naga/back/glsl/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
/*!
Backend for [GLSL][glsl] (OpenGL Shading Language).

The main structure is [`Writer`], it maintains internal state that is used
to output a [`Module`](crate::Module) into glsl

# Supported versions
### Core
- 330
- 400
- 410
- 420
- 430
- 450

### ES
- 300
- 310

[glsl]: https://www.khronos.org/registry/OpenGL/index_gl.php
*/

// GLSL is mostly a superset of C but it also removes some parts of it this is a list of relevant
// aspects for this backend.
//
// The most notable change is the introduction of the version preprocessor directive that must
// always be the first line of a glsl file and is written as
// `#version number profile`
// `number` is the version itself (i.e. 300) and `profile` is the
// shader profile we only support "core" and "es", the former is used in desktop applications and
// the later is used in embedded contexts, mobile devices and browsers. Each one as it's own
// versions (at the time of writing this the latest version for "core" is 460 and for "es" is 320)
//
// Other important preprocessor addition is the extension directive which is written as
// `#extension name: behaviour`
// Extensions provide increased features in a plugin fashion but they aren't required to be
// supported hence why they are called extensions, that's why `behaviour` is used it specifies
// whether the extension is strictly required or if it should only be enabled if needed. In our case
// when we use extensions we set behaviour to `require` always.
//
// The only thing that glsl removes that makes a difference are pointers.
//
// Additions that are relevant for the backend are the discard keyword, the introduction of
// vector, matrices, samplers, image types and functions that provide common shader operations

pub use features::Features;

use crate::{
    back::{self, Baked},
    proc::{self, ExpressionKindTracker, NameKey},
    valid, Handle, ShaderStage, TypeInner,
};
use features::FeaturesManager;
use std::{
    cmp::Ordering,
    fmt::{self, Error as FmtError, Write},
    mem,
};
use thiserror::Error;

/// Contains the features related code and the features querying method
mod features;
/// Contains a constant with a slice of all the reserved keywords RESERVED_KEYWORDS
mod keywords;

/// List of supported `core` GLSL versions.
pub const SUPPORTED_CORE_VERSIONS: &[u16] = &[140, 150, 330, 400, 410, 420, 430, 440, 450, 460];
/// List of supported `es` GLSL versions.
pub const SUPPORTED_ES_VERSIONS: &[u16] = &[300, 310, 320];

/// The suffix of the variable that will hold the calculated clamped level
/// of detail for bounds checking in `ImageLoad`
const CLAMPED_LOD_SUFFIX: &str = "_clamped_lod";

pub(crate) const MODF_FUNCTION: &str = "naga_modf";
pub(crate) const FREXP_FUNCTION: &str = "naga_frexp";

// Must match code in glsl_built_in
pub const FIRST_INSTANCE_BINDING: &str = "naga_vs_first_instance";

/// Mapping between resources and bindings.
pub type BindingMap = std::collections::BTreeMap<crate::ResourceBinding, u8>;

impl crate::AtomicFunction {
    const fn to_glsl(self) -> &'static str {
        match self {
            Self::Add | Self::Subtract => "Add",
            Self::And => "And",
            Self::InclusiveOr => "Or",
            Self::ExclusiveOr => "Xor",
            Self::Min => "Min",
            Self::Max => "Max",
            Self::Exchange { compare: None } => "Exchange",
            Self::Exchange { compare: Some(_) } => "", //TODO
        }
    }
}

impl crate::AddressSpace {
    const fn is_buffer(&self) -> bool {
        match *self {
            crate::AddressSpace::Uniform | crate::AddressSpace::Storage { .. } => true,
            _ => false,
        }
    }

    /// Whether a variable with this address space can be initialized
    const fn initializable(&self) -> bool {
        match *self {
            crate::AddressSpace::Function | crate::AddressSpace::Private => true,
            crate::AddressSpace::WorkGroup
            | crate::AddressSpace::Uniform
            | crate::AddressSpace::Storage { .. }
            | crate::AddressSpace::Handle
            | crate::AddressSpace::PushConstant => false,
        }
    }
}

/// A GLSL version.
#[derive(Debug, Copy, Clone, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
pub enum Version {
    /// `core` GLSL.
    Desktop(u16),
    /// `es` GLSL.
    Embedded { version: u16, is_webgl: bool },
}

impl Version {
    /// Create a new gles version
    pub const fn new_gles(version: u16) -> Self {
        Self::Embedded {
            version,
            is_webgl: false,
        }
    }

    /// Returns true if self is `Version::Embedded` (i.e. is a es version)
    const fn is_es(&self) -> bool {
        match *self {
            Version::Desktop(_) => false,
            Version::Embedded { .. } => true,
        }
    }

    /// Returns true if targeting WebGL
    const fn is_webgl(&self) -> bool {
        match *self {
            Version::Desktop(_) => false,
            Version::Embedded { is_webgl, .. } => is_webgl,
        }
    }

    /// Checks the list of currently supported versions and returns true if it contains the
    /// specified version
    ///
    /// # Notes
    /// As an invalid version number will never be added to the supported version list
    /// so this also checks for version validity
    fn is_supported(&self) -> bool {
        match *self {
            Version::Desktop(v) => SUPPORTED_CORE_VERSIONS.contains(&v),
            Version::Embedded { version: v, .. } => SUPPORTED_ES_VERSIONS.contains(&v),
        }
    }

    fn supports_io_locations(&self) -> bool {
        *self >= Version::Desktop(330) || *self >= Version::new_gles(300)
    }

    /// Checks if the version supports all of the explicit layouts:
    /// - `location=` qualifiers for bindings
    /// - `binding=` qualifiers for resources
    ///
    /// Note: `location=` for vertex inputs and fragment outputs is supported
    /// unconditionally for GLES 300.
    fn supports_explicit_locations(&self) -> bool {
        *self >= Version::Desktop(420) || *self >= Version::new_gles(310)
    }

    fn supports_early_depth_test(&self) -> bool {
        *self >= Version::Desktop(130) || *self >= Version::new_gles(310)
    }

    fn supports_std430_layout(&self) -> bool {
        *self >= Version::Desktop(430) || *self >= Version::new_gles(310)
    }

    fn supports_fma_function(&self) -> bool {
        *self >= Version::Desktop(400) || *self >= Version::new_gles(320)
    }

    fn supports_integer_functions(&self) -> bool {
        *self >= Version::Desktop(400) || *self >= Version::new_gles(310)
    }

    fn supports_frexp_function(&self) -> bool {
        *self >= Version::Desktop(400) || *self >= Version::new_gles(310)
    }

    fn supports_derivative_control(&self) -> bool {
        *self >= Version::Desktop(450)
    }
}

impl PartialOrd for Version {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        match (*self, *other) {
            (Version::Desktop(x), Version::Desktop(y)) => Some(x.cmp(&y)),
            (Version::Embedded { version: x, .. }, Version::Embedded { version: y, .. }) => {
                Some(x.cmp(&y))
            }
            _ => None,
        }
    }
}

impl fmt::Display for Version {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            Version::Desktop(v) => write!(f, "{v} core"),
            Version::Embedded { version: v, .. } => write!(f, "{v} es"),
        }
    }
}

bitflags::bitflags! {
    /// Configuration flags for the [`Writer`].
    #[cfg_attr(feature = "serialize", derive(serde::Serialize))]
    #[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
    #[derive(Clone, Copy, Debug, Eq, PartialEq)]
    pub struct WriterFlags: u32 {
        /// Flip output Y and extend Z from (0, 1) to (-1, 1).
        const ADJUST_COORDINATE_SPACE = 0x1;
        /// Supports GL_EXT_texture_shadow_lod on the host, which provides
        /// additional functions on shadows and arrays of shadows.
        const TEXTURE_SHADOW_LOD = 0x2;
        /// Supports ARB_shader_draw_parameters on the host, which provides
        /// support for `gl_BaseInstanceARB`, `gl_BaseVertexARB`, `gl_DrawIDARB`, and `gl_DrawID`.
        const DRAW_PARAMETERS = 0x4;
        /// Include unused global variables, constants and functions. By default the output will exclude
        /// global variables that are not used in the specified entrypoint (including indirect use),
        /// all constant declarations, and functions that use excluded global variables.
        const INCLUDE_UNUSED_ITEMS = 0x10;
        /// Emit `PointSize` output builtin to vertex shaders, which is
        /// required for drawing with `PointList` topology.
        ///
        /// https://registry.khronos.org/OpenGL/specs/es/3.2/GLSL_ES_Specification_3.20.html#built-in-language-variables
        /// The variable gl_PointSize is intended for a shader to write the size of the point to be rasterized. It is measured in pixels.
        /// If gl_PointSize is not written to, its value is undefined in subsequent pipe stages.
        const FORCE_POINT_SIZE = 0x20;
    }
}

/// Configuration used in the [`Writer`].
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
pub struct Options {
    /// The GLSL version to be used.
    pub version: Version,
    /// Configuration flags for the [`Writer`].
    pub writer_flags: WriterFlags,
    /// Map of resources association to binding locations.
    pub binding_map: BindingMap,
    /// Should workgroup variables be zero initialized (by polyfilling)?
    pub zero_initialize_workgroup_memory: bool,
}

impl Default for Options {
    fn default() -> Self {
        Options {
            version: Version::new_gles(310),
            writer_flags: WriterFlags::ADJUST_COORDINATE_SPACE,
            binding_map: BindingMap::default(),
            zero_initialize_workgroup_memory: true,
        }
    }
}

/// A subset of options meant to be changed per pipeline.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
pub struct PipelineOptions {
    /// The stage of the entry point.
    pub shader_stage: ShaderStage,
    /// The name of the entry point.
    ///
    /// If no entry point that matches is found while creating a [`Writer`], a error will be thrown.
    pub entry_point: String,
    /// How many views to render to, if doing multiview rendering.
    pub multiview: Option<std::num::NonZeroU32>,
}

#[derive(Debug)]
pub struct VaryingLocation {
    /// The location of the global.
    /// This corresponds to `layout(location = ..)` in GLSL.
    pub location: u32,
    /// The index which can be used for dual source blending.
    /// This corresponds to `layout(index = ..)` in GLSL.
    pub index: u32,
}

/// Reflection info for texture mappings and uniforms.
#[derive(Debug)]
pub struct ReflectionInfo {
    /// Mapping between texture names and variables/samplers.
    pub texture_mapping: crate::FastHashMap<String, TextureMapping>,
    /// Mapping between uniform variables and names.
    pub uniforms: crate::FastHashMap<Handle<crate::GlobalVariable>, String>,
    /// Mapping between names and attribute locations.
    pub varying: crate::FastHashMap<String, VaryingLocation>,
    /// List of push constant items in the shader.
    pub push_constant_items: Vec<PushConstantItem>,
}

/// Mapping between a texture and its sampler, if it exists.
///
/// GLSL pre-Vulkan has no concept of separate textures and samplers. Instead, everything is a
/// `gsamplerN` where `g` is the scalar type and `N` is the dimension. But naga uses separate textures
/// and samplers in the IR, so the backend produces a [`FastHashMap`](crate::FastHashMap) with the texture name
/// as a key and a [`TextureMapping`] as a value. This way, the user knows where to bind.
///
/// [`Storage`](crate::ImageClass::Storage) images produce `gimageN` and don't have an associated sampler,
/// so the [`sampler`](Self::sampler) field will be [`None`].
#[derive(Debug, Clone)]
pub struct TextureMapping {
    /// Handle to the image global variable.
    pub texture: Handle<crate::GlobalVariable>,
    /// Handle to the associated sampler global variable, if it exists.
    pub sampler: Option<Handle<crate::GlobalVariable>>,
}

