image/imageops/
sample.rs

1//! Functions and filters for the sampling of pixels.
2
3// See http://cs.brown.edu/courses/cs123/lectures/08_Image_Processing_IV.pdf
4// for some of the theory behind image scaling and convolution
5
6use std::f32;
7
8use num_traits::{NumCast, ToPrimitive, Zero};
9
10use crate::image::{GenericImage, GenericImageView};
11use crate::traits::{Enlargeable, Pixel, Primitive};
12use crate::utils::clamp;
13use crate::{ImageBuffer, Rgba32FImage};
14
15/// Available Sampling Filters.
16///
17/// ## Examples
18///
19/// To test the different sampling filters on a real example, you can find two
20/// examples called
21/// [`scaledown`](https://github.com/image-rs/image/tree/master/examples/scaledown)
22/// and
23/// [`scaleup`](https://github.com/image-rs/image/tree/master/examples/scaleup)
24/// in the `examples` directory of the crate source code.
25///
26/// Here is a 3.58 MiB
27/// [test image](https://github.com/image-rs/image/blob/master/examples/scaledown/test.jpg)
28/// that has been scaled down to 300x225 px:
29///
30/// <!-- NOTE: To test new test images locally, replace the GitHub path with `../../../docs/` -->
31/// <div style="display: flex; flex-wrap: wrap; align-items: flex-start;">
32///   <div style="margin: 0 8px 8px 0;">
33///     <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-near.png" title="Nearest"><br>
34///     Nearest Neighbor
35///   </div>
36///   <div style="margin: 0 8px 8px 0;">
37///     <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-tri.png" title="Triangle"><br>
38///     Linear: Triangle
39///   </div>
40///   <div style="margin: 0 8px 8px 0;">
41///     <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-cmr.png" title="CatmullRom"><br>
42///     Cubic: Catmull-Rom
43///   </div>
44///   <div style="margin: 0 8px 8px 0;">
45///     <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-gauss.png" title="Gaussian"><br>
46///     Gaussian
47///   </div>
48///   <div style="margin: 0 8px 8px 0;">
49///     <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-lcz2.png" title="Lanczos3"><br>
50///     Lanczos with window 3
51///   </div>
52/// </div>
53///
54/// ## Speed
55///
56/// Time required to create each of the examples above, tested on an Intel
57/// i7-4770 CPU with Rust 1.37 in release mode:
58///
59/// <table style="width: auto;">
60///   <tr>
61///     <th>Nearest</th>
62///     <td>31 ms</td>
63///   </tr>
64///   <tr>
65///     <th>Triangle</th>
66///     <td>414 ms</td>
67///   </tr>
68///   <tr>
69///     <th>CatmullRom</th>
70///     <td>817 ms</td>
71///   </tr>
72///   <tr>
73///     <th>Gaussian</th>
74///     <td>1180 ms</td>
75///   </tr>
76///   <tr>
77///     <th>Lanczos3</th>
78///     <td>1170 ms</td>
79///   </tr>
80/// </table>
81#[derive(Clone, Copy, Debug, PartialEq, Hash)]
82pub enum FilterType {
83    /// Nearest Neighbor
84    Nearest,
85
86    /// Linear Filter
87    Triangle,
88
89    /// Cubic Filter
90    CatmullRom,
91
92    /// Gaussian Filter
93    Gaussian,
94
95    /// Lanczos with window 3
96    Lanczos3,
97}
98
99/// A Representation of a separable filter.
100pub(crate) struct Filter<'a> {
101    /// The filter's filter function.
102    pub(crate) kernel: Box<dyn Fn(f32) -> f32 + 'a>,
103
104    /// The window on which this filter operates.
105    pub(crate) support: f32,
106}
107
108struct FloatNearest(f32);
109
110// to_i64, to_u64, and to_f64 implicitly affect all other lower conversions.
111// Note that to_f64 by default calls to_i64 and thus needs to be overridden.
112impl ToPrimitive for FloatNearest {
113    // to_{i,u}64 is required, to_{i,u}{8,16} are useful.
114    // If a usecase for full 32 bits is found its trivial to add
115    fn to_i8(&self) -> Option<i8> {
116        self.0.round().to_i8()
117    }
118    fn to_i16(&self) -> Option<i16> {
119        self.0.round().to_i16()
120    }
121    fn to_i64(&self) -> Option<i64> {
122        self.0.round().to_i64()
123    }
124    fn to_u8(&self) -> Option<u8> {
125        self.0.round().to_u8()
126    }
127    fn to_u16(&self) -> Option<u16> {
128        self.0.round().to_u16()
129    }
130    fn to_u64(&self) -> Option<u64> {
131        self.0.round().to_u64()
132    }
133    fn to_f64(&self) -> Option<f64> {
134        self.0.to_f64()
135    }
136}
137
138// sinc function: the ideal sampling filter.
139fn sinc(t: f32) -> f32 {
140    let a = t * f32::consts::PI;
141
142    if t == 0.0 {
143        1.0
144    } else {
145        a.sin() / a
146    }
147}
148
149// lanczos kernel function. A windowed sinc function.
150fn lanczos(x: f32, t: f32) -> f32 {
151    if x.abs() < t {
152        sinc(x) * sinc(x / t)
153    } else {
154        0.0
155    }
156}
157
158// Calculate a splice based on the b and c parameters.
159// from authors Mitchell and Netravali.
160fn bc_cubic_spline(x: f32, b: f32, c: f32) -> f32 {
161    let a = x.abs();
162
163    let k = if a < 1.0 {
164        (12.0 - 9.0 * b - 6.0 * c) * a.powi(3)
165            + (-18.0 + 12.0 * b + 6.0 * c) * a.powi(2)
166            + (6.0 - 2.0 * b)
167    } else if a < 2.0 {
168        (-b - 6.0 * c) * a.powi(3)
169            + (6.0 * b + 30.0 * c) * a.powi(2)
170            + (-12.0 * b - 48.0 * c) * a
171            + (8.0 * b + 24.0 * c)
172    } else {
173        0.0
174    };
175
176    k / 6.0
177}
178
179/// The Gaussian Function.
180/// ```r``` is the standard deviation.
181pub(crate) fn gaussian(x: f32, r: f32) -> f32 {
182    ((2.0 * f32::consts::PI).sqrt() * r).recip() * (-x.powi(2) / (2.0 * r.powi(2))).exp()
183}
184
185/// Calculate the lanczos kernel with a window of 3
186pub(crate) fn lanczos3_kernel(x: f32) -> f32 {
187    lanczos(x, 3.0)
188}
189
190/// Calculate the gaussian function with a
191/// standard deviation of 0.5
192pub(crate) fn gaussian_kernel(x: f32) -> f32 {
193    gaussian(x, 0.5)
194}
195
196/// Calculate the Catmull-Rom cubic spline.
