner.layout.width, self.inner.layout.height)
1402 }
1403
1404 fn get_pixel(&self, x: u32, y: u32) -> Self::Pixel {
1405 if !self.inner.in_bounds(0, x, y) {
1406 panic_pixel_out_of_bounds((x, y), self.dimensions())
1407 }
1408
1409 let image = self.inner.samples.as_ref();
1410 let base_index = self.inner.in_bounds_index(0, x, y);
1411 let channels = P::CHANNEL_COUNT as usize;
1412
1413 let mut buffer = [Zero::zero(); 256];
1414 buffer
1415 .iter_mut()
1416 .enumerate()
1417 .take(channels)
1418 .for_each(|(c, to)| {
1419 let index = base_index + c * self.inner.layout.channel_stride;
1420 *to = image[index];
1421 });
1422
1423 *P::from_slice(&buffer[..channels])
1424 }
1425}
1426
1427impl<Buffer, P: Pixel> GenericImageView for ViewMut<Buffer, P>
1428where
1429 Buffer: AsMut<[P::Subpixel]> + AsRef<[P::Subpixel]>,
1430{
1431 type Pixel = P;
1432
1433 fn dimensions(&self) -> (u32, u32) {
1434 (self.inner.layout.width, self.inner.layout.height)
1435 }
1436
1437 fn get_pixel(&self, x: u32, y: u32) -> Self::Pixel {
1438 if !self.inner.in_bounds(0, x, y) {
1439 panic_pixel_out_of_bounds((x, y), self.dimensions())
1440 }
1441
1442 let image = self.inner.samples.as_ref();
1443 let base_index = self.inner.in_bounds_index(0, x, y);
1444 let channels = P::CHANNEL_COUNT as usize;
1445
1446 let mut buffer = [Zero::zero(); 256];
1447 buffer
1448 .iter_mut()
1449 .enumerate()
1450 .take(channels)
1451 .for_each(|(c, to)| {
1452 let index = base_index + c * self.inner.layout.channel_stride;
1453 *to = image[index];
1454 });
1455
1456 *P::from_slice(&buffer[..channels])
1457 }
1458}
1459
1460impl<Buffer, P: Pixel> GenericImage for ViewMut<Buffer, P>
1461where
1462 Buffer: AsMut<[P::Subpixel]> + AsRef<[P::Subpixel]>,
1463{
1464 fn get_pixel_mut(&mut self, x: u32, y: u32) -> &mut Self::Pixel {
1465 if !self.inner.in_bounds(0, x, y) {
1466 panic_pixel_out_of_bounds((x, y), self.dimensions())
1467 }
1468
1469 let base_index = self.inner.in_bounds_index(0, x, y);
1470 let channel_count = <P as Pixel>::CHANNEL_COUNT as usize;
1471 let pixel_range = base_index..base_index + channel_count;
1472 P::from_slice_mut(&mut self.inner.samples.as_mut()[pixel_range])
1473 }
1474
1475 #[allow(deprecated)]
1476 fn put_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel) {
1477 *self.get_pixel_mut(x, y) = pixel;
1478 }
1479
1480 #[allow(deprecated)]
1481 fn blend_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel) {
1482 self.get_pixel_mut(x, y).blend(&pixel);
1483 }
1484}
1485
1486impl From<Error> for ImageError {
1487 fn from(error: Error) -> ImageError {
1488 #[derive(Debug)]
1489 struct NormalFormRequiredError(NormalForm);
1490 impl fmt::Display for NormalFormRequiredError {
1491 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1492 write!(f, "Required sample buffer in normal form {:?}", self.0)
1493 }
1494 }
1495 impl error::Error for NormalFormRequiredError {}
1496
1497 match error {
1498 Error::TooLarge => ImageError::Parameter(ParameterError::from_kind(
1499 ParameterErrorKind::DimensionMismatch,
1500 )),
1501 Error::NormalFormRequired(form) => ImageError::Decoding(DecodingError::new(
1502 ImageFormatHint::Unknown,
1503 NormalFormRequiredError(form),
1504 )),