/// All information to bind a single uniform value to the shader.
///
/// Push constants are emulated using traditional uniforms in OpenGL.
///
/// These are composed of a set of primitives (scalar, vector, matrix) that
/// are given names. Because they are not backed by the concept of a buffer,
/// we must do the work of calculating the offset of each primitive in the
/// push constant block.
#[derive(Debug, Clone)]
pub struct PushConstantItem {
    /// GL uniform name for the item. This name is the same as if you were
    /// to access it directly from a GLSL shader.
    ///
    /// The with the following example, the following names will be generated,
    /// one name per GLSL uniform.
    ///
    /// ```glsl
    /// struct InnerStruct {
    ///     value: f32,
    /// }
    ///
    /// struct PushConstant {
    ///     InnerStruct inner;
    ///     vec4 array[2];
    /// }
    ///
    /// uniform PushConstants _push_constant_binding_cs;
    /// ```
    ///
    /// ```text
    /// - _push_constant_binding_cs.inner.value
    /// - _push_constant_binding_cs.array[0]
    /// - _push_constant_binding_cs.array[1]
    /// ```
    ///
    pub access_path: String,
    /// Type of the uniform. This will only ever be a scalar, vector, or matrix.
    pub ty: Handle<crate::Type>,
    /// The offset in the push constant memory block this uniform maps to.
    ///
    /// The size of the uniform can be derived from the type.
    pub offset: u32,
}

/// Helper structure that generates a number
#[derive(Default)]
struct IdGenerator(u32);

impl IdGenerator {
    /// Generates a number that's guaranteed to be unique for this `IdGenerator`
    fn generate(&mut self) -> u32 {
        // It's just an increasing number but it does the job
        let ret = self.0;
        self.0 += 1;
        ret
    }
}

/// Assorted options needed for generating varyings.
#[derive(Clone, Copy)]
struct VaryingOptions {
    output: bool,
    targeting_webgl: bool,
    draw_parameters: bool,
}

impl VaryingOptions {
    const fn from_writer_options(options: &Options, output: bool) -> Self {
        Self {
            output,
            targeting_webgl: options.version.is_webgl(),
            draw_parameters: options.writer_flags.contains(WriterFlags::DRAW_PARAMETERS),
        }
    }
}

/// Helper wrapper used to get a name for a varying
///
/// Varying have different naming schemes depending on their binding:
/// - Varyings with builtin bindings get the from [`glsl_built_in`].
/// - Varyings with location bindings are named `_S_location_X` where `S` is a
///   prefix identifying which pipeline stage the varying connects, and `X` is
///   the location.
struct VaryingName<'a> {
    binding: &'a crate::Binding,
    stage: ShaderStage,
    options: VaryingOptions,
}
impl fmt::Display for VaryingName<'_> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self.binding {
            crate::Binding::Location {
                second_blend_source: true,
                ..
            } => {
                write!(f, "_fs2p_location1",)
            }
            crate::Binding::Location { location, .. } => {
                let prefix = match (self.stage, self.options.output) {
                    (ShaderStage::Compute, _) => unreachable!(),
                    // pipeline to vertex
                    (ShaderStage::Vertex, false) => "p2vs",
                    // vertex to fragment
                    (ShaderStage::Vertex, true) | (ShaderStage::Fragment, false) => "vs2fs",
                    // fragment to pipeline
                    (ShaderStage::Fragment, true) => "fs2p",
                };
                write!(f, "_{prefix}_location{location}",)
            }
            crate::Binding::BuiltIn(built_in) => {
                write!(f, "{}", glsl_built_in(built_in, self.options))
            }
        }
    }
}

impl ShaderStage {
    const fn to_str(self) -> &'static str {
        match self {
            ShaderStage::Compute => "cs",
            ShaderStage::Fragment => "fs",
            ShaderStage::Vertex => "vs",
        }
    }
}

/// Shorthand result used internally by the backend
type BackendResult<T = ()> = Result<T, Error>;

/// A GLSL compilation error.
#[derive(Debug, Error)]
pub enum Error {
    /// A error occurred while writing to the output.
    #[error("Format error")]
    FmtError(#[from] FmtError),
    /// The specified [`Version`] doesn't have all required [`Features`].
    ///
    /// Contains the missing [`Features`].
    #[error("The selected version doesn't support {0:?}")]
    MissingFeatures(Features),
    /// [`AddressSpace::PushConstant`](crate::AddressSpace::PushConstant) was used more than
    /// once in the entry point, which isn't supported.
    #[error("Multiple push constants aren't supported")]
    MultiplePushConstants,
    /// The specified [`Version`] isn't supported.
    #[error("The specified version isn't supported")]
    VersionNotSupported,
    /// The entry point couldn't be found.
    #[error("The requested entry point couldn't be found")]
    EntryPointNotFound,
    /// A call was made to an unsupported external.
    #[error("A call was made to an unsupported external: {0}")]
    UnsupportedExternal(String),
    /// A scalar with an unsupported width was requested.
    #[error("A scalar with an unsupported width was requested: {0:?}")]
    UnsupportedScalar(crate::Scalar),
    /// A image was used with multiple samplers, which isn't supported.
    #[error("A image was used with multiple samplers")]
    ImageMultipleSamplers,
    #[error("{0}")]
    Custom(String),
    #[error("overrides should not be present at this stage")]
    Override,
    /// [`crate::Sampling::First`] is unsupported.
    #[error("`{:?}` sampling is unsupported", crate::Sampling::First)]
    FirstSamplingNotSupported,
}

/// Binary operation with a different logic on the GLSL side.
enum BinaryOperation {
    /// Vector comparison should use the function like `greaterThan()`, etc.
    VectorCompare,
    /// Vector component wise operation; used to polyfill unsupported ops like `|` and `&` for `bvecN`'s
    VectorComponentWise,
    /// GLSL `%` is SPIR-V `OpUMod/OpSMod` and `mod()` is `OpFMod`, but [`BinaryOperator::Modulo`](crate::BinaryOperator::Modulo) is `OpFRem`.
    Modulo,
    /// Any plain operation. No additional logic required.
    Other,
}

/// Writer responsible for all code generation.
pub struct Writer<'a, W> {
    // Inputs
    /// The module being written.
    module: &'a crate::Module,
    /// The module analysis.
    info: &'a valid::ModuleInfo,
    /// The output writer.
    out: W,
    /// User defined configuration to be used.
    options: &'a Options,
    /// The bound checking policies to be used
    policies: proc::BoundsCheckPolicies,

    // Internal State
    /// Features manager used to store all the needed features and write them.
    features: FeaturesManager,
    namer: proc::Namer,
    /// A map with all the names needed for writing the module
    /// (generated by a [`Namer`](crate::proc::Namer)).
    names: crate::FastHashMap<NameKey, String>,
    /// A map with the names of global variables needed for reflections.
    reflection_names_globals: crate::FastHashMap<Handle<crate::GlobalVariable>, String>,
    /// The selected entry point.
    entry_point: &'a crate::EntryPoint,
    /// The index of the selected entry point.
    entry_point_idx: proc::EntryPointIndex,
    /// A generator for unique block numbers.
    block_id: IdGenerator,
    /// Set of expressions that have associated temporary variables.
    named_expressions: crate::NamedExpressions,
    /// Set of expressions that need to be baked to avoid unnecessary repetition in output
    need_bake_expressions: back::NeedBakeExpressions,
    /// Information about nesting of loops and switches.
    ///
    /// Used for forwarding continue statements in switches that have been
    /// transformed to `do {} while(false);` loops.
    continue_ctx: back::continue_forward::ContinueCtx,
    /// How many views to render to, if doing multiview rendering.
    multiview: Option<std::num::NonZeroU32>,
    /// Mapping of varying variables to their location. Needed for reflections.
    varying: crate::FastHashMap<String, VaryingLocation>,
}

impl<'a, W: Write> Writer<'a, W> {
    /// Creates a new [`Writer`] instance.
    ///
    /// # Errors
    /// - If the version specified is invalid or supported.
    /// - If the entry point couldn't be found in the module.
    /// - If the version specified doesn't support some used features.
    pub fn new(
        out: W,
        module: &'a crate::Module,
        info: &'a valid::ModuleInfo,
        options: &'a Options,
        pipeline_options: &'a PipelineOptions,
        policies: proc::BoundsCheckPolicies,
    ) -> Result<Self, Error> {
        if !module.overrides.is_empty() {
            return Err(Error::Override);
        }

        // Check if the requested version is supported
        if !options.version.is_supported() {
            log::error!("Version {}", options.version);
            return Err(Error::VersionNotSupported);
        }

        // Try to find the entry point and corresponding index
        let ep_idx = module
            .entry_points
            .iter()
            .position(|ep| {
                pipeline_options.shader_stage == ep.stage && pipeline_options.entry_point == ep.name
            })
            .ok_or(Error::EntryPointNotFound)?;

        // Generate a map with names required to write the module
        let mut names = crate::FastHashMap::default();
        let mut namer = proc::Namer::default();
        namer.reset(
            module,
            keywords::RESERVED_KEYWORDS,
            &[],
            &[],
            &[
                "gl_",                     // all GL built-in variables
                "_group",                  // all normal bindings
                "_push_constant_binding_", // all push constant bindings
            ],
            &mut names,
        );

        // Build the instance
        let mut this = Self {
            module,
            info,
            out,
            options,
            policies,

            namer,
            features: FeaturesManager::new(),
            names,
            reflection_names_globals: crate::FastHashMap::default(),
            entry_point: &module.entry_points[ep_idx],
            entry_point_idx: ep_idx as u16,
            multiview: pipeline_options.multiview,
            block_id: IdGenerator::default(),
            named_expressions: Default::default(),
            need_bake_expressions: Default::default(),
            continue_ctx: back::continue_forward::ContinueCtx::default(),
            varying: Default::default(),
        };

        // Find all features required to print this module
        this.collect_required_features()?;

        Ok(this)
    }

    /// Writes the [`Module`](crate::Module) as glsl to the output
    ///
    /// # Notes
    /// If an error occurs while writing, the output might have been written partially
    ///
    /// # Panics
    /// Might panic if the module is invalid
    pub fn write(&mut self) -> Result<ReflectionInfo, Error> {
        // We use `writeln!(self.out)` throughout the write to add newlines
        // to make the output more readable

        let es = self.options.version.is_es();

        // Write the version (It must be the first thing or it isn't a valid glsl output)
        writeln!(self.out, "#version {}", self.options.version)?;
        // Write all the needed extensions
        //
        // This used to be the last thing being written as it allowed to search for features while
        // writing the module saving some loops but some older versions (420 or less) required the
        // extensions to appear before being used, even though extensions are part of the
        // preprocessor not the processor ยฏ\_(ใƒ„)_/ยฏ
        self.features.write(self.options, &mut self.out)?;

        // glsl es requires a precision to be specified for floats and ints
        // TODO: Should this be user configurable?
        if es {
            writeln!(self.out)?;
            writeln!(self.out, "precision highp float;")?;
            writeln!(self.out, "precision highp int;")?;
            writeln!(self.out)?;
        }

        if self.entry_point.stage == ShaderStage::Compute {
            let workgroup_size = self.entry_point.workgroup_size;
            writeln!(
                self.out,
                "layout(local_size_x = {}, local_size_y = {}, local_size_z = {}) in;",
                workgroup_size[0], workgroup_size[1], workgroup_size[2]
            )?;
            writeln!(self.out)?;
        }

        if self.entry_point.stage == ShaderStage::Vertex
            && !self
                .options
                .writer_flags
                .contains(WriterFlags::DRAW_PARAMETERS)
            && self.features.contains(Features::INSTANCE_INDEX)
        {
            writeln!(self.out, "uniform uint {FIRST_INSTANCE_BINDING};")?;
            writeln!(self.out)?;
        }