197/// Also known as a form of `BiCubic` sampling in two dimensions.
198pub(crate) fn catmullrom_kernel(x: f32) -> f32 {
199    bc_cubic_spline(x, 0.0, 0.5)
200}
201
202/// Calculate the triangle function.
203/// Also known as `BiLinear` sampling in two dimensions.
204pub(crate) fn triangle_kernel(x: f32) -> f32 {
205    if x.abs() < 1.0 {
206        1.0 - x.abs()
207    } else {
208        0.0
209    }
210}
211
212/// Calculate the box kernel.
213/// Only pixels inside the box should be considered, and those
214/// contribute equally.  So this method simply returns 1.
215pub(crate) fn box_kernel(_x: f32) -> f32 {
216    1.0
217}
218
219// Sample the rows of the supplied image using the provided filter.
220// The height of the image remains unchanged.
221// ```new_width``` is the desired width of the new image
222// ```filter``` is the filter to use for sampling.
223// ```image``` is not necessarily Rgba and the order of channels is passed through.
224//
225// Note: if an empty image is passed in, panics unless the image is truly empty.
226fn horizontal_sample<P, S>(
227    image: &Rgba32FImage,
228    new_width: u32,
229    filter: &mut Filter,
230) -> ImageBuffer<P, Vec<S>>
231where
232    P: Pixel<Subpixel = S> + 'static,
233    S: Primitive + 'static,
234{
235    let (width, height) = image.dimensions();
236    // This is protection against a memory usage similar to #2340. See `vertical_sample`.
237    assert!(
238        // Checks the implication: (width == 0) -> (height == 0)
239        width != 0 || height == 0,
240        "Unexpected prior allocation size. This case should have been handled by the caller"
241    );
242
243    let mut out = ImageBuffer::new(new_width, height);
244    let mut ws = Vec::new();
245
246    let max: f32 = NumCast::from(S::DEFAULT_MAX_VALUE).unwrap();
247    let min: f32 = NumCast::from(S::DEFAULT_MIN_VALUE).unwrap();
248    let ratio = width as f32 / new_width as f32;
249    let sratio = if ratio < 1.0 { 1.0 } else { ratio };
250    let src_support = filter.support * sratio;
251
252    for outx in 0..new_width {
253        // Find the point in the input image corresponding to the centre
254        // of the current pixel in the output image.
255        let inputx = (outx as f32 + 0.5) * ratio;
256
257        // Left and right are slice bounds for the input pixels relevant
258        // to the output pixel we are calculating.  Pixel x is relevant
259        // if and only if (x >= left) && (x < right).
260
261        // Invariant: 0 <= left < right <= width
262
263        let left = (inputx - src_support).floor() as i64;
264        let left = clamp(left, 0, <i64 as From<_>>::from(width) - 1) as u32;
265
266        let right = (inputx + src_support).ceil() as i64;
267        let right = clamp(
268            right,
269            <i64 as From<_>>::from(left) + 1,
270            <i64 as From<_>>::from(width),
271        ) as u32;
272
273        // Go back to left boundary of pixel, to properly compare with i
274        // below, as the kernel treats the centre of a pixel as 0.
275        let inputx = inputx - 0.5;
276
277        ws.clear();
278        let mut sum = 0.0;
279        for i in left..right {
280            let w = (filter.kernel)((i as f32 - inputx) / sratio);
281            ws.push(w);
282            sum += w;
283        }
284        ws.iter_mut().for_each(|w| *w /= sum);
285
286        for y in 0..height {
287            let mut t = (0.0, 0.0, 0.0, 0.0);
288
289            for (i, w) in ws.iter().enumerate() {
290                let p = image.get_pixel(left + i as u32, y);
291
292                #[allow(deprecated)]
293                let vec = p.channels4();
294
295                t.0 += vec.0 * w;
296                t.1 += vec.1 * w;
297                t.2 += vec.2 * w;
298                t.3 += vec.3 * w;
299            }
300
301            #[allow(deprecated)]
302            let t = Pixel::from_channels(
303                NumCast::from(FloatNearest(clamp(t.0, min, max))).unwrap(),
304                NumCast::from(FloatNearest(clamp(t.1, min, max))).unwrap(),
305                NumCast::from(FloatNearest(clamp(t.2, min, max))).unwrap(),
306                NumCast::from(FloatNearest(clamp(t.3, min, max))).unwrap(),
307            );
308
309            out.put_pixel(outx, y, t);
310        }
311    }
312
313    out
314}
315
316/// Linearly sample from an image using coordinates in [0, 1].
317pub fn sample_bilinear<P: Pixel>(
318    img: &impl GenericImageView<Pixel = P>,
319    u: f32,
320    v: f32,
321) -> Option<P> {
322    if ![u, v].iter().all(|c| (0.0..=1.0).contains(c)) {
323        return None;
324    }
325
326    let (w, h) = img.dimensions();
327    if w == 0 || h == 0 {
328        return None;
329    }
330
331    let ui = w as f32 * u - 0.5;
332    let vi = h as f32 * v - 0.5;
333    interpolate_bilinear(
334        img,
335        ui.max(0.).min((w - 1) as f32),
336        vi.max(0.).min((h - 1) as f32),
337    )
338}
339
340/// Sample from an image using coordinates in [0, 1], taking the nearest coordinate.
341pub fn sample_nearest<P: Pixel>(
342    img: &impl GenericImageView<Pixel = P>,
343    u: f32,
344    v: f32,
345) -> Option<P> {
346    if ![u, v].iter().all(|c| (0.0..=1.0).contains(c)) {
347        return None;
348    }
349
350    let (w, h) = img.dimensions();
351    let ui = w as f32 * u - 0.5;
352    let ui = ui.max(0.).min((w.saturating_sub(1)) as f32);
353
354    let vi = h as f32 * v - 0.5;
355    let vi = vi.max(0.).min((h.saturating_sub(1)) as f32);
356    interpolate_nearest(img, ui, vi)
357}
358
359/// Sample from an image using coordinates in [0, w-1] and [0, h-1], taking the
360/// nearest pixel.
361///
362/// Coordinates outside the image bounds will return `None`, however the
363/// behavior for points within half a pixel of the image bounds may change in
364/// the future.