1505 Error::ChannelCountMismatch(_lc, _pc) => ImageError::Parameter(
1506 ParameterError::from_kind(ParameterErrorKind::DimensionMismatch),
1507 ),
1508 Error::WrongColor(color) => {
1509 ImageError::Unsupported(UnsupportedError::from_format_and_kind(
1510 ImageFormatHint::Unknown,
1511 UnsupportedErrorKind::Color(color.into()),
1512 ))
1513 }
1514 }
1515 }
1516}
1517
1518impl fmt::Display for Error {
1519 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1520 match self {
1521 Error::TooLarge => write!(f, "The layout is too large"),
1522 Error::NormalFormRequired(form) => write!(
1523 f,
1524 "The layout needs to {}",
1525 match form {
1526 NormalForm::ColumnMajorPacked => "be packed and in column major form",
1527 NormalForm::ImagePacked => "be fully packed",
1528 NormalForm::PixelPacked => "have packed pixels",
1529 NormalForm::RowMajorPacked => "be packed and in row major form",
1530 NormalForm::Unaliased => "not have any aliasing channels",
1531 }
1532 ),
1533 Error::ChannelCountMismatch(layout_channels, pixel_channels) => {
1534 write!(f, "The channel count of the chosen pixel (={pixel_channels}) does agree with the layout (={layout_channels})")
1535 }
1536 Error::WrongColor(color) => {
1537 write!(f, "The chosen color type does not match the hint {color:?}")
1538 }
1539 }
1540 }
1541}
1542
1543impl error::Error for Error {}
1544
1545impl PartialOrd for NormalForm {
1546 /// Compares the logical preconditions.
1547 ///
1548 /// `a < b` if the normal form `a` has less preconditions than `b`.
1549 fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
1550 match (*self, *other) {
1551 (NormalForm::Unaliased, NormalForm::Unaliased) => Some(cmp::Ordering::Equal),
1552 (NormalForm::PixelPacked, NormalForm::PixelPacked) => Some(cmp::Ordering::Equal),
1553 (NormalForm::ImagePacked, NormalForm::ImagePacked) => Some(cmp::Ordering::Equal),
1554 (NormalForm::RowMajorPacked, NormalForm::RowMajorPacked) => Some(cmp::Ordering::Equal),
1555 (NormalForm::ColumnMajorPacked, NormalForm::ColumnMajorPacked) => {
1556 Some(cmp::Ordering::Equal)
1557 }
1558
1559 (NormalForm::Unaliased, _) => Some(cmp::Ordering::Less),
1560 (_, NormalForm::Unaliased) => Some(cmp::Ordering::Greater),
1561
1562 (NormalForm::PixelPacked, NormalForm::ColumnMajorPacked) => Some(cmp::Ordering::Less),
1563 (NormalForm::PixelPacked, NormalForm::RowMajorPacked) => Some(cmp::Ordering::Less),
1564 (NormalForm::RowMajorPacked, NormalForm::PixelPacked) => Some(cmp::Ordering::Greater),
1565 (NormalForm::ColumnMajorPacked, NormalForm::PixelPacked) => {
1566 Some(cmp::Ordering::Greater)
1567 }
1568
1569 (NormalForm::ImagePacked, NormalForm::ColumnMajorPacked) => Some(cmp::Ordering::Less),
1570 (NormalForm::ImagePacked, NormalForm::RowMajorPacked) => Some(cmp::Ordering::Less),
1571 (NormalForm::RowMajorPacked, NormalForm::ImagePacked) => Some(cmp::Ordering::Greater),
1572 (NormalForm::ColumnMajorPacked, NormalForm::ImagePacked) => {
1573 Some(cmp::Ordering::Greater)
1574 }
1575
1576 (NormalForm::ImagePacked, NormalForm::PixelPacked) => None,
1577 (NormalForm::PixelPacked, NormalForm::ImagePacked) => None,
1578 (NormalForm::RowMajorPacked, NormalForm::ColumnMajorPacked) => None,
1579 (NormalForm::ColumnMajorPacked, NormalForm::RowMajorPacked) => None,