        // Enable early depth tests if needed
        if let Some(depth_test) = self.entry_point.early_depth_test {
            // If early depth test is supported for this version of GLSL
            if self.options.version.supports_early_depth_test() {
                writeln!(self.out, "layout(early_fragment_tests) in;")?;

                if let Some(conservative) = depth_test.conservative {
                    use crate::ConservativeDepth as Cd;

                    let depth = match conservative {
                        Cd::GreaterEqual => "greater",
                        Cd::LessEqual => "less",
                        Cd::Unchanged => "unchanged",
                    };
                    writeln!(self.out, "layout (depth_{depth}) out float gl_FragDepth;")?;
                }
                writeln!(self.out)?;
            } else {
                log::warn!(
                    "Early depth testing is not supported for this version of GLSL: {}",
                    self.options.version
                );
            }
        }

        if self.entry_point.stage == ShaderStage::Vertex && self.options.version.is_webgl() {
            if let Some(multiview) = self.multiview.as_ref() {
                writeln!(self.out, "layout(num_views = {multiview}) in;")?;
                writeln!(self.out)?;
            }
        }

        // Write struct types.
        //
        // This are always ordered because the IR is structured in a way that
        // you can't make a struct without adding all of its members first.
        for (handle, ty) in self.module.types.iter() {
            if let TypeInner::Struct { ref members, .. } = ty.inner {
                // Structures ending with runtime-sized arrays can only be
                // rendered as shader storage blocks in GLSL, not stand-alone
                // struct types.
                if !self.module.types[members.last().unwrap().ty]
                    .inner
                    .is_dynamically_sized(&self.module.types)
                {
                    let name = &self.names[&NameKey::Type(handle)];
                    write!(self.out, "struct {name} ")?;
                    self.write_struct_body(handle, members)?;
                    writeln!(self.out, ";")?;
                }
            }
        }

        // Write functions to create special types.
        for (type_key, struct_ty) in self.module.special_types.predeclared_types.iter() {
            match type_key {
                &crate::PredeclaredType::ModfResult { size, width }
                | &crate::PredeclaredType::FrexpResult { size, width } => {
                    let arg_type_name_owner;
                    let arg_type_name = if let Some(size) = size {
                        arg_type_name_owner =
                            format!("{}vec{}", if width == 8 { "d" } else { "" }, size as u8);
                        &arg_type_name_owner
                    } else if width == 8 {
                        "double"
                    } else {
                        "float"
                    };

                    let other_type_name_owner;
                    let (defined_func_name, called_func_name, other_type_name) =
                        if matches!(type_key, &crate::PredeclaredType::ModfResult { .. }) {
                            (MODF_FUNCTION, "modf", arg_type_name)
                        } else {
                            let other_type_name = if let Some(size) = size {
                                other_type_name_owner = format!("ivec{}", size as u8);
                                &other_type_name_owner
                            } else {
                                "int"
                            };
                            (FREXP_FUNCTION, "frexp", other_type_name)
                        };

                    let struct_name = &self.names[&NameKey::Type(*struct_ty)];

                    writeln!(self.out)?;
                    if !self.options.version.supports_frexp_function()
                        && matches!(type_key, &crate::PredeclaredType::FrexpResult { .. })
                    {
                        writeln!(
                            self.out,
                            "{struct_name} {defined_func_name}({arg_type_name} arg) {{
    {other_type_name} other = arg == {arg_type_name}(0) ? {other_type_name}(0) : {other_type_name}({arg_type_name}(1) + log2(arg));
    {arg_type_name} fract = arg * exp2({arg_type_name}(-other));
    return {struct_name}(fract, other);
}}",
                        )?;
                    } else {
                        writeln!(
                            self.out,
                            "{struct_name} {defined_func_name}({arg_type_name} arg) {{
    {other_type_name} other;
    {arg_type_name} fract = {called_func_name}(arg, other);
    return {struct_name}(fract, other);
}}",
                        )?;
                    }
                }
                &crate::PredeclaredType::AtomicCompareExchangeWeakResult { .. } => {}
            }
        }

        // Write all named constants
        let mut constants = self
            .module
            .constants
            .iter()
            .filter(|&(_, c)| c.name.is_some())
            .peekable();
        while let Some((handle, _)) = constants.next() {
            self.write_global_constant(handle)?;
            // Add extra newline for readability on last iteration
            if constants.peek().is_none() {
                writeln!(self.out)?;
            }
        }

        let ep_info = self.info.get_entry_point(self.entry_point_idx as usize);

        // Write the globals
        //
        // Unless explicitly disabled with WriterFlags::INCLUDE_UNUSED_ITEMS,
        // we filter all globals that aren't used by the selected entry point as they might be
        // interfere with each other (i.e. two globals with the same location but different with
        // different classes)
        let include_unused = self
            .options
            .writer_flags
            .contains(WriterFlags::INCLUDE_UNUSED_ITEMS);
        for (handle, global) in self.module.global_variables.iter() {
            let is_unused = ep_info[handle].is_empty();
            if !include_unused && is_unused {
                continue;
            }

            match self.module.types[global.ty].inner {
                // We treat images separately because they might require
                // writing the storage format
                TypeInner::Image {
                    mut dim,
                    arrayed,
                    class,
                } => {
                    // Gather the storage format if needed
                    let storage_format_access = match self.module.types[global.ty].inner {
                        TypeInner::Image {
                            class: crate::ImageClass::Storage { format, access },
                            ..
                        } => Some((format, access)),
                        _ => None,
                    };

                    if dim == crate::ImageDimension::D1 && es {
                        dim = crate::ImageDimension::D2
                    }

                    // Gether the location if needed
                    let layout_binding = if self.options.version.supports_explicit_locations() {
                        let br = global.binding.as_ref().unwrap();
                        self.options.binding_map.get(br).cloned()
                    } else {
                        None
                    };

                    // Write all the layout qualifiers
                    if layout_binding.is_some() || storage_format_access.is_some() {
                        write!(self.out, "layout(")?;
                        if let Some(binding) = layout_binding {
                            write!(self.out, "binding = {binding}")?;
                        }
                        if let Some((format, _)) = storage_format_access {
                            let format_str = glsl_storage_format(format)?;
                            let separator = match layout_binding {
                                Some(_) => ",",
                                None => "",
                            };
                            write!(self.out, "{separator}{format_str}")?;
                        }
                        write!(self.out, ") ")?;
                    }

                    if let Some((_, access)) = storage_format_access {
                        self.write_storage_access(access)?;
                    }

                    // All images in glsl are `uniform`
                    // The trailing space is important
                    write!(self.out, "uniform ")?;

                    // write the type
                    //
                    // This is way we need the leading space because `write_image_type` doesn't add
                    // any spaces at the beginning or end
                    self.write_image_type(dim, arrayed, class)?;

                    // Finally write the name and end the global with a `;`
                    // The leading space is important
                    let global_name = self.get_global_name(handle, global);
                    writeln!(self.out, " {global_name};")?;
                    writeln!(self.out)?;

                    self.reflection_names_globals.insert(handle, global_name);
                }
                // glsl has no concept of samplers so we just ignore it
                TypeInner::Sampler { .. } => continue,
                // All other globals are written by `write_global`
                _ => {
                    self.write_global(handle, global)?;
                    // Add a newline (only for readability)
                    writeln!(self.out)?;
                }
            }
        }

        for arg in self.entry_point.function.arguments.iter() {
            self.write_varying(arg.binding.as_ref(), arg.ty, false)?;
        }
        if let Some(ref result) = self.entry_point.function.result {
            self.write_varying(result.binding.as_ref(), result.ty, true)?;
        }
        writeln!(self.out)?;

        // Write all regular functions
        for (handle, function) in self.module.functions.iter() {
            // Check that the function doesn't use globals that aren't supported
            // by the current entry point
            if !include_unused && !ep_info.dominates_global_use(&self.info[handle]) {
                continue;
            }

            let fun_info = &self.info[handle];

            // Skip functions that that are not compatible with this entry point's stage.
            //
            // When validation is enabled, it rejects modules whose entry points try to call
            // incompatible functions, so if we got this far, then any functions incompatible
            // with our selected entry point must not be used.
            //
            // When validation is disabled, `fun_info.available_stages` is always just
            // `ShaderStages::all()`, so this will write all functions in the module, and
            // the downstream GLSL compiler will catch any problems.
            if !fun_info.available_stages.contains(ep_info.available_stages) {
                continue;
            }

            // Write the function
            self.write_function(back::FunctionType::Function(handle), function, fun_info)?;

            writeln!(self.out)?;
        }

        self.write_function(
            back::FunctionType::EntryPoint(self.entry_point_idx),
            &self.entry_point.function,
            ep_info,
        )?;

        // Add newline at the end of file
        writeln!(self.out)?;

        // Collect all reflection info and return it to the user
        self.collect_reflection_info()
    }

    fn write_array_size(
        &mut self,
        base: Handle<crate::Type>,
        size: crate::ArraySize,
    ) -> BackendResult {
        write!(self.out, "[")?;

        // Write the array size
        // Writes nothing if `ArraySize::Dynamic`
        match size {
            crate::ArraySize::Constant(size) => {
                write!(self.out, "{size}")?;
            }
            crate::ArraySize::Dynamic => (),
        }

        write!(self.out, "]")?;

        if let TypeInner::Array {
            base: next_base,
            size: next_size,
            ..
        } = self.module.types[base].inner
        {
            self.write_array_size(next_base, next_size)?;
        }

        Ok(())
    }

    /// Helper method used to write value types
    ///
    /// # Notes
    /// Adds no trailing or leading whitespace
    fn write_value_type(&mut self, inner: &TypeInner) -> BackendResult {
        match *inner {
            // Scalars are simple we just get the full name from `glsl_scalar`
            TypeInner::Scalar(scalar)
            | TypeInner::Atomic(scalar)
            | TypeInner::ValuePointer {
                size: None,
                scalar,
                space: _,
            } => write!(self.out, "{}", glsl_scalar(scalar)?.full)?,
            // Vectors are just `gvecN` where `g` is the scalar prefix and `N` is the vector size
            TypeInner::Vector { size, scalar }
            | TypeInner::ValuePointer {
                size: Some(size),
                scalar,
                space: _,
            } => write!(self.out, "{}vec{}", glsl_scalar(scalar)?.prefix, size as u8)?,
            // Matrices are written with `gmatMxN` where `g` is the scalar prefix (only floats and
            // doubles are allowed), `M` is the columns count and `N` is the rows count
            //
            // glsl supports a matrix shorthand `gmatN` where `N` = `M` but it doesn't justify the
            // extra branch to write matrices this way
            TypeInner::Matrix {
                columns,
                rows,
                scalar,
            } => write!(
                self.out,
                "{}mat{}x{}",
                glsl_scalar(scalar)?.prefix,
                columns as u8,
                rows as u8
            )?,
            // GLSL arrays are written as `type name[size]`
            // Here we only write the size of the array i.e. `[size]`
            // Base `type` and `name` should be written outside
            TypeInner::Array { base, size, .. } => self.write_array_size(base, size)?,
            // Write all variants instead of `_` so that if new variants are added a
            // no exhaustiveness error is thrown
            TypeInner::Pointer { .. }
            | TypeInner::Struct { .. }
            | TypeInner::Image { .. }
            | TypeInner::Sampler { .. }
            | TypeInner::AccelerationStructure
            | TypeInner::RayQuery
            | TypeInner::BindingArray { .. } => {
                return Err(Error::Custom(format!("Unable to write type {inner:?}")))
            }
        }