365pub fn interpolate_nearest<P: Pixel>(
366    img: &impl GenericImageView<Pixel = P>,
367    x: f32,
368    y: f32,
369) -> Option<P> {
370    let (w, h) = img.dimensions();
371    if w == 0 || h == 0 {
372        return None;
373    }
374    if !(0.0..=((w - 1) as f32)).contains(&x) {
375        return None;
376    }
377    if !(0.0..=((h - 1) as f32)).contains(&y) {
378        return None;
379    }
380
381    Some(img.get_pixel(x.round() as u32, y.round() as u32))
382}
383
384/// Linearly sample from an image using coordinates in [0, w-1] and [0, h-1].
385pub fn interpolate_bilinear<P: Pixel>(
386    img: &impl GenericImageView<Pixel = P>,
387    x: f32,
388    y: f32,
389) -> Option<P> {
390    // assumption needed for correctness of pixel creation
391    assert!(P::CHANNEL_COUNT <= 4);
392
393    let (w, h) = img.dimensions();
394    if w == 0 || h == 0 {
395        return None;
396    }
397    if !(0.0..=((w - 1) as f32)).contains(&x) {
398        return None;
399    }
400    if !(0.0..=((h - 1) as f32)).contains(&y) {
401        return None;
402    }
403
404    // keep these as integers, for fewer FLOPs
405    let uf = x.floor() as u32;
406    let vf = y.floor() as u32;
407    let uc = (uf + 1).min(w - 1);
408    let vc = (vf + 1).min(h - 1);
409
410    // clamp coords to the range of the image
411    let mut sxx = [[0.; 4]; 4];
412
413    // do not use Array::map, as it can be slow with high stack usage,
414    // for [[f32; 4]; 4].
415
416    // convert samples to f32
417    // currently rgba is the largest one,
418    // so just store as many items as necessary,
419    // because there's not a simple way to be generic over all of them.
420    let mut compute = |u: u32, v: u32, i| {
421        let s = img.get_pixel(u, v);
422        for (j, c) in s.channels().iter().enumerate() {
423            sxx[j][i] = c.to_f32().unwrap();
424        }
425        s
426    };
427
428    // hacky reuse since cannot construct a generic Pixel
429    let mut out: P = compute(uf, vf, 0);
430    compute(uf, vc, 1);
431    compute(uc, vf, 2);
432    compute(uc, vc, 3);
433
434    // weights, the later two are independent from the first 2 for better vectorization.
435    let ufw = x - uf as f32;
436    let vfw = y - vf as f32;
437    let ucw = (uf + 1) as f32 - x;
438    let vcw = (vf + 1) as f32 - y;
439
440    // https://en.wikipedia.org/wiki/Bilinear_interpolation#Weighted_mean
441    // the distance between pixels is 1 so there is no denominator
442    let wff = ucw * vcw;
443    let wfc = ucw * vfw;
444    let wcf = ufw * vcw;
445    let wcc = ufw * vfw;
446    // was originally assert, but is actually not a cheap computation
447    debug_assert!(f32::abs((wff + wfc + wcf + wcc) - 1.) < 1e-3);
448
449    // hack to see if primitive is an integer or a float
450    let is_float = P::Subpixel::DEFAULT_MAX_VALUE.to_f32().unwrap() == 1.0;
451
452    for (i, c) in out.channels_mut().iter_mut().enumerate() {
453        let v = wff * sxx[i][0] + wfc * sxx[i][1] + wcf * sxx[i][2] + wcc * sxx[i][3];
454        // this rounding may introduce quantization errors,
455        // Specifically what is meant is that many samples may deviate
456        // from the mean value of the originals, but it's not possible to fix that.
457        *c = <P::Subpixel as NumCast>::from(if is_float { v } else { v.round() }).unwrap_or({
458            if v < 0.0 {
459                P::Subpixel::DEFAULT_MIN_VALUE
460            } else {
461                P::Subpixel::DEFAULT_MAX_VALUE
462            }
463        });
464    }
465
466    Some(out)
467}
468
469// Sample the columns of the supplied image using the provided filter.
470// The width of the image remains unchanged.
471// ```new_height``` is the desired height of the new image
472// ```filter``` is the filter to use for sampling.
473// The return value is not necessarily Rgba, the underlying order of channels in ```image``` is
474// preserved.
475//
476// Note: if an empty image is passed in, panics unless the image is truly empty.
477fn vertical_sample<I, P, S>(image: &I, new_height: u32, filter: &mut Filter) -> Rgba32FImage
478where
479    I: GenericImageView<Pixel = P>,
480    P: Pixel<Subpixel = S> + 'static,
481    S: Primitive + 'static,
482{
483    let (width, height) = image.dimensions();
484
485    // This is protection against a regression in memory usage such as #2340. Since the strategy to
486    // deal with it depends on the caller it is a precondition of this function.
487    assert!(
488        // Checks the implication: (height == 0) -> (width == 0)
489        height != 0 || width == 0,
490        "Unexpected prior allocation size. This case should have been handled by the caller"
491    );
492
493    let mut out = ImageBuffer::new(width, new_height);
494    let mut ws = Vec::new();
495
496    let ratio = height as f32 / new_height as f32;
497    let sratio = if ratio < 1.0 { 1.0 } else { ratio };
498    let src_support = filter.support * sratio;
499
500    for outy in 0..new_height {
501        // For an explanation of this algorithm, see the comments
502        // in horizontal_sample.
503        let inputy = (outy as f32 + 0.5) * ratio;
504
505        let left = (inputy - src_support).floor() as i64;
506        let left = clamp(left, 0, <i64 as From<_>>::from(height) - 1) as u32;
507
508        let right = (inputy + src_support).ceil() as i64;
509        let right = clamp(
510            right,
511            <i64 as From<_>>::from(left) + 1,
512            <i64 as From<_>>::from(height),
513        ) as u32;
514
515        let inputy = inputy - 0.5;
516
517        ws.clear();
518        let mut sum = 0.0;
519        for i in left..right {
520            let w = (filter.kernel)((i as f32 - inputy) / sratio);
521            ws.push(w);
522            sum += w;
523        }
524        ws.iter_mut().for_each(|w| *w /= sum);
525
526        for x in 0..width {
527            let mut t = (0.0, 0.0, 0.0, 0.0);
528
529            for (i, w) in ws.iter().enumerate() {
530                let p = image.get_pixel(x, left + i as u32);
531
532                #[allow(deprecated)]
533                let (k1, k2, k3, k4) = p.channels4();
534                let vec: (f32, f32, f32, f32) = (
535                    NumCast::from(k1).unwrap(),
536                    NumCast::from(k2).unwrap(),
537                    NumCast::from(k3).unwrap(),
538                    NumCast::from(k4).unwrap(),
539                );
540
541                t.0 += vec.0 * w;
542                t.1 += vec.1 * w;
543                t.2 += vec.2 * w;
544                t.3 += vec.3 * w;
545            }
546
547            #[allow(deprecated)]
548            // This is not necessarily Rgba.