1580 }
1581 }
1582}
1583
1584#[cfg(test)]
1585mod tests {
1586 use super::*;
1587 use crate::buffer_::GrayAlphaImage;
1588 use crate::color::{LumaA, Rgb};
1589
1590 #[test]
1591 fn aliasing_view() {
1592 let buffer = FlatSamples {
1593 samples: &[42],
1594 layout: SampleLayout {
1595 channels: 3,
1596 channel_stride: 0,
1597 width: 100,
1598 width_stride: 0,
1599 height: 100,
1600 height_stride: 0,
1601 },
1602 color_hint: None,
1603 };
1604
1605 let view = buffer.as_view::<Rgb<u8>>().expect("This is a valid view");
1606 let pixel_count = view
1607 .pixels()
1608 .inspect(|pixel| assert!(pixel.2 == Rgb([42, 42, 42])))
1609 .count();
1610 assert_eq!(pixel_count, 100 * 100);
1611 }
1612
1613 #[test]
1614 fn mutable_view() {
1615 let mut buffer = FlatSamples {
1616 samples: [0; 18],
1617 layout: SampleLayout {
1618 channels: 2,
1619 channel_stride: 1,
1620 width: 3,
1621 width_stride: 2,
1622 height: 3,
1623 height_stride: 6,
1624 },
1625 color_hint: None,
1626 };
1627
1628 {
1629 let mut view = buffer
1630 .as_view_mut::<LumaA<u16>>()
1631 .expect("This should be a valid mutable buffer");
1632 assert_eq!(view.dimensions(), (3, 3));
1633 #[allow(deprecated)]
1634 for i in 0..9 {
1635 *view.get_pixel_mut(i % 3, i / 3) = LumaA([2 * i as u16, 2 * i as u16 + 1]);
1636 }
1637 }
1638
1639 buffer
1640 .samples
1641 .iter()
1642 .enumerate()
1643 .for_each(|(idx, sample)| assert_eq!(idx, *sample as usize));
1644 }
1645
1646 #[test]
1647 fn normal_forms() {
1648 assert!(FlatSamples {
1649 samples: [0u8; 0],
1650 layout: SampleLayout {
1651 channels: 2,
1652 channel_stride: 1,
1653 width: 3,
1654 width_stride: 9,
1655 height: 3,
1656 height_stride: 28,
1657 },
1658 color_hint: None,
1659 }
1660 .is_normal(NormalForm::PixelPacked));
1661
1662 assert!(FlatSamples {
1663 samples: [0u8; 0],
1664 layout: SampleLayout {
1665 channels: 2,
1666 channel_stride: 8,
1667 width: 4,
1668 width_stride: 1,
1669 height: 2,
1670 height_stride: 4,
1671 },
1672 color_hint: None,
1673 }
1674 .is_normal(NormalForm::ImagePacked));
1675
1676 assert!(FlatSamples {
1677 samples: [0u8; 0],
1678 layout: SampleLayout {
1679 channels: 2,
1680 channel_stride: 1,
1681 width: 4,
1682 width_stride: 2,
1683 height: 2,
1684 height_stride: 8,
1685 },
1686 color_hint: None,
1687 }
1688 .is_normal(NormalForm::RowMajorPacked));
1689
1690 assert!(FlatSamples {
1691 samples: [0u8; 0],
1692 layout: SampleLayout {
1693 channels: 2,
1694 channel_stride: 1,
1695 width: 4,
1696 width_stride: 4,
1697 height: 2,
1698 height_stride: 2,
1699 },
1700 color_hint: None,
1701 }
1702 .is_normal(NormalForm::ColumnMajorPacked));
1703 }
1704
1705 #[test]
1706 fn image_buffer_conversion() {
1707 let expected_layout = SampleLayout {
1708 channels: 2,
1709 channel_stride: 1,
1710 width: 4,
1711 width_stride: 2,
1712 height: 2,
1713 height_stride: 8,
1714 };
1715
1716 let initial = GrayAlphaImage::new(expected_layout.width, expected_layout.height);
1717 let buffer = initial.into_flat_samples();
1718
1719 assert_eq!(buffer.layout, expected_layout);
1720
1721 let _: GrayAlphaImage = buffer.try_into_buffer().unwrap_or_else(|(error, _)| {
1722 panic!("Expected buffer to be convertible but {:?}", error)
1723 });
1724 }
1725}