        Ok(())
    }

    /// Helper method used to write non image/sampler types
    ///
    /// # Notes
    /// Adds no trailing or leading whitespace
    fn write_type(&mut self, ty: Handle<crate::Type>) -> BackendResult {
        match self.module.types[ty].inner {
            // glsl has no pointer types so just write types as normal and loads are skipped
            TypeInner::Pointer { base, .. } => self.write_type(base),
            // glsl structs are written as just the struct name
            TypeInner::Struct { .. } => {
                // Get the struct name
                let name = &self.names[&NameKey::Type(ty)];
                write!(self.out, "{name}")?;
                Ok(())
            }
            // glsl array has the size separated from the base type
            TypeInner::Array { base, .. } => self.write_type(base),
            ref other => self.write_value_type(other),
        }
    }

    /// Helper method to write a image type
    ///
    /// # Notes
    /// Adds no leading or trailing whitespace
    fn write_image_type(
        &mut self,
        dim: crate::ImageDimension,
        arrayed: bool,
        class: crate::ImageClass,
    ) -> BackendResult {
        // glsl images consist of four parts the scalar prefix, the image "type", the dimensions
        // and modifiers
        //
        // There exists two image types
        // - sampler - for sampled images
        // - image - for storage images
        //
        // There are three possible modifiers that can be used together and must be written in
        // this order to be valid
        // - MS - used if it's a multisampled image
        // - Array - used if it's an image array
        // - Shadow - used if it's a depth image
        use crate::ImageClass as Ic;
        use crate::Scalar as S;
        let float = S {
            kind: crate::ScalarKind::Float,
            width: 4,
        };
        let (base, scalar, ms, comparison) = match class {
            Ic::Sampled { kind, multi: true } => ("sampler", S { kind, width: 4 }, "MS", ""),
            Ic::Sampled { kind, multi: false } => ("sampler", S { kind, width: 4 }, "", ""),
            Ic::Depth { multi: true } => ("sampler", float, "MS", ""),
            Ic::Depth { multi: false } => ("sampler", float, "", "Shadow"),
            Ic::Storage { format, .. } => ("image", format.into(), "", ""),
        };

        let precision = if self.options.version.is_es() {
            "highp "
        } else {
            ""
        };

        write!(
            self.out,
            "{}{}{}{}{}{}{}",
            precision,
            glsl_scalar(scalar)?.prefix,
            base,
            glsl_dimension(dim),
            ms,
            if arrayed { "Array" } else { "" },
            comparison
        )?;

        Ok(())
    }

    /// Helper method used to write non images/sampler globals
    ///
    /// # Notes
    /// Adds a newline
    ///
    /// # Panics
    /// If the global has type sampler
    fn write_global(
        &mut self,
        handle: Handle<crate::GlobalVariable>,
        global: &crate::GlobalVariable,
    ) -> BackendResult {
        if self.options.version.supports_explicit_locations() {
            if let Some(ref br) = global.binding {
                match self.options.binding_map.get(br) {
                    Some(binding) => {
                        let layout = match global.space {
                            crate::AddressSpace::Storage { .. } => {
                                if self.options.version.supports_std430_layout() {
                                    "std430, "
                                } else {
                                    "std140, "
                                }
                            }
                            crate::AddressSpace::Uniform => "std140, ",
                            _ => "",
                        };
                        write!(self.out, "layout({layout}binding = {binding}) ")?
                    }
                    None => {
                        log::debug!("unassigned binding for {:?}", global.name);
                        if let crate::AddressSpace::Storage { .. } = global.space {
                            if self.options.version.supports_std430_layout() {
                                write!(self.out, "layout(std430) ")?
                            }
                        }
                    }
                }
            }
        }

        if let crate::AddressSpace::Storage { access } = global.space {
            self.write_storage_access(access)?;
        }

        if let Some(storage_qualifier) = glsl_storage_qualifier(global.space) {
            write!(self.out, "{storage_qualifier} ")?;
        }

        match global.space {
            crate::AddressSpace::Private => {
                self.write_simple_global(handle, global)?;
            }
            crate::AddressSpace::WorkGroup => {
                self.write_simple_global(handle, global)?;
            }
            crate::AddressSpace::PushConstant => {
                self.write_simple_global(handle, global)?;
            }
            crate::AddressSpace::Uniform => {
                self.write_interface_block(handle, global)?;
            }
            crate::AddressSpace::Storage { .. } => {
                self.write_interface_block(handle, global)?;
            }
            // A global variable in the `Function` address space is a
            // contradiction in terms.
            crate::AddressSpace::Function => unreachable!(),
            // Textures and samplers are handled directly in `Writer::write`.
            crate::AddressSpace::Handle => unreachable!(),
        }

        Ok(())
    }

    fn write_simple_global(
        &mut self,
        handle: Handle<crate::GlobalVariable>,
        global: &crate::GlobalVariable,
    ) -> BackendResult {
        self.write_type(global.ty)?;
        write!(self.out, " ")?;
        self.write_global_name(handle, global)?;

        if let TypeInner::Array { base, size, .. } = self.module.types[global.ty].inner {
            self.write_array_size(base, size)?;
        }

        if global.space.initializable() && is_value_init_supported(self.module, global.ty) {
            write!(self.out, " = ")?;
            if let Some(init) = global.init {
                self.write_const_expr(init)?;
            } else {
                self.write_zero_init_value(global.ty)?;
            }
        }

        writeln!(self.out, ";")?;

        if let crate::AddressSpace::PushConstant = global.space {
            let global_name = self.get_global_name(handle, global);
            self.reflection_names_globals.insert(handle, global_name);
        }

        Ok(())
    }

    /// Write an interface block for a single Naga global.
    ///
    /// Write `block_name { members }`. Since `block_name` must be unique
    /// between blocks and structs, we add `_block_ID` where `ID` is a
    /// `IdGenerator` generated number. Write `members` in the same way we write
    /// a struct's members.
    fn write_interface_block(
        &mut self,
        handle: Handle<crate::GlobalVariable>,
        global: &crate::GlobalVariable,
    ) -> BackendResult {
        // Write the block name, it's just the struct name appended with `_block_ID`
        let ty_name = &self.names[&NameKey::Type(global.ty)];
        let block_name = format!(
            "{}_block_{}{:?}",
            // avoid double underscores as they are reserved in GLSL
            ty_name.trim_end_matches('_'),
            self.block_id.generate(),
            self.entry_point.stage,
        );
        write!(self.out, "{block_name} ")?;
        self.reflection_names_globals.insert(handle, block_name);

        match self.module.types[global.ty].inner {
            TypeInner::Struct { ref members, .. }
                if self.module.types[members.last().unwrap().ty]
                    .inner
                    .is_dynamically_sized(&self.module.types) =>
            {
                // Structs with dynamically sized arrays must have their
                // members lifted up as members of the interface block. GLSL
                // can't write such struct types anyway.
                self.write_struct_body(global.ty, members)?;
                write!(self.out, " ")?;
                self.write_global_name(handle, global)?;
            }
            _ => {
                // A global of any other type is written as the sole member
                // of the interface block. Since the interface block is
                // anonymous, this becomes visible in the global scope.
                write!(self.out, "{{ ")?;
                self.write_type(global.ty)?;
                write!(self.out, " ")?;
                self.write_global_name(handle, global)?;
                if let TypeInner::Array { base, size, .. } = self.module.types[global.ty].inner {
                    self.write_array_size(base, size)?;
                }
                write!(self.out, "; }}")?;
            }
        }

        writeln!(self.out, ";")?;

        Ok(())
    }

    /// Helper method used to find which expressions of a given function require baking
    ///
    /// # Notes
    /// Clears `need_bake_expressions` set before adding to it
    fn update_expressions_to_bake(&mut self, func: &crate::Function, info: &valid::FunctionInfo) {
        use crate::Expression;
        self.need_bake_expressions.clear();
        for (fun_handle, expr) in func.expressions.iter() {
            let expr_info = &info[fun_handle];
            let min_ref_count = func.expressions[fun_handle].bake_ref_count();
            if min_ref_count <= expr_info.ref_count {
                self.need_bake_expressions.insert(fun_handle);
            }

            let inner = expr_info.ty.inner_with(&self.module.types);

            if let Expression::Math {
                fun,
                arg,
                arg1,
                arg2,
                ..
            } = *expr
            {
                match fun {
                    crate::MathFunction::Dot => {
                        // if the expression is a Dot product with integer arguments,
                        // then the args needs baking as well
                        if let TypeInner::Scalar(crate::Scalar {
                            kind: crate::ScalarKind::Sint | crate::ScalarKind::Uint,
                            ..
                        }) = *inner
                        {
                            self.need_bake_expressions.insert(arg);
                            self.need_bake_expressions.insert(arg1.unwrap());
                        }
                    }
                    crate::MathFunction::Pack4xI8
                    | crate::MathFunction::Pack4xU8
                    | crate::MathFunction::Unpack4xI8
                    | crate::MathFunction::Unpack4xU8 => {
                        self.need_bake_expressions.insert(arg);
                    }
                    crate::MathFunction::ExtractBits => {
                        // Only argument 1 is re-used.
                        self.need_bake_expressions.insert(arg1.unwrap());
                    }
                    crate::MathFunction::InsertBits => {
                        // Only argument 2 is re-used.
                        self.need_bake_expressions.insert(arg2.unwrap());
                    }
                    crate::MathFunction::CountLeadingZeros => {
                        if let Some(crate::ScalarKind::Sint) = inner.scalar_kind() {
                            self.need_bake_expressions.insert(arg);
                        }
                    }
                    _ => {}
                }
            }
        }
    }

    /// Helper method used to get a name for a global
    ///
    /// Globals have different naming schemes depending on their binding:
    /// - Globals without bindings use the name from the [`Namer`](crate::proc::Namer)
    /// - Globals with resource binding are named `_group_X_binding_Y` where `X`
    ///   is the group and `Y` is the binding
    fn get_global_name(
        &self,
        handle: Handle<crate::GlobalVariable>,
        global: &crate::GlobalVariable,
    ) -> String {
        match (&global.binding, global.space) {
            (&Some(ref br), _) => {
                format!(
                    "_group_{}_binding_{}_{}",
                    br.group,
                    br.binding,
                    self.entry_point.stage.to_str()
                )
            }
            (&None, crate::AddressSpace::PushConstant) => {
                format!("_push_constant_binding_{}", self.entry_point.stage.to_str())
            }
            (&None, _) => self.names[&NameKey::GlobalVariable(handle)].clone(),
        }
    }

    /// Helper method used to write a name for a global without additional heap allocation
    fn write_global_name(
        &mut self,
        handle: Handle<crate::GlobalVariable>,
        global: &crate::GlobalVariable,
    ) -> BackendResult {
        match (&global.binding, global.space) {
            (&Some(ref br), _) => write!(
                self.out,
                "_group_{}_binding_{}_{}",
                br.group,
                br.binding,
                self.entry_point.stage.to_str()
            )?,
            (&None, crate::AddressSpace::PushConstant) => write!(
                self.out,
                "_push_constant_binding_{}",
                self.entry_point.stage.to_str()
            )?,
            (&None, _) => write!(
                self.out,
                "{}",
                &self.names[&NameKey::GlobalVariable(handle)]
            )?,
        }