549            let t = Pixel::from_channels(t.0, t.1, t.2, t.3);
550
551            out.put_pixel(x, outy, t);
552        }
553    }
554
555    out
556}
557
558/// Local struct for keeping track of pixel sums for fast thumbnail averaging
559struct ThumbnailSum<S: Primitive + Enlargeable>(S::Larger, S::Larger, S::Larger, S::Larger);
560
561impl<S: Primitive + Enlargeable> ThumbnailSum<S> {
562    fn zeroed() -> Self {
563        ThumbnailSum(
564            S::Larger::zero(),
565            S::Larger::zero(),
566            S::Larger::zero(),
567            S::Larger::zero(),
568        )
569    }
570
571    fn sample_val(val: S) -> S::Larger {
572        <S::Larger as NumCast>::from(val).unwrap()
573    }
574
575    fn add_pixel<P: Pixel<Subpixel = S>>(&mut self, pixel: P) {
576        #[allow(deprecated)]
577        let pixel = pixel.channels4();
578        self.0 += Self::sample_val(pixel.0);
579        self.1 += Self::sample_val(pixel.1);
580        self.2 += Self::sample_val(pixel.2);
581        self.3 += Self::sample_val(pixel.3);
582    }
583}
584
585/// Resize the supplied image to the specific dimensions.
586///
587/// For downscaling, this method uses a fast integer algorithm where each source pixel contributes
588/// to exactly one target pixel.  May give aliasing artifacts if new size is close to old size.
589///
590/// In case the current width is smaller than the new width or similar for the height, another
591/// strategy is used instead.  For each pixel in the output, a rectangular region of the input is
592/// determined, just as previously.  But when no input pixel is part of this region, the nearest
593/// pixels are interpolated instead.
594///
595/// For speed reasons, all interpolation is performed linearly over the colour values.  It will not
596/// take the pixel colour spaces into account.
597pub fn thumbnail<I, P, S>(image: &I, new_width: u32, new_height: u32) -> ImageBuffer<P, Vec<S>>
598where
599    I: GenericImageView<Pixel = P>,
600    P: Pixel<Subpixel = S> + 'static,
601    S: Primitive + Enlargeable + 'static,
602{
603    let (width, height) = image.dimensions();
604    let mut out = ImageBuffer::new(new_width, new_height);
605    if height == 0 || width == 0 {
606        return out;
607    }
608
609    let x_ratio = width as f32 / new_width as f32;
610    let y_ratio = height as f32 / new_height as f32;
611
612    for outy in 0..new_height {
613        let bottomf = outy as f32 * y_ratio;
614        let topf = bottomf + y_ratio;
615
616        let bottom = clamp(bottomf.ceil() as u32, 0, height - 1);
617        let top = clamp(topf.ceil() as u32, bottom, height);
618
619        for outx in 0..new_width {
620            let leftf = outx as f32 * x_ratio;
621            let rightf = leftf + x_ratio;
622
623            let left = clamp(leftf.ceil() as u32, 0, width - 1);
624            let right = clamp(rightf.ceil() as u32, left, width);
625
626            let avg = if bottom != top && left != right {
627                thumbnail_sample_block(image, left, right, bottom, top)
628            } else if bottom != top {
629                // && left == right
630                // In the first column we have left == 0 and right > ceil(y_scale) > 0 so this
631                // assertion can never trigger.
632                debug_assert!(
633                    left > 0 && right > 0,
634                    "First output column must have corresponding pixels"
635                );
636
637                let fraction_horizontal = (leftf.fract() + rightf.fract()) / 2.;
638                thumbnail_sample_fraction_horizontal(
639                    image,
640                    right - 1,
641                    fraction_horizontal,
642                    bottom,
643                    top,
644                )
645            } else if left != right {
646                // && bottom == top
647                // In the first line we have bottom == 0 and top > ceil(x_scale) > 0 so this
648                // assertion can never trigger.
649                debug_assert!(
650                    bottom > 0 && top > 0,
651                    "First output row must have corresponding pixels"
652                );
653
654                let fraction_vertical = (topf.fract() + bottomf.fract()) / 2.;
655                thumbnail_sample_fraction_vertical(image, left, right, top - 1, fraction_vertical)
656            } else {
657                // bottom == top && left == right
658                let fraction_horizontal = (topf.fract() + bottomf.fract()) / 2.;
659                let fraction_vertical = (leftf.fract() + rightf.fract()) / 2.;
660
661                thumbnail_sample_fraction_both(
662                    image,
663                    right - 1,
664                    fraction_horizontal,
665                    top - 1,
666                    fraction_vertical,
667                )
668            };
669
670            #[allow(deprecated)]
671            let pixel = Pixel::from_channels(avg.0, avg.1, avg.2, avg.3);
672            out.put_pixel(outx, outy, pixel);
673        }
674    }
675
676    out
677}
678
679/// Get a pixel for a thumbnail where the input window encloses at least a full pixel.
680fn thumbnail_sample_block<I, P, S>(
681    image: &I,
682    left: u32,
683    right: u32,
684    bottom: u32,
685    top: u32,
686) -> (S, S, S, S)
687where
688    I: GenericImageView<Pixel = P>,
689    P: Pixel<Subpixel = S>,
690    S: Primitive + Enlargeable,
691{
692    let mut sum = ThumbnailSum::zeroed();
693
694    for y in bottom..top {
695        for x in left..right {
696            let k = image.get_pixel(x, y);
697            sum.add_pixel(k);
698        }
699    }
700
701    let n = <S::Larger as NumCast>::from((right - left) * (top - bottom)).unwrap();
702    let round = <S::Larger as NumCast>::from(n / NumCast::from(2).unwrap()).unwrap();
703    (
704        S::clamp_from((sum.0 + round) / n),
705        S::clamp_from((sum.1 + round) / n),
706        S::clamp_from((sum.2 + round) / n),
707        S::clamp_from((sum.3 + round) / n),
708    )
709}
710
711/// Get a thumbnail pixel where the input window encloses at least a vertical pixel.
