image/imageops/
fast_blur.rsuse num_traits::clamp;
use crate::{ImageBuffer, Pixel, Primitive};
pub fn fast_blur<P: Pixel>(
image_buffer: &ImageBuffer<P, Vec<P::Subpixel>>,
sigma: f32,
) -> ImageBuffer<P, Vec<P::Subpixel>> {
let (width, height) = image_buffer.dimensions();
if width == 0 || height == 0 {
return image_buffer.clone();
}
let mut samples = image_buffer.as_flat_samples().samples.to_vec();
let num_passes = 3;
let boxes = boxes_for_gauss(sigma, num_passes);
for radius in boxes.iter().take(num_passes) {
let horizontally_blurred_transposed = horizontal_fast_blur_half::<P::Subpixel>(
&samples,
width as usize,
height as usize,
(*radius - 1) / 2,
P::CHANNEL_COUNT as usize,
);
samples = horizontal_fast_blur_half::<P::Subpixel>(
&horizontally_blurred_transposed,
height as usize,
width as usize,
(*radius - 1) / 2,
P::CHANNEL_COUNT as usize,
);
}
ImageBuffer::from_raw(width, height, samples).unwrap()
}
fn boxes_for_gauss(sigma: f32, n: usize) -> Vec<usize> {
let w_ideal = f32::sqrt((12.0 * sigma.powi(2) / (n as f32)) + 1.0);
let mut w_l = w_ideal.floor();
if w_l % 2.0 == 0.0 {
w_l -= 1.0
};
let w_u = w_l + 2.0;
let m_ideal = 0.25 * (n as f32) * (w_l + 3.0) - 3.0 * sigma.powi(2) * (w_l + 1.0).recip();
let m = f32::round(m_ideal) as usize;
(0..n)
.map(|i| if i < m { w_l as usize } else { w_u as usize })
.collect::<Vec<_>>()
}
fn channel_idx(channel: usize, idx: usize, channel_num: usize) -> usize {
channel_num * idx + channel
}
fn horizontal_fast_blur_half<P: Primitive>(
samples: &[P],
width: usize,
height: usize,
r: usize,
channel_num: usize,
) -> Vec<P> {
let channel_size = width * height;
let mut out_samples = vec![P::from(0).unwrap(); channel_size * channel_num];
let mut vals = vec![0.0; channel_num];
let min_value = P::DEFAULT_MIN_VALUE.to_f32().unwrap();
let max_value = P::DEFAULT_MAX_VALUE.to_f32().unwrap();
for row in 0..height {
for (channel, value) in vals.iter_mut().enumerate().take(channel_num) {
*value = ((-(r as isize))..(r + 1) as isize)
.map(|x| {
extended_f(
samples,
width,
height,
x,
row as isize,
channel,
channel_num,
)
.to_f32()
.unwrap_or(0.0)
})
.sum()
}
for column in 0..width {
for (channel, channel_val) in vals.iter_mut().enumerate() {
let val = *channel_val / (2.0 * r as f32 + 1.0);
let val = clamp(val, min_value, max_value);
let val = P::from(val).unwrap();
let destination_row = column;
let destination_column = row;
let destination_sample_index = channel_idx(
channel,
destination_column + destination_row * height,
channel_num,
);
out_samples[destination_sample_index] = val;
*channel_val = *channel_val
- extended_f(
samples,
width,
height,
column as isize - r as isize,
row as isize,
channel,
channel_num,
)
.to_f32()
.unwrap_or(0.0)
+ extended_f(
samples,
width,
height,
{ column + r + 1 } as isize,
row as isize,
channel,
channel_num,
)
.to_f32()
.unwrap_or(0.0)
}
}
}
out_samples
}
fn extended_f<P: Primitive>(
samples: &[P],
width: usize,
height: usize,
x: isize,
y: isize,
channel: usize,
channel_num: usize,
) -> P {
let x = clamp(x, 0, width as isize - 1) as usize;
let y = clamp(y, 0, height as isize - 1) as usize;
samples[channel_idx(channel, y * width + x, channel_num)]
}