        Ok(())
    }

    /// Write a GLSL global that will carry a Naga entry point's argument or return value.
    ///
    /// A Naga entry point's arguments and return value are rendered in GLSL as
    /// variables at global scope with the `in` and `out` storage qualifiers.
    /// The code we generate for `main` loads from all the `in` globals into
    /// appropriately named locals. Before it returns, `main` assigns the
    /// components of its return value into all the `out` globals.
    ///
    /// This function writes a declaration for one such GLSL global,
    /// representing a value passed into or returned from [`self.entry_point`]
    /// that has a [`Location`] binding. The global's name is generated based on
    /// the location index and the shader stages being connected; see
    /// [`VaryingName`]. This means we don't need to know the names of
    /// arguments, just their types and bindings.
    ///
    /// Emit nothing for entry point arguments or return values with [`BuiltIn`]
    /// bindings; `main` will read from or assign to the appropriate GLSL
    /// special variable; these are pre-declared. As an exception, we do declare
    /// `gl_Position` or `gl_FragCoord` with the `invariant` qualifier if
    /// needed.
    ///
    /// Use `output` together with [`self.entry_point.stage`] to determine which
    /// shader stages are being connected, and choose the `in` or `out` storage
    /// qualifier.
    ///
    /// [`self.entry_point`]: Writer::entry_point
    /// [`self.entry_point.stage`]: crate::EntryPoint::stage
    /// [`Location`]: crate::Binding::Location
    /// [`BuiltIn`]: crate::Binding::BuiltIn
    fn write_varying(
        &mut self,
        binding: Option<&crate::Binding>,
        ty: Handle<crate::Type>,
        output: bool,
    ) -> Result<(), Error> {
        // For a struct, emit a separate global for each member with a binding.
        if let TypeInner::Struct { ref members, .. } = self.module.types[ty].inner {
            for member in members {
                self.write_varying(member.binding.as_ref(), member.ty, output)?;
            }
            return Ok(());
        }

        let binding = match binding {
            None => return Ok(()),
            Some(binding) => binding,
        };

        let (location, interpolation, sampling, second_blend_source) = match *binding {
            crate::Binding::Location {
                location,
                interpolation,
                sampling,
                second_blend_source,
            } => (location, interpolation, sampling, second_blend_source),
            crate::Binding::BuiltIn(built_in) => {
                if let crate::BuiltIn::Position { invariant: true } = built_in {
                    match (self.options.version, self.entry_point.stage) {
                        (
                            Version::Embedded {
                                version: 300,
                                is_webgl: true,
                            },
                            ShaderStage::Fragment,
                        ) => {
                            // `invariant gl_FragCoord` is not allowed in WebGL2 and possibly
                            // OpenGL ES in general (waiting on confirmation).
                            //
                            // See https://github.com/KhronosGroup/WebGL/issues/3518
                        }
                        _ => {
                            writeln!(
                                self.out,
                                "invariant {};",
                                glsl_built_in(
                                    built_in,
                                    VaryingOptions::from_writer_options(self.options, output)
                                )
                            )?;
                        }
                    }
                }
                return Ok(());
            }
        };

        // Write the interpolation modifier if needed
        //
        // We ignore all interpolation and auxiliary modifiers that aren't used in fragment
        // shaders' input globals or vertex shaders' output globals.
        let emit_interpolation_and_auxiliary = match self.entry_point.stage {
            ShaderStage::Vertex => output,
            ShaderStage::Fragment => !output,
            ShaderStage::Compute => false,
        };

        // Write the I/O locations, if allowed
        let io_location = if self.options.version.supports_explicit_locations()
            || !emit_interpolation_and_auxiliary
        {
            if self.options.version.supports_io_locations() {
                if second_blend_source {
                    write!(self.out, "layout(location = {location}, index = 1) ")?;
                } else {
                    write!(self.out, "layout(location = {location}) ")?;
                }
                None
            } else {
                Some(VaryingLocation {
                    location,
                    index: second_blend_source as u32,
                })
            }
        } else {
            None
        };

        // Write the interpolation qualifier.
        if let Some(interp) = interpolation {
            if emit_interpolation_and_auxiliary {
                write!(self.out, "{} ", glsl_interpolation(interp))?;
            }
        }

        // Write the sampling auxiliary qualifier.
        //
        // Before GLSL 4.2, the `centroid` and `sample` qualifiers were required to appear
        // immediately before the `in` / `out` qualifier, so we'll just follow that rule
        // here, regardless of the version.
        if let Some(sampling) = sampling {
            if emit_interpolation_and_auxiliary {
                if let Some(qualifier) = glsl_sampling(sampling)? {
                    write!(self.out, "{qualifier} ")?;
                }
            }
        }

        // Write the input/output qualifier.
        write!(self.out, "{} ", if output { "out" } else { "in" })?;

        // Write the type
        // `write_type` adds no leading or trailing spaces
        self.write_type(ty)?;

        // Finally write the global name and end the global with a `;` and a newline
        // Leading space is important
        let vname = VaryingName {
            binding: &crate::Binding::Location {
                location,
                interpolation: None,
                sampling: None,
                second_blend_source,
            },
            stage: self.entry_point.stage,
            options: VaryingOptions::from_writer_options(self.options, output),
        };
        writeln!(self.out, " {vname};")?;

        if let Some(location) = io_location {
            self.varying.insert(vname.to_string(), location);
        }

        Ok(())
    }

    /// Helper method used to write functions (both entry points and regular functions)
    ///
    /// # Notes
    /// Adds a newline
    fn write_function(
        &mut self,
        ty: back::FunctionType,
        func: &crate::Function,
        info: &valid::FunctionInfo,
    ) -> BackendResult {
        // Create a function context for the function being written
        let ctx = back::FunctionCtx {
            ty,
            info,
            expressions: &func.expressions,
            named_expressions: &func.named_expressions,
            expr_kind_tracker: ExpressionKindTracker::from_arena(&func.expressions),
        };

        self.named_expressions.clear();
        self.update_expressions_to_bake(func, info);

        // Write the function header
        //
        // glsl headers are the same as in c:
        // `ret_type name(args)`
        // `ret_type` is the return type
        // `name` is the function name
        // `args` is a comma separated list of `type name`
        //  | - `type` is the argument type
        //  | - `name` is the argument name

        // Start by writing the return type if any otherwise write void
        // This is the only place where `void` is a valid type
        // (though it's more a keyword than a type)
        if let back::FunctionType::EntryPoint(_) = ctx.ty {
            write!(self.out, "void")?;
        } else if let Some(ref result) = func.result {
            self.write_type(result.ty)?;
            if let TypeInner::Array { base, size, .. } = self.module.types[result.ty].inner {
                self.write_array_size(base, size)?
            }
        } else {
            write!(self.out, "void")?;
        }

        // Write the function name and open parentheses for the argument list
        let function_name = match ctx.ty {
            back::FunctionType::Function(handle) => &self.names[&NameKey::Function(handle)],
            back::FunctionType::EntryPoint(_) => "main",
        };
        write!(self.out, " {function_name}(")?;

        // Write the comma separated argument list
        //
        // We need access to `Self` here so we use the reference passed to the closure as an
        // argument instead of capturing as that would cause a borrow checker error
        let arguments = match ctx.ty {
            back::FunctionType::EntryPoint(_) => &[][..],
            back::FunctionType::Function(_) => &func.arguments,
        };
        let arguments: Vec<_> = arguments
            .iter()
            .enumerate()
            .filter(|&(_, arg)| match self.module.types[arg.ty].inner {
                TypeInner::Sampler { .. } => false,
                _ => true,
            })
            .collect();
        self.write_slice(&arguments, |this, _, &(i, arg)| {
            // Write the argument type
            match this.module.types[arg.ty].inner {
                // We treat images separately because they might require
                // writing the storage format
                TypeInner::Image {
                    dim,
                    arrayed,
                    class,
                } => {
                    // Write the storage format if needed
                    if let TypeInner::Image {
                        class: crate::ImageClass::Storage { format, .. },
                        ..
                    } = this.module.types[arg.ty].inner
                    {
                        write!(this.out, "layout({}) ", glsl_storage_format(format)?)?;
                    }

                    // write the type
                    //
                    // This is way we need the leading space because `write_image_type` doesn't add
                    // any spaces at the beginning or end
                    this.write_image_type(dim, arrayed, class)?;
                }
                TypeInner::Pointer { base, .. } => {
                    // write parameter qualifiers
                    write!(this.out, "inout ")?;
                    this.write_type(base)?;
                }
                // All other types are written by `write_type`
                _ => {
                    this.write_type(arg.ty)?;
                }
            }

            // Write the argument name
            // The leading space is important
            write!(this.out, " {}", &this.names[&ctx.argument_key(i as u32)])?;

            // Write array size
            match this.module.types[arg.ty].inner {
                TypeInner::Array { base, size, .. } => {
                    this.write_array_size(base, size)?;
                }
                TypeInner::Pointer { base, .. } => {
                    if let TypeInner::Array { base, size, .. } = this.module.types[base].inner {
                        this.write_array_size(base, size)?;
                    }
                }
                _ => {}
            }

            Ok(())
        })?;

        // Close the parentheses and open braces to start the function body
        writeln!(self.out, ") {{")?;

        if self.options.zero_initialize_workgroup_memory
            && ctx.ty.is_compute_entry_point(self.module)
        {
            self.write_workgroup_variables_initialization(&ctx)?;
        }

        // Compose the function arguments from globals, in case of an entry point.
        if let back::FunctionType::EntryPoint(ep_index) = ctx.ty {
            let stage = self.module.entry_points[ep_index as usize].stage;
            for (index, arg) in func.arguments.iter().enumerate() {
                write!(self.out, "{}", back::INDENT)?;
                self.write_type(arg.ty)?;
                let name = &self.names[&NameKey::EntryPointArgument(ep_index, index as u32)];
                write!(self.out, " {name}")?;
                write!(self.out, " = ")?;
                match self.module.types[arg.ty].inner {
                    TypeInner::Struct { ref members, .. } => {
                        self.write_type(arg.ty)?;
                        write!(self.out, "(")?;
                        for (index, member) in members.iter().enumerate() {
                            let varying_name = VaryingName {
                                binding: member.binding.as_ref().unwrap(),
                                stage,
                                options: VaryingOptions::from_writer_options(self.options, false),
                            };
                            if index != 0 {
                                write!(self.out, ", ")?;
                            }
                            write!(self.out, "{varying_name}")?;
                        }
                        writeln!(self.out, ");")?;
                    }
                    _ => {
                        let varying_name = VaryingName {
                            binding: arg.binding.as_ref().unwrap(),
                            stage,
                            options: VaryingOptions::from_writer_options(self.options, false),
                        };
                        writeln!(self.out, "{varying_name};")?;
                    }
                }
            }
        }

        // Write all function locals
        // Locals are `type name (= init)?;` where the init part (including the =) are optional
        //
        // Always adds a newline
        for (handle, local) in func.local_variables.iter() {
            // Write indentation (only for readability) and the type
            // `write_type` adds no trailing space
            write!(self.out, "{}", back::INDENT)?;
            self.write_type(local.ty)?;

            // Write the local name
            // The leading space is important
            write!(self.out, " {}", self.names[&ctx.name_key(handle)])?;
            // Write size for array type
            if let TypeInner::Array { base, size, .. } = self.module.types[local.ty].inner {
                self.write_array_size(base, size)?;
            }
            // Write the local initializer if needed
            if let Some(init) = local.init {
                // Put the equal signal only if there's a initializer
                // The leading and trailing spaces aren't needed but help with readability
                write!(self.out, " = ")?;

                // Write the constant
                // `write_constant` adds no trailing or leading space/newline
                self.write_expr(init, &ctx)?;
            } else if is_value_init_supported(self.module, local.ty) {
                write!(self.out, " = ")?;
                self.write_zero_init_value(local.ty)?;
            }

            // Finish the local with `;` and add a newline (only for readability)
            writeln!(self.out, ";")?
        }

        // Write the function body (statement list)
        for sta in func.body.iter() {
            // Write a statement, the indentation should always be 1 when writing the function body
            // `write_stmt` adds a newline
            self.write_stmt(sta, &ctx, back::Level(1))?;
        }

        // Close braces and add a newline
        writeln!(self.out, "}}")?;