712fn thumbnail_sample_fraction_horizontal<I, P, S>(
713    image: &I,
714    left: u32,
715    fraction_horizontal: f32,
716    bottom: u32,
717    top: u32,
718) -> (S, S, S, S)
719where
720    I: GenericImageView<Pixel = P>,
721    P: Pixel<Subpixel = S>,
722    S: Primitive + Enlargeable,
723{
724    let fract = fraction_horizontal;
725
726    let mut sum_left = ThumbnailSum::zeroed();
727    let mut sum_right = ThumbnailSum::zeroed();
728    for x in bottom..top {
729        let k_left = image.get_pixel(left, x);
730        sum_left.add_pixel(k_left);
731
732        let k_right = image.get_pixel(left + 1, x);
733        sum_right.add_pixel(k_right);
734    }
735
736    // Now we approximate: left/n*(1-fract) + right/n*fract
737    let fact_right = fract / ((top - bottom) as f32);
738    let fact_left = (1. - fract) / ((top - bottom) as f32);
739
740    let mix_left_and_right = |leftv: S::Larger, rightv: S::Larger| {
741        <S as NumCast>::from(
742            fact_left * leftv.to_f32().unwrap() + fact_right * rightv.to_f32().unwrap(),
743        )
744        .expect("Average sample value should fit into sample type")
745    };
746
747    (
748        mix_left_and_right(sum_left.0, sum_right.0),
749        mix_left_and_right(sum_left.1, sum_right.1),
750        mix_left_and_right(sum_left.2, sum_right.2),
751        mix_left_and_right(sum_left.3, sum_right.3),
752    )
753}
754
755/// Get a thumbnail pixel where the input window encloses at least a horizontal pixel.
756fn thumbnail_sample_fraction_vertical<I, P, S>(
757    image: &I,
758    left: u32,
759    right: u32,
760    bottom: u32,
761    fraction_vertical: f32,
762) -> (S, S, S, S)
763where
764    I: GenericImageView<Pixel = P>,
765    P: Pixel<Subpixel = S>,
766    S: Primitive + Enlargeable,
767{
768    let fract = fraction_vertical;
769
770    let mut sum_bot = ThumbnailSum::zeroed();
771    let mut sum_top = ThumbnailSum::zeroed();
772    for x in left..right {
773        let k_bot = image.get_pixel(x, bottom);
774        sum_bot.add_pixel(k_bot);
775
776        let k_top = image.get_pixel(x, bottom + 1);
777        sum_top.add_pixel(k_top);
778    }
779
780    // Now we approximate: bot/n*fract + top/n*(1-fract)
781    let fact_top = fract / ((right - left) as f32);
782    let fact_bot = (1. - fract) / ((right - left) as f32);
783
784    let mix_bot_and_top = |botv: S::Larger, topv: S::Larger| {
785        <S as NumCast>::from(fact_bot * botv.to_f32().unwrap() + fact_top * topv.to_f32().unwrap())
786            .expect("Average sample value should fit into sample type")
787    };
788
789    (
790        mix_bot_and_top(sum_bot.0, sum_top.0),
791        mix_bot_and_top(sum_bot.1, sum_top.1),
792        mix_bot_and_top(sum_bot.2, sum_top.2),
793        mix_bot_and_top(sum_bot.3, sum_top.3),
794    )
795}
796
797/// Get a single pixel for a thumbnail where the input window does not enclose any full pixel.
798fn thumbnail_sample_fraction_both<I, P, S>(
799    image: &I,
800    left: u32,
801    fraction_vertical: f32,
802    bottom: u32,
803    fraction_horizontal: f32,
804) -> (S, S, S, S)
805where
806    I: GenericImageView<Pixel = P>,
807    P: Pixel<Subpixel = S>,
808    S: Primitive + Enlargeable,
809{
810    #[allow(deprecated)]
811    let k_bl = image.get_pixel(left, bottom).channels4();
812    #[allow(deprecated)]
813    let k_tl = image.get_pixel(left, bottom + 1).channels4();
814    #[allow(deprecated)]
815    let k_br = image.get_pixel(left + 1, bottom).channels4();
816    #[allow(deprecated)]
817    let k_tr = image.get_pixel(left + 1, bottom + 1).channels4();
818
819    let frac_v = fraction_vertical;
820    let frac_h = fraction_horizontal;
821
822    let fact_tr = frac_v * frac_h;
823    let fact_tl = frac_v * (1. - frac_h);
824    let fact_br = (1. - frac_v) * frac_h;
825    let fact_bl = (1. - frac_v) * (1. - frac_h);
826
827    let mix = |br: S, tr: S, bl: S, tl: S| {
828        <S as NumCast>::from(
829            fact_br * br.to_f32().unwrap()
830                + fact_tr * tr.to_f32().unwrap()
831                + fact_bl * bl.to_f32().unwrap()
832                + fact_tl * tl.to_f32().unwrap(),
833        )
834        .expect("Average sample value should fit into sample type")
835    };
836
837    (
838        mix(k_br.0, k_tr.0, k_bl.0, k_tl.0),
839        mix(k_br.1, k_tr.1, k_bl.1, k_tl.1),
840        mix(k_br.2, k_tr.2, k_bl.2, k_tl.2),
841        mix(k_br.3, k_tr.3, k_bl.3, k_tl.3),
842    )
843}
844
845/// Perform a 3x3 box filter on the supplied image.
846/// ```kernel``` is an array of the filter weights of length 9.
847pub fn filter3x3<I, P, S>(image: &I, kernel: &[f32]) -> ImageBuffer<P, Vec<S>>
848where
849    I: GenericImageView<Pixel = P>,
850    P: Pixel<Subpixel = S> + 'static,
851    S: Primitive + 'static,
852{
853    // The kernel's input positions relative to the current pixel.
854    let taps: &[(isize, isize)] = &[
855        (-1, -1),
856        (0, -1),
857        (1, -1),
858        (-1, 0),
859        (0, 0),
860        (1, 0),
861        (-1, 1),
862        (0, 1),
863        (1, 1),
864    ];
865
866    let (width, height) = image.dimensions();
867
868    let mut out = ImageBuffer::new(width, height);
869
870    let max = S::DEFAULT_MAX_VALUE;
871    let max: f32 = NumCast::from(max).unwrap();
872
873    let sum = match kernel.iter().fold(0.0, |s, &item| s + item) {
874        x if x == 0.0 => 1.0,
875        sum => sum,
876    };
877    let sum = (sum, sum, sum, sum);
878
879    for y in 1..height - 1 {
880        for x in 1..width - 1 {
881            let mut t = (0.0, 0.0, 0.0, 0.0);
882
883            // TODO: There is no need to recalculate the kernel for each pixel.
884            // Only a subtract and addition is needed for pixels after the first
885            // in each row.
886            for (&k, &(a, b)) in kernel.iter().zip(taps.iter()) {
887                let k = (k, k, k, k);
888                let x0 = x as isize + a;
889                let y0 = y as isize + b;
890
891                let p = image.get_pixel(x0 as u32, y0 as u32);
892
893                #[allow(deprecated)]
894                let (k1, k2, k3, k4) = p.channels4();
895
896                let vec: (f32, f32, f32, f32) = (
897                    NumCast::from(k1).unwrap(),
898                    NumCast::from(k2).unwrap(),
899                    NumCast::from(k3).unwrap(),
900                    NumCast::from(k4).unwrap(),
901                );
902
903                t.0 += vec.0 * k.0;
904                t.1 += vec.1 * k.1;
905                t.2 += vec.2 * k.2;
906                t.3 += vec.3 * k.3;
907            }
908
909            let (t1, t2, t3, t4) = (t.0 / sum.0, t.1 / sum.1, t.2 / sum.2, t.3 / sum.3);
910
911            #[allow(deprecated)]
912            let t = Pixel::from_channels(
913                NumCast::from(clamp(t1, 0.0, max)).unwrap(),
914                NumCast::from(clamp(t2, 0.0, max)).unwrap(),
915                NumCast::from(clamp(t3, 0.0, max)).unwrap(),
916                NumCast::from(clamp(t4, 0.0, max)).unwrap(),
917            );
918
919            out.put_pixel(x, y, t);
920        }
921    }
922
923    out
924}
925
926/// Resize the supplied image to the specified dimensions.
927/// ```nwidth``` and ```nheight``` are the new dimensions.
928/// ```filter``` is the sampling filter to use.
929pub fn resize<I: GenericImageView>(
930    image: &I,
931    nwidth: u32,
932    nheight: u32,
933    filter: FilterType,
934) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
935where
936    I::Pixel: 'static,
937    <I::Pixel as Pixel>::Subpixel: 'static,
938{
939    // Check if there is nothing to sample from.
940    let is_empty = {
941        let (width, height) = image.dimensions();
942        width == 0 || height == 0
943    };
944
945    if is_empty {
946        return ImageBuffer::new(nwidth, nheight);
947    }
948
949    // check if the new dimensions are the same as the old. if they are, make a copy instead of resampling
950    if (nwidth, nheight) == image.dimensions() {
951        let mut tmp = ImageBuffer::new(image.width(), image.height());
952        tmp.copy_from(image, 0, 0).unwrap();
953        return tmp;
954    }
955
956    let mut method = match filter {
957        FilterType::Nearest => Filter {
958            kernel: Box::new(box_kernel),
959            support: 0.0,
960        },
961        FilterType::Triangle => Filter {
962            kernel: Box::new(triangle_kernel),
963            support: 1.0,
964        },
965        FilterType::CatmullRom => Filter {
966            kernel: Box::new(catmullrom_kernel),
967            support: 2.0,
968        },
969        FilterType::Gaussian => Filter {
970            kernel: Box::new(gaussian_kernel),
971            support: 3.0,
972        },
973        FilterType::Lanczos3 => Filter {
974            kernel: Box::new(lanczos3_kernel),
975            support: 3.0,
976        },
977    };
978
979    // Note: tmp is not necessarily actually Rgba
980    let tmp: Rgba32FImage = vertical_sample(image, nheight, &mut method);
981    horizontal_sample(&tmp, nwidth, &mut method)
982}
983
984/// Performs a Gaussian blur on the supplied image.
985/// ```sigma``` is a measure of how much to blur by.
986/// Use [crate::imageops::fast_blur()] for a faster but less
987/// accurate version.
988pub fn blur<I: GenericImageView>(
989    image: &I,
990    sigma: f32,
991) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
992where
993    I::Pixel: 'static,
994{
995    let sigma = if sigma <= 0.0 { 1.0 } else { sigma };
996
997    let mut method = Filter {
998        kernel: Box::new(|x| gaussian(x, sigma)),
999        support: 2.0 * sigma,
1000    };
1001
1002    let (width, height) = image.dimensions();
1003    let is_empty = width == 0 || height == 0;
1004
1005    if is_empty {
1006        return ImageBuffer::new(width, height);
1007    }
1008
1009    // Keep width and height the same for horizontal and
1010    // vertical sampling.
1011    // Note: tmp is not necessarily actually Rgba
1012    let tmp: Rgba32FImage = vertical_sample(image, height, &mut method);
1013    horizontal_sample(&tmp, width, &mut method)
1014}
1015
1016/// Performs an unsharpen mask on the supplied image.
1017/// ```sigma``` is the amount to blur the image by.
1018/// ```threshold``` is the threshold for minimal brightness change that will be sharpened.
1019///
1020/// See <https://en.wikipedia.org/wiki/Unsharp_masking#Digital_unsharp_masking>
1021pub fn unsharpen<I, P, S>(image: &I, sigma: f32, threshold: i32) -> ImageBuffer<P, Vec<S>>
1022where
1023    I: GenericImageView<Pixel = P>,
1024    P: Pixel<Subpixel = S> + 'static,
1025    S: Primitive + 'static,
1026{
1027    let mut tmp = blur(image, sigma);
1028
1029    let max = S::DEFAULT_MAX_VALUE;
1030    let max: i32 = NumCast::from(max).unwrap();
1031    let (width, height) = image.dimensions();
1032
1033    for y in 0..height {
1034        for x in 0..width {
1035            let a = image.get_pixel(x, y);
1036            let b = tmp.get_pixel_mut(x, y);
1037
1038            let p = a.map2(b, |c, d| {
1039                let ic: i32 = NumCast::from(c).unwrap();
1040                let id: i32 = NumCast::from(d).unwrap();
1041
1042                let diff = ic - id;
1043
1044                if diff.abs() > threshold {
1045                    let e = clamp(ic + diff, 0, max); // FIXME what does this do for f32? clamp 0-1 integers??