        Ok(())
    }

    fn write_workgroup_variables_initialization(
        &mut self,
        ctx: &back::FunctionCtx,
    ) -> BackendResult {
        let mut vars = self
            .module
            .global_variables
            .iter()
            .filter(|&(handle, var)| {
                !ctx.info[handle].is_empty() && var.space == crate::AddressSpace::WorkGroup
            })
            .peekable();

        if vars.peek().is_some() {
            let level = back::Level(1);

            writeln!(self.out, "{level}if (gl_LocalInvocationID == uvec3(0u)) {{")?;

            for (handle, var) in vars {
                let name = &self.names[&NameKey::GlobalVariable(handle)];
                write!(self.out, "{}{} = ", level.next(), name)?;
                self.write_zero_init_value(var.ty)?;
                writeln!(self.out, ";")?;
            }

            writeln!(self.out, "{level}}}")?;
            self.write_barrier(crate::Barrier::WORK_GROUP, level)?;
        }

        Ok(())
    }

    /// Write a list of comma separated `T` values using a writer function `F`.
    ///
    /// The writer function `F` receives a mutable reference to `self` that if needed won't cause
    /// borrow checker issues (using for example a closure with `self` will cause issues), the
    /// second argument is the 0 based index of the element on the list, and the last element is
    /// a reference to the element `T` being written
    ///
    /// # Notes
    /// - Adds no newlines or leading/trailing whitespace
    /// - The last element won't have a trailing `,`
    fn write_slice<T, F: FnMut(&mut Self, u32, &T) -> BackendResult>(
        &mut self,
        data: &[T],
        mut f: F,
    ) -> BackendResult {
        // Loop through `data` invoking `f` for each element
        for (index, item) in data.iter().enumerate() {
            if index != 0 {
                write!(self.out, ", ")?;
            }
            f(self, index as u32, item)?;
        }

        Ok(())
    }

    /// Helper method used to write global constants
    fn write_global_constant(&mut self, handle: Handle<crate::Constant>) -> BackendResult {
        write!(self.out, "const ")?;
        let constant = &self.module.constants[handle];
        self.write_type(constant.ty)?;
        let name = &self.names[&NameKey::Constant(handle)];
        write!(self.out, " {name}")?;
        if let TypeInner::Array { base, size, .. } = self.module.types[constant.ty].inner {
            self.write_array_size(base, size)?;
        }
        write!(self.out, " = ")?;
        self.write_const_expr(constant.init)?;
        writeln!(self.out, ";")?;
        Ok(())
    }

    /// Helper method used to output a dot product as an arithmetic expression
    ///
    fn write_dot_product(
        &mut self,
        arg: Handle<crate::Expression>,
        arg1: Handle<crate::Expression>,
        size: usize,
        ctx: &back::FunctionCtx,
    ) -> BackendResult {
        // Write parentheses around the dot product expression to prevent operators
        // with different precedences from applying earlier.
        write!(self.out, "(")?;

        // Cycle through all the components of the vector
        for index in 0..size {
            let component = back::COMPONENTS[index];
            // Write the addition to the previous product
            // This will print an extra '+' at the beginning but that is fine in glsl
            write!(self.out, " + ")?;
            // Write the first vector expression, this expression is marked to be
            // cached so unless it can't be cached (for example, it's a Constant)
            // it shouldn't produce large expressions.
            self.write_expr(arg, ctx)?;
            // Access the current component on the first vector
            write!(self.out, ".{component} * ")?;
            // Write the second vector expression, this expression is marked to be
            // cached so unless it can't be cached (for example, it's a Constant)
            // it shouldn't produce large expressions.
            self.write_expr(arg1, ctx)?;
            // Access the current component on the second vector
            write!(self.out, ".{component}")?;
        }

        write!(self.out, ")")?;
        Ok(())
    }

    /// Helper method used to write structs
    ///
    /// # Notes
    /// Ends in a newline
    fn write_struct_body(
        &mut self,
        handle: Handle<crate::Type>,
        members: &[crate::StructMember],
    ) -> BackendResult {
        // glsl structs are written as in C
        // `struct name() { members };`
        //  | `struct` is a keyword
        //  | `name` is the struct name
        //  | `members` is a semicolon separated list of `type name`
        //      | `type` is the member type
        //      | `name` is the member name
        writeln!(self.out, "{{")?;

        for (idx, member) in members.iter().enumerate() {
            // The indentation is only for readability
            write!(self.out, "{}", back::INDENT)?;

            match self.module.types[member.ty].inner {
                TypeInner::Array {
                    base,
                    size,
                    stride: _,
                } => {
                    self.write_type(base)?;
                    write!(
                        self.out,
                        " {}",
                        &self.names[&NameKey::StructMember(handle, idx as u32)]
                    )?;
                    // Write [size]
                    self.write_array_size(base, size)?;
                    // Newline is important
                    writeln!(self.out, ";")?;
                }
                _ => {
                    // Write the member type
                    // Adds no trailing space
                    self.write_type(member.ty)?;

                    // Write the member name and put a semicolon
                    // The leading space is important
                    // All members must have a semicolon even the last one
                    writeln!(
                        self.out,
                        " {};",
                        &self.names[&NameKey::StructMember(handle, idx as u32)]
                    )?;
                }
            }
        }

        write!(self.out, "}}")?;
        Ok(())
    }

    /// Helper method used to write statements
    ///
    /// # Notes
    /// Always adds a newline
    fn write_stmt(
        &mut self,
        sta: &crate::Statement,
        ctx: &back::FunctionCtx,
        level: back::Level,
    ) -> BackendResult {
        use crate::Statement;

        match *sta {
            // This is where we can generate intermediate constants for some expression types.
            Statement::Emit(ref range) => {
                for handle in range.clone() {
                    let ptr_class = ctx.resolve_type(handle, &self.module.types).pointer_space();
                    let expr_name = if ptr_class.is_some() {
                        // GLSL can't save a pointer-valued expression in a variable,
                        // but we shouldn't ever need to: they should never be named expressions,
                        // and none of the expression types flagged by bake_ref_count can be pointer-valued.
                        None
                    } else if let Some(name) = ctx.named_expressions.get(&handle) {
                        // Front end provides names for all variables at the start of writing.
                        // But we write them to step by step. We need to recache them
                        // Otherwise, we could accidentally write variable name instead of full expression.
                        // Also, we use sanitized names! It defense backend from generating variable with name from reserved keywords.
                        Some(self.namer.call(name))
                    } else if self.need_bake_expressions.contains(&handle) {
                        Some(Baked(handle).to_string())
                    } else {
                        None
                    };

                    // If we are going to write an `ImageLoad` next and the target image
                    // is sampled and we are using the `Restrict` policy for bounds
                    // checking images we need to write a local holding the clamped lod.
                    if let crate::Expression::ImageLoad {
                        image,
                        level: Some(level_expr),
                        ..
                    } = ctx.expressions[handle]
                    {
                        if let TypeInner::Image {
                            class: crate::ImageClass::Sampled { .. },
                            ..
                        } = *ctx.resolve_type(image, &self.module.types)
                        {
                            if let proc::BoundsCheckPolicy::Restrict = self.policies.image_load {
                                write!(self.out, "{level}")?;
                                self.write_clamped_lod(ctx, handle, image, level_expr)?
                            }
                        }
                    }

                    if let Some(name) = expr_name {
                        write!(self.out, "{level}")?;
                        self.write_named_expr(handle, name, handle, ctx)?;
                    }
                }
            }
            // Blocks are simple we just need to write the block statements between braces
            // We could also just print the statements but this is more readable and maps more
            // closely to the IR
            Statement::Block(ref block) => {
                write!(self.out, "{level}")?;
                writeln!(self.out, "{{")?;
                for sta in block.iter() {
                    // Increase the indentation to help with readability
                    self.write_stmt(sta, ctx, level.next())?
                }
                writeln!(self.out, "{level}}}")?
            }
            // Ifs are written as in C:
            // ```
            // if(condition) {
            //  accept
            // } else {
            //  reject
            // }
            // ```
            Statement::If {
                condition,
                ref accept,
                ref reject,
            } => {
                write!(self.out, "{level}")?;
                write!(self.out, "if (")?;
                self.write_expr(condition, ctx)?;
                writeln!(self.out, ") {{")?;

                for sta in accept {
                    // Increase indentation to help with readability
                    self.write_stmt(sta, ctx, level.next())?;
                }

                // If there are no statements in the reject block we skip writing it
                // This is only for readability
                if !reject.is_empty() {
                    writeln!(self.out, "{level}}} else {{")?;

                    for sta in reject {
                        // Increase indentation to help with readability
                        self.write_stmt(sta, ctx, level.next())?;
                    }
                }

                writeln!(self.out, "{level}}}")?
            }
            // Switch are written as in C:
            // ```
            // switch (selector) {
            //      // Fallthrough
            //      case label:
            //          block
            //      // Non fallthrough
            //      case label:
            //          block
            //          break;
            //      default:
            //          block
            //  }
            //  ```
            //  Where the `default` case happens isn't important but we put it last
            //  so that we don't need to print a `break` for it
            Statement::Switch {
                selector,
                ref cases,
            } => {
                let l2 = level.next();
                // Some GLSL consumers may not handle switches with a single
                // body correctly: See wgpu#4514. Write such switch statements
                // as a `do {} while(false);` loop instead.
                //
                // Since doing so may inadvertently capture `continue`
                // statements in the switch body, we must apply continue
                // forwarding. See the `naga::back::continue_forward` module
                // docs for details.
                let one_body = cases
                    .iter()
                    .rev()
                    .skip(1)
                    .all(|case| case.fall_through && case.body.is_empty());
                if one_body {
                    // Unlike HLSL, in GLSL `continue_ctx` only needs to know
                    // about [`Switch`] statements that are being rendered as
                    // `do-while` loops.
                    if let Some(variable) = self.continue_ctx.enter_switch(&mut self.namer) {
                        writeln!(self.out, "{level}bool {variable} = false;",)?;
                    };
                    writeln!(self.out, "{level}do {{")?;
                    // Note: Expressions have no side-effects so we don't need to emit selector expression.