1046
1047                    NumCast::from(e).unwrap()
1048                } else {
1049                    c
1050                }
1051            });
1052
1053            *b = p;
1054        }
1055    }
1056
1057    tmp
1058}
1059
1060#[cfg(test)]
1061mod tests {
1062    use super::{resize, sample_bilinear, sample_nearest, FilterType};
1063    use crate::{GenericImageView, ImageBuffer, RgbImage};
1064    #[cfg(feature = "benchmarks")]
1065    use test;
1066
1067    #[bench]
1068    #[cfg(all(feature = "benchmarks", feature = "png"))]
1069    fn bench_resize(b: &mut test::Bencher) {
1070        use std::path::Path;
1071        let img = crate::open(Path::new("./examples/fractal.png")).unwrap();
1072        b.iter(|| {
1073            test::black_box(resize(&img, 200, 200, FilterType::Nearest));
1074        });
1075        b.bytes = 800 * 800 * 3 + 200 * 200 * 3;
1076    }
1077
1078    #[test]
1079    #[cfg(feature = "png")]
1080    fn test_resize_same_size() {
1081        use std::path::Path;
1082        let img = crate::open(Path::new("./examples/fractal.png")).unwrap();
1083        let resize = img.resize(img.width(), img.height(), FilterType::Triangle);
1084        assert!(img.pixels().eq(resize.pixels()))
1085    }
1086
1087    #[test]
1088    #[cfg(feature = "png")]
1089    fn test_sample_bilinear() {
1090        use std::path::Path;
1091        let img = crate::open(Path::new("./examples/fractal.png")).unwrap();
1092        assert!(sample_bilinear(&img, 0., 0.).is_some());
1093        assert!(sample_bilinear(&img, 1., 0.).is_some());
1094        assert!(sample_bilinear(&img, 0., 1.).is_some());
1095        assert!(sample_bilinear(&img, 1., 1.).is_some());
1096        assert!(sample_bilinear(&img, 0.5, 0.5).is_some());
1097
1098        assert!(sample_bilinear(&img, 1.2, 0.5).is_none());
1099        assert!(sample_bilinear(&img, 0.5, 1.2).is_none());
1100        assert!(sample_bilinear(&img, 1.2, 1.2).is_none());
1101
1102        assert!(sample_bilinear(&img, -0.1, 0.2).is_none());
1103        assert!(sample_bilinear(&img, 0.2, -0.1).is_none());
1104        assert!(sample_bilinear(&img, -0.1, -0.1).is_none());
1105    }
1106    #[test]
1107    #[cfg(feature = "png")]
1108    fn test_sample_nearest() {
1109        use std::path::Path;
1110        let img = crate::open(Path::new("./examples/fractal.png")).unwrap();
1111        assert!(sample_nearest(&img, 0., 0.).is_some());
1112        assert!(sample_nearest(&img, 1., 0.).is_some());
1113        assert!(sample_nearest(&img, 0., 1.).is_some());
1114        assert!(sample_nearest(&img, 1., 1.).is_some());
1115        assert!(sample_nearest(&img, 0.5, 0.5).is_some());
1116
1117        assert!(sample_nearest(&img, 1.2, 0.5).is_none());
1118        assert!(sample_nearest(&img, 0.5, 1.2).is_none());
1119        assert!(sample_nearest(&img, 1.2, 1.2).is_none());
1120
1121        assert!(sample_nearest(&img, -0.1, 0.2).is_none());
1122        assert!(sample_nearest(&img, 0.2, -0.1).is_none());
1123        assert!(sample_nearest(&img, -0.1, -0.1).is_none());
1124    }
1125    #[test]
1126    fn test_sample_bilinear_correctness() {
1127        use crate::Rgba;
1128        let img = ImageBuffer::from_fn(2, 2, |x, y| match (x, y) {
1129            (0, 0) => Rgba([255, 0, 0, 0]),
1130            (0, 1) => Rgba([0, 255, 0, 0]),
1131            (1, 0) => Rgba([0, 0, 255, 0]),
1132            (1, 1) => Rgba([0, 0, 0, 255]),
1133            _ => panic!(),
1134        });
1135        assert_eq!(sample_bilinear(&img, 0.5, 0.5), Some(Rgba([64; 4])));
1136        assert_eq!(sample_bilinear(&img, 0.0, 0.0), Some(Rgba([255, 0, 0, 0])));
1137        assert_eq!(sample_bilinear(&img, 0.0, 1.0), Some(Rgba([0, 255, 0, 0])));
1138        assert_eq!(sample_bilinear(&img, 1.0, 0.0), Some(Rgba([0, 0, 255, 0])));
1139        assert_eq!(sample_bilinear(&img, 1.0, 1.0), Some(Rgba([0, 0, 0, 255])));
1140
1141        assert_eq!(
1142            sample_bilinear(&img, 0.5, 0.0),
1143            Some(Rgba([128, 0, 128, 0]))
1144        );
1145        assert_eq!(
1146            sample_bilinear(&img, 0.0, 0.5),
1147            Some(Rgba([128, 128, 0, 0]))
1148        );
1149        assert_eq!(
1150            sample_bilinear(&img, 0.5, 1.0),
1151            Some(Rgba([0, 128, 0, 128]))
1152        );
1153        assert_eq!(
1154            sample_bilinear(&img, 1.0, 0.5),
1155            Some(Rgba([0, 0, 128, 128]))
1156        );
1157    }
1158    #[bench]
1159    #[cfg(feature = "benchmarks")]
1160    fn bench_sample_bilinear(b: &mut test::Bencher) {
1161        use crate::Rgba;
1162        let img = ImageBuffer::from_fn(2, 2, |x, y| match (x, y) {
1163            (0, 0) => Rgba([255, 0, 0, 0]),
1164            (0, 1) => Rgba([0, 255, 0, 0]),
1165            (1, 0) => Rgba([0, 0, 255, 0]),
1166            (1, 1) => Rgba([0, 0, 0, 255]),
1167            _ => panic!(),
1168        });
1169        b.iter(|| {
1170            sample_bilinear(&img, test::black_box(0.5), test::black_box(0.5));
1171        });
1172    }
1173    #[test]
1174    fn test_sample_nearest_correctness() {
1175        use crate::Rgba;
1176        let img = ImageBuffer::from_fn(2, 2, |x, y| match (x, y) {
1177            (0, 0) => Rgba([255, 0, 0, 0]),
1178            (0, 1) => Rgba([0, 255, 0, 0]),
1179            (1, 0) => Rgba([0, 0, 255, 0]),
1180            (1, 1) => Rgba([0, 0, 0, 255]),
1181            _ => panic!(),
1182        });
1183
1184        assert_eq!(sample_nearest(&img, 0.0, 0.0), Some(Rgba([255, 0, 0, 0])));
1185        assert_eq!(sample_nearest(&img, 0.0, 1.0), Some(Rgba([0, 255, 0, 0])));
1186        assert_eq!(sample_nearest(&img, 1.0, 0.0), Some(Rgba([0, 0, 255, 0])));
1187        assert_eq!(sample_nearest(&img, 1.0, 1.0), Some(Rgba([0, 0, 0, 255])));
1188
1189        assert_eq!(sample_nearest(&img, 0.5, 0.5), Some(Rgba([0, 0, 0, 255])));
1190        assert_eq!(sample_nearest(&img, 0.5, 0.0), Some(Rgba([0, 0, 255, 0])));
1191        assert_eq!(sample_nearest(&img, 0.0, 0.5), Some(Rgba([0, 255, 0, 0])));
1192        assert_eq!(sample_nearest(&img, 0.5, 1.0), Some(Rgba([0, 0, 0, 255])));
1193        assert_eq!(sample_nearest(&img, 1.0, 0.5), Some(Rgba([0, 0, 0, 255])));
1194    }
1195
1196    #[bench]
1197    #[cfg(all(feature = "benchmarks", feature = "tiff"))]
1198    fn bench_resize_same_size(b: &mut test::Bencher) {
1199        let path = concat!(
1200            env!("CARGO_MANIFEST_DIR"),
1201            "/tests/images/tiff/testsuite/mandrill.tiff"
1202        );
1203        let image = crate::open(path).unwrap();
1204        b.iter(|| {
1205            test::black_box(image.resize(image.width(), image.height(), FilterType::CatmullRom));
1206        });
1207        b.bytes = (image.width() * image.height() * 3) as u64;
1208    }
1209
1210    #[test]
1211    fn test_issue_186() {
1212        let img: RgbImage = ImageBuffer::new(100, 100);
1213        let _ = resize(&img, 50, 50, FilterType::Lanczos3);
1214    }
1215
1216    #[bench]
1217    #[cfg(all(feature = "benchmarks", feature = "tiff"))]
1218    fn bench_thumbnail(b: &mut test::Bencher) {
1219        let path = concat!(
1220            env!("CARGO_MANIFEST_DIR"),
1221            "/tests/images/tiff/testsuite/mandrill.tiff"
1222        );
1223        let image = crate::open(path).unwrap();
1224        b.iter(|| {
1225            test::black_box(image.thumbnail(256, 256));
1226        });
1227        b.bytes = 512 * 512 * 4 + 256 * 256 * 4;
1228    }
1229
1230    #[bench]
1231    #[cfg(all(feature = "benchmarks", feature = "tiff"))]
1232    fn bench_thumbnail_upsize(b: &mut test::Bencher) {
1233        let path = concat!(
1234            env!("CARGO_MANIFEST_DIR"),
1235            "/tests/images/tiff/testsuite/mandrill.tiff"
1236        );
1237        let image = crate::open(path).unwrap().thumbnail(256, 256);
1238        b.iter(|| {
1239            test::black_box(image.thumbnail(512, 512));
1240        });
1241        b.bytes = 512 * 512 * 4 + 256 * 256 * 4;
1242    }
1243
1244    #[bench]
1245    #[cfg(all(feature = "benchmarks", feature = "tiff"))]
1246    fn bench_thumbnail_upsize_irregular(b: &mut test::Bencher) {
1247        let path = concat!(
1248            env!("CARGO_MANIFEST_DIR"),
1249            "/tests/images/tiff/testsuite/mandrill.tiff"
1250        );
1251        let image = crate::open(path).unwrap().thumbnail(193, 193);
1252        b.iter(|| {
1253            test::black_box(image.thumbnail(256, 256));
1254        });
1255        b.bytes = 193 * 193 * 4 + 256 * 256 * 4;
1256    }
1257
1258    #[test]
1259    #[cfg(feature = "png")]
1260    fn resize_transparent_image() {
1261        use super::FilterType::{CatmullRom, Gaussian, Lanczos3, Nearest, Triangle};
1262        use crate::imageops::crop_imm;
1263        use crate::RgbaImage;
1264
1265        fn assert_resize(image: &RgbaImage, filter: FilterType) {
1266            let resized = resize(image, 16, 16, filter);
1267            let cropped = crop_imm(&resized, 5, 5, 6, 6).to_image();
1268            for pixel in cropped.pixels() {
1269                let alpha = pixel.0[3];
1270                assert!(
1271                    alpha != 254 && alpha != 253,
1272                    "alpha value: {}, {:?}",
1273                    alpha,
1274                    filter
1275                );
1276            }
1277        }
1278
1279        let path = concat!(
1280            env!("CARGO_MANIFEST_DIR"),
1281            "/tests/images/png/transparency/tp1n3p08.png"
1282        );
1283        let img = crate::open(path).unwrap();
1284        let rgba8 = img.as_rgba8().unwrap();
1285        let filters = &[Nearest, Triangle, CatmullRom, Gaussian, Lanczos3];
1286        for filter in filters {
1287            assert_resize(rgba8, *filter);
1288        }
1289    }
1290
1291    #[test]
1292    fn bug_1600() {
1293        let image = crate::RgbaImage::from_raw(629, 627, vec![255; 629 * 627 * 4]).unwrap();
1294        let result = resize(&image, 22, 22, FilterType::Lanczos3);
1295        assert!(result.into_raw().into_iter().any(|c| c != 0));
1296    }
1297
1298    #[test]
1299    fn issue_2340() {
1300        let empty = crate::GrayImage::from_raw(1 << 31, 0, vec![]).unwrap();
1301        // Really we're checking that no overflow / outsized allocation happens here.
1302        let result = resize(&empty, 1, 1, FilterType::Lanczos3);
1303        assert!(result.into_raw().into_iter().all(|c| c == 0));
1304        // With the previous strategy before the regression this would allocate 1TB of memory for a
1305        // temporary during the sampling evaluation.
1306        let result = resize(&empty, 256, 256, FilterType::Lanczos3);
1307        assert!(result.into_raw().into_iter().all(|c| c == 0));
1308    }
1309
1310    #[test]
1311    fn issue_2340_refl() {
1312        // Tests the swapped coordinate version of `issue_2340`.
1313        let empty = crate::GrayImage::from_raw(0, 1 << 31, vec![]).unwrap();
1314        let result = resize(&empty, 1, 1, FilterType::Lanczos3);
1315        assert!(result.into_raw().into_iter().all(|c| c == 0));
1316        let result = resize(&empty, 256, 256, FilterType::Lanczos3);
1317        assert!(result.into_raw().into_iter().all(|c| c == 0));
1318    }
1319}