                    // Body
                    if let Some(case) = cases.last() {
                        for sta in case.body.iter() {
                            self.write_stmt(sta, ctx, l2)?;
                        }
                    }
                    // End do-while
                    writeln!(self.out, "{level}}} while(false);")?;

                    // Handle any forwarded continue statements.
                    use back::continue_forward::ExitControlFlow;
                    let op = match self.continue_ctx.exit_switch() {
                        ExitControlFlow::None => None,
                        ExitControlFlow::Continue { variable } => Some(("continue", variable)),
                        ExitControlFlow::Break { variable } => Some(("break", variable)),
                    };
                    if let Some((control_flow, variable)) = op {
                        writeln!(self.out, "{level}if ({variable}) {{")?;
                        writeln!(self.out, "{l2}{control_flow};")?;
                        writeln!(self.out, "{level}}}")?;
                    }
                } else {
                    // Start the switch
                    write!(self.out, "{level}")?;
                    write!(self.out, "switch(")?;
                    self.write_expr(selector, ctx)?;
                    writeln!(self.out, ") {{")?;

                    // Write all cases
                    for case in cases {
                        match case.value {
                            crate::SwitchValue::I32(value) => {
                                write!(self.out, "{l2}case {value}:")?
                            }
                            crate::SwitchValue::U32(value) => {
                                write!(self.out, "{l2}case {value}u:")?
                            }
                            crate::SwitchValue::Default => write!(self.out, "{l2}default:")?,
                        }

                        let write_block_braces = !(case.fall_through && case.body.is_empty());
                        if write_block_braces {
                            writeln!(self.out, " {{")?;
                        } else {
                            writeln!(self.out)?;
                        }

                        for sta in case.body.iter() {
                            self.write_stmt(sta, ctx, l2.next())?;
                        }

                        if !case.fall_through
                            && case.body.last().map_or(true, |s| !s.is_terminator())
                        {
                            writeln!(self.out, "{}break;", l2.next())?;
                        }

                        if write_block_braces {
                            writeln!(self.out, "{l2}}}")?;
                        }
                    }

                    writeln!(self.out, "{level}}}")?
                }
            }
            // Loops in naga IR are based on wgsl loops, glsl can emulate the behaviour by using a
            // while true loop and appending the continuing block to the body resulting on:
            // ```
            // bool loop_init = true;
            // while(true) {
            //  if (!loop_init) { <continuing> }
            //  loop_init = false;
            //  <body>
            // }
            // ```
            Statement::Loop {
                ref body,
                ref continuing,
                break_if,
            } => {
                self.continue_ctx.enter_loop();
                if !continuing.is_empty() || break_if.is_some() {
                    let gate_name = self.namer.call("loop_init");
                    writeln!(self.out, "{level}bool {gate_name} = true;")?;
                    writeln!(self.out, "{level}while(true) {{")?;
                    let l2 = level.next();
                    let l3 = l2.next();
                    writeln!(self.out, "{l2}if (!{gate_name}) {{")?;
                    for sta in continuing {
                        self.write_stmt(sta, ctx, l3)?;
                    }
                    if let Some(condition) = break_if {
                        write!(self.out, "{l3}if (")?;
                        self.write_expr(condition, ctx)?;
                        writeln!(self.out, ") {{")?;
                        writeln!(self.out, "{}break;", l3.next())?;
                        writeln!(self.out, "{l3}}}")?;
                    }
                    writeln!(self.out, "{l2}}}")?;
                    writeln!(self.out, "{}{} = false;", level.next(), gate_name)?;
                } else {
                    writeln!(self.out, "{level}while(true) {{")?;
                }
                for sta in body {
                    self.write_stmt(sta, ctx, level.next())?;
                }
                writeln!(self.out, "{level}}}")?;
                self.continue_ctx.exit_loop();
            }
            // Break, continue and return as written as in C
            // `break;`
            Statement::Break => {
                write!(self.out, "{level}")?;
                writeln!(self.out, "break;")?
            }
            // `continue;`
            Statement::Continue => {
                // Sometimes we must render a `Continue` statement as a `break`.
                // See the docs for the `back::continue_forward` module.
                if let Some(variable) = self.continue_ctx.continue_encountered() {
                    writeln!(self.out, "{level}{variable} = true;",)?;
                    writeln!(self.out, "{level}break;")?
                } else {
                    writeln!(self.out, "{level}continue;")?
                }
            }
            // `return expr;`, `expr` is optional
            Statement::Return { value } => {
                write!(self.out, "{level}")?;
                match ctx.ty {
                    back::FunctionType::Function(_) => {
                        write!(self.out, "return")?;
                        // Write the expression to be returned if needed
                        if let Some(expr) = value {
                            write!(self.out, " ")?;
                            self.write_expr(expr, ctx)?;
                        }
                        writeln!(self.out, ";")?;
                    }
                    back::FunctionType::EntryPoint(ep_index) => {
                        let mut has_point_size = false;
                        let ep = &self.module.entry_points[ep_index as usize];
                        if let Some(ref result) = ep.function.result {
                            let value = value.unwrap();
                            match self.module.types[result.ty].inner {
                                TypeInner::Struct { ref members, .. } => {
                                    let temp_struct_name = match ctx.expressions[value] {
                                        crate::Expression::Compose { .. } => {
                                            let return_struct = "_tmp_return";
                                            write!(
                                                self.out,
                                                "{} {} = ",
                                                &self.names[&NameKey::Type(result.ty)],
                                                return_struct
                                            )?;
                                            self.write_expr(value, ctx)?;
                                            writeln!(self.out, ";")?;
                                            write!(self.out, "{level}")?;
                                            Some(return_struct)
                                        }
                                        _ => None,
                                    };

                                    for (index, member) in members.iter().enumerate() {
                                        if let Some(crate::Binding::BuiltIn(
                                            crate::BuiltIn::PointSize,
                                        )) = member.binding
                                        {
                                            has_point_size = true;
                                        }

                                        let varying_name = VaryingName {
                                            binding: member.binding.as_ref().unwrap(),
                                            stage: ep.stage,
                                            options: VaryingOptions::from_writer_options(
                                                self.options,
                                                true,
                                            ),
                                        };
                                        write!(self.out, "{varying_name} = ")?;

                                        if let Some(struct_name) = temp_struct_name {
                                            write!(self.out, "{struct_name}")?;
                                        } else {
                                            self.write_expr(value, ctx)?;
                                        }

                                        // Write field name
                                        writeln!(
                                            self.out,
                                            ".{};",
                                            &self.names
                                                [&NameKey::StructMember(result.ty, index as u32)]
                                        )?;
                                        write!(self.out, "{level}")?;
                                    }
                                }
                                _ => {
                                    let name = VaryingName {
                                        binding: result.binding.as_ref().unwrap(),
                                        stage: ep.stage,
                                        options: VaryingOptions::from_writer_options(
                                            self.options,
                                            true,
                                        ),
                                    };
                                    write!(self.out, "{name} = ")?;
                                    self.write_expr(value, ctx)?;
                                    writeln!(self.out, ";")?;
                                    write!(self.out, "{level}")?;
                                }
                            }
                        }

                        let is_vertex_stage = self.module.entry_points[ep_index as usize].stage
                            == ShaderStage::Vertex;
                        if is_vertex_stage
                            && self
                                .options
                                .writer_flags
                                .contains(WriterFlags::ADJUST_COORDINATE_SPACE)
                        {
                            writeln!(
                                self.out,
                                "gl_Position.yz = vec2(-gl_Position.y, gl_Position.z * 2.0 - gl_Position.w);",
                            )?;
                            write!(self.out, "{level}")?;
                        }

                        if is_vertex_stage
                            && self
                                .options
                                .writer_flags
                                .contains(WriterFlags::FORCE_POINT_SIZE)
                            && !has_point_size
                        {
                            writeln!(self.out, "gl_PointSize = 1.0;")?;
                            write!(self.out, "{level}")?;
                        }
                        writeln!(self.out, "return;")?;
                    }
                }
            }
            // This is one of the places were glsl adds to the syntax of C in this case the discard
            // keyword which ceases all further processing in a fragment shader, it's called OpKill
            // in spir-v that's why it's called `Statement::Kill`
            Statement::Kill => writeln!(self.out, "{level}discard;")?,
            Statement::Barrier(flags) => {
                self.write_barrier(flags, level)?;
            }
            // Stores in glsl are just variable assignments written as `pointer = value;`
            Statement::Store { pointer, value } => {
                write!(self.out, "{level}")?;
                self.write_expr(pointer, ctx)?;
                write!(self.out, " = ")?;
                self.write_expr(value, ctx)?;
                writeln!(self.out, ";")?
            }
            Statement::WorkGroupUniformLoad { pointer, result } => {
                // GLSL doesn't have pointers, which means that this backend needs to ensure that
                // the actual "loading" is happening between the two barriers.
                // This is done in `Emit` by never emitting a variable name for pointer variables
                self.write_barrier(crate::Barrier::WORK_GROUP, level)?;

                let result_name = Baked(result).to_string();
                write!(self.out, "{level}")?;
                // Expressions cannot have side effects, so just writing the expression here is fine.
                self.write_named_expr(pointer, result_name, result, ctx)?;

                self.write_barrier(crate::Barrier::WORK_GROUP, level)?;
            }
            // Stores a value into an image.
            Statement::ImageStore {
                image,
                coordinate,
                array_index,
                value,
            } => {
                write!(self.out, "{level}")?;
                self.write_image_store(ctx, image, coordinate, array_index, value)?
            }
            // A `Call` is written `name(arguments)` where `arguments` is a comma separated expressions list
            Statement::Call {
                function,
                ref arguments,
                result,
            } => {
                write!(self.out, "{level}")?;
                if let Some(expr) = result {
                    let name = Baked(expr).to_string();
                    let result = self.module.functions[function].result.as_ref().unwrap();
                    self.write_type(result.ty)?;
                    write!(self.out, " {name}")?;
                    if let TypeInner::Array { base, size, .. } = self.module.types[result.ty].inner
                    {
                        self.write_array_size(base, size)?
                    }
                    write!(self.out, " = ")?;
                    self.named_expressions.insert(expr, name);
                }
                write!(self.out, "{}(", &self.names[&NameKey::Function(function)])?;
                let arguments: Vec<_> = arguments
                    .iter()
                    .enumerate()
                    .filter_map(|(i, arg)| {
                        let arg_ty = self.module.functions[function].arguments[i].ty;
                        match self.module.types[arg_ty].inner {
                            TypeInner::Sampler { .. } => None,
                            _ => Some(*arg),
                        }
                    })
                    .collect();
                self.write_slice(&arguments, |this, _, arg| this.write_expr(*arg, ctx))?;
                writeln!(self.out, ");")?
            }
            Statement::Atomic {
                pointer,
                ref fun,
                value,
                result,
            } => {
                write!(self.out, "{level}")?;
                if let Some(result) = result {
                    let res_name = Baked(result).to_string();
                    let res_ty = ctx.resolve_type(result, &self.module.types);
                    self.write_value_type(res_ty)?;
                    write!(self.out, " {res_name} = ")?;
                    self.named_expressions.insert(result, res_name);
                }

                let fun_str = fun.to_glsl();
                write!(self.out, "atomic{fun_str}(")?;
                self.write_expr(pointer, ctx)?;
                write!(self.out, ", ")?;
                // handle the special cases
                match *fun {
                    crate::AtomicFunction::Subtract => {
                        // we just wrote `InterlockedAdd`, so negate the argument
                        write!(self.out, "-")?;
                    }
                    crate::AtomicFunction::Exchange { compare: Some(_) } => {
                        return Err(Error::Custom(
                            "atomic CompareExchange is not implemented".to_string(),
                        ));
                    }
                    _ => {}
                }
                self.write_expr(value, ctx)?;
                writeln!(self.out, ");")?;
            }
            Statement::RayQuery { .. } => unreachable!(),
            Statement::SubgroupBallot { result, predicate } => {
                write!(self.out, "{level}")?;
                let res_name = Baked(result).to_string();
                let res_ty = ctx.info[result].ty.inner_with(&self.module.types);
                self.write_value_type(res_ty)?;
                write!(self.out, " {res_name} = ")?;
                self.named_expressions.insert(result, res_name);

                write!(self.out, "subgroupBallot(")?;
                match predicate {
                    Some(predicate) => self.write_expr(predicate, ctx)?,
                    None => write!(self.out, "true")?,
                }
                writeln!(self.out, ");")?;
            }
            Statement::SubgroupCollectiveOperation {
                op,
                collective_op,
                argument,
                result,
            } => {
                write!(self.out, "{level}")?;
                let res_name = Baked(result).to_string();
                let res_ty = ctx.info[result].ty.inner_with(&self.module.types);
                self.write_value_type(res_ty)?;
                write!(self.out, " {res_name} = ")?;
                self.named_expressions.insert(result, res_name);

                match (collective_op, op) {
                    (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::All) => {
                        write!(self.out, "subgroupAll(")?
                    }
                    (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Any) => {
                        write!(self.out, "subgroupAny(")?
                    }
                    (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Add) => {
                        write!(self.out, "subgroupAdd(")?
                    }
                    (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Mul) => {
                        write!(self.out, "subgroupMul(")?
                    }
                    (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Max) => {
                        write!(self.out, "subgroupMax(")?
                    }
                    (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Min) => {
                        write!(self.out, "subgroupMin(")?
                    }
                    (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::And) => {
                        write!(self.out, "subgroupAnd(")?
                    }
                    (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Or) => {
                        write!(self.out, "subgroupOr(")?
                    }
                    (crate::CollectiveOperation::Reduce, crate::SubgroupOperation::Xor) => {
                        write!(self.out, "subgroupXor(")?
                    }
                    (crate::CollectiveOperation::ExclusiveScan, crate::SubgroupOperation::Add) => {
                        write!(self.out, "subgroupExclusiveAdd(")?
                    }
                    (crate::CollectiveOperation::ExclusiveScan, crate::SubgroupOperation::Mul) => {
                        write!(self.out, "subgroupExclusiveMul(")?
                    }
                    (crate::CollectiveOperation::InclusiveScan, crate::SubgroupOperation::Add) => {
                        write!(self.out, "subgroupInclusiveAdd(")?
                    }
                    (crate::CollectiveOperation::InclusiveScan, crate::SubgroupOperation::Mul) => {
                        write!(self.out, "subgroupInclusiveMul(")?
                    }
                    _ => unimplemented!(),
                }
                self.write_expr(argument, ctx)?;
                writeln!(self.out, ");")?;
            }
            Statement::SubgroupGather {
                mode,
                argument,
                result,
            } => {
                write!(self.out, "{level}")?;
                let res_name = Baked(result).to_string();
                let res_ty = ctx.info[result].ty.inner_with(&self.module.types);
                self.write_value_type(res_ty)?;
                write!(self.out, " {res_name} = ")?;
                self.named_expressions.insert(result, res_name);

                match mode {
                    crate::GatherMode::BroadcastFirst => {
                        write!(self.out, "subgroupBroadcastFirst(")?;
                    }
                    crate::GatherMode::Broadcast(_) => {
                        write!(self.out, "subgroupBroadcast(")?;
                    }
                    crate::GatherMode::Shuffle(_) => {
                        write!(self.out, "subgroupShuffle(")?;
                    }
                    crate::GatherMode::ShuffleDown(_) => {
                        write!(self.out, "subgroupShuffleDown(")?;
                    }
                    crate::GatherMode::ShuffleUp(_) => {
                        write!(self.out, "subgroupShuffleUp(")?;
                    }
                    crate::GatherMode::ShuffleXor(_) => {
                        write!(self.out, "subgroupShuffleXor(")?;
                    }
                }
                self.write_expr(argument, ctx)?;
                match mode {
                    crate::GatherMode::BroadcastFirst => {}
                    crate::GatherMode::Broadcast(index)
                    | crate::GatherMode::Shuffle(index)
                    | crate::GatherMode::ShuffleDown(index)
                    | crate::GatherMode::ShuffleUp(index)
                    | crate::GatherMode::ShuffleXor(index) => {
                        write!(self.out, ", ")?;
                        self.write_expr(index, ctx)?;
                    }
                }
                writeln!(self.out, ");")?;
            }
        }

        Ok(())
    }

    /// Write a const expression.
    ///
    /// Write `expr`, a handle to an [`Expression`] in the current [`Module`]'s
    /// constant expression arena, as GLSL expression.
    ///
    /// # Notes
    /// Adds no newlines or leading/trailing whitespace
    ///
    /// [`Expression`]: crate::Expression
    /// [`Module`]: crate::Module
    fn write_const_expr(&mut self, expr: Handle<crate::Expression>) -> BackendResult {
        self.write_possibly_const_expr(
            expr,
            &self.module.global_expressions,
            |expr| &self.info[expr],
            |writer, expr| writer.write_const_expr(expr),
        )
    }

    /// Write [`Expression`] variants that can occur in both runtime and const expressions.
    ///
    /// Write `expr`, a handle to an [`Expression`] in the arena `expressions`,
    /// as as GLSL expression. This must be one of the [`Expression`] variants
    /// that is allowed to occur in constant expressions.
    ///
    /// Use `write_expression` to write subexpressions.
    ///
    /// This is the common code for `write_expr`, which handles arbitrary
    /// runtime expressions, and `write_const_expr`, which only handles
    /// const-expressions. Each of those callers passes itself (essentially) as
    /// the `write_expression` callback, so that subexpressions are restricted
    /// to the appropriate variants.
    ///
    /// # Notes
    /// Adds no newlines or leading/trailing whitespace
    ///
    /// [`Expression`]: crate::Expression
    fn write_possibly_const_expr<'w, I, E>(
        &'w mut self,
        expr: Handle<crate::Expression>,
        expressions: &crate::Arena<crate::Expression>,
        info: I,
        write_expression: E,
    ) -> BackendResult
    where
        I: Fn(Handle<crate::Expression>) -> &'w proc::TypeResolution,
        E: Fn(&mut Self, Handle<crate::Expression>) -> BackendResult,
    {
        use crate::Expression;

        match expressions[expr] {
            Expression::Literal(literal) => {
                match literal {
                    // Floats are written using `Debug` instead of `Display` because it always appends the
                    // decimal part even it's zero which is needed for a valid glsl float constant
                    crate::Literal::F64(value) => write!(self.out, "{value:?}LF")?,
                    crate::Literal::F32(value) => write!(self.out, "{value:?}")?,
                    // Unsigned integers need a `u` at the end
                    //
                    // While `core` doesn't necessarily need it, it's allowed and since `es` needs it we
                    // always write it as the extra branch wouldn't have any benefit in readability
                    crate::Literal::U32(value) => write!(self.out, "{value}u")?,
                    crate::Literal::I32(value) => write!(self.out, "{value}")?,
                    crate::Literal::Bool(value) => write!(self.out, "{value}")?,
                    crate::Literal::I64(_) => {
                        return Err(Error::Custom("GLSL has no 64-bit integer type".into()));
                    }
                    crate::Literal::U64(_) => {
                        return Err(Error::Custom("GLSL has no 64-bit integer type".into()));
                    }
                    crate::Literal::AbstractInt(_) | crate::Literal::AbstractFloat(_) => {
                        return Err(Error::Custom(
                            "Abstract types should not appear in IR presented to backends".into(),
                        ));
                    }
                }
            }
            Expression::Constant(handle) => {
                let constant = &self.module.constants[handle];
                if constant.name.is_some() {
                    write!(self.out, "{}", self.names[&NameKey::Constant(handle)])?;
                } else {
                    self.write_const_expr(constant.init)?;
                }
            }
            Expression::ZeroValue(ty) => {
                self.write_zero_init_value(ty)?;
            }
            Expression::Compose { ty, ref components } => {
                self.write_type(ty)?;

                if let TypeInner::Array { base, size, .. } = self.module.types[ty].inner {
                    self.write_array_size(base, size)?;
                }

                write!(self.out, "(")?;
                for (index, component) in components.iter().enumerate() {
                    if index != 0 {
                        write!(self.out, ", ")?;
                    }
                    write_expression(self, *component)?;
                }
                write!(self.out, ")")?
            }
            // `Splat` needs to actually write down a vector, it's not always inferred in GLSL.
            Expression::Splat { size: _, value } => {
                let resolved = info(expr).inner_with(&self.module.types);
                self.write_value_type(resolved)?;
                write!(self.out, "(")?;
                write_expression(self, value)?;
                write!(self.out, ")")?
            }
            _ => unreachable!(),
        }

        Ok(())
    }

    /// Helper method to write expressions
    ///
    /// # Notes
    /// Doesn't add any newlines or leading/trailing spaces
    fn write_expr(
        &mut self,
        expr: Handle<crate::Expression>,
        ctx: &back::FunctionCtx,
    ) -> BackendResult {
        use crate::Expression;

        if let Some(name) = self.named_expressions.get(&expr) {
            write!(self.out, "{name}")?;
            return Ok(());
        }

        match ctx.expressions[expr] {
            Expression::Literal(_)
            | Expression::Constant(_)
            | Expression::ZeroValue(_)
            | Expression::Compose { .. }
            | Expression::Splat { .. } => {
                self.write_possibly_const_expr(
                    expr,
                    ctx.expressions,
                    |expr| &ctx.info[expr].ty,
                    |writer, expr| writer.write_expr(expr, ctx),
                )?;
            }
            Expression::Override(_) => return Err(Error::Override),
            // `Access` is applied to arrays, vectors and matrices and is written as indexing
            Expression::Access { base, index } => {
                self.write_expr(base, ctx)?;
                write!(self.out, "[")?;
                self.write_expr(index, ctx)?;
                write!(self.out, "]")?
            }
            // `AccessIndex` is the same as `Access` except that the index is a constant and it can
            // be applied to structs, in this case we need to find the name of the field at that
            // index and write `base.field_name`
            Expression::AccessIndex { base, index } => {
                self.write_expr(base, ctx)?;

                let base_ty_res = &ctx.info[base].ty;
                let mut resolved = base_ty_res.inner_with(&self.module.types);
                let base_ty_handle = match *resolved {
                    TypeInner::Pointer { base, space: _ } => {
                        resolved = &self.module.types[base].inner;
                        Some(base)
                    }
                    _ => base_ty_res.handle(),
                };

                match *resolved {
                    TypeInner::Vector { .. } => {
                        // Write vector access as a swizzle
                        write!(self.out, ".{}", back::COMPONENTS[index as usize])?
                    }
                    TypeInner::Matrix { .. }
                    | TypeInner::Array { .. }
                    | TypeInner::ValuePointer { .. } => write!(self.out, "[{index}]")?,
                    TypeInner::Struct { .. } => {
                        // This will never panic in case the type is a `Struct`, this is not true
                        // for other types so we can only check while inside this match arm
                        let ty = base_ty_handle.unwrap();

                        write!(
                            self.out,
                            ".{}",
                            &self.names[&NameKey::StructMember(ty, index)]
                        )?
                    }
                    ref other => return Err(Error::Custom(format!("Cannot index {other:?}"))),
                }
            }
            // `Swizzle` adds a few letters behind the dot.
            Expression::Swizzle {
                size,
                vector,
                pattern,
            } => {
                self.write_expr(vector, ctx)?;
                write!(self.out, ".")?;
                for &sc in pattern[..size as usize].iter() {
                    self.out.write_char(back::COMPONENTS[sc as usize])?;
                }
            }
            // Function arguments are written as the argument name
            Expression::FunctionArgument(pos) => {
                write!(self.out, "{}", &self.names[&ctx.argument_key(pos)])?
            }
            // Global variables need some special work for their name but
            // `get_global_name` does the work for us
            Expression::GlobalVariable(handle) => {
                let global = &self.module.global_variables[handle];
                self.write_global_name(handle, global)?
            }
            // A local is written as it's name
            Expression::LocalVariable(handle) => {
                write!(self.out, "{}", self.names[&ctx.name_key(handle)])?
            }
            // glsl has no pointers so there's no load operation, just write the pointer expression
            Expression::Load { pointer } => self.write_expr(pointer, ctx)?,
            // `ImageSample` is a bit complicated compared to the rest of the IR.
            //
            // First there are three variations depending whether the sample level is explicitly set,
            // if it's automatic or it it's bias:
            // `texture(image, coordinate)` - Automatic sample level
            // `texture(image, coordinate, bias)` - Bias sample level
            // `textureLod(image, coordinate, level)` - Zero or Exact sample level
            //
            // Furthermore if `depth_ref` is some we need to append it to the coordinate vector
            Expression::ImageSample {
                image,
                sampler: _, //TODO?
                gather,
                coordinate,
                array_index,
                offset,
                level,
                depth_ref,
            } => {
                let (dim, class, arrayed) = match *ctx.resolve_type(image, &self.module.types) {
                    TypeInner::Image {
                        dim,
                        class,
                        arrayed,
                        ..
                    } => (dim, class, arrayed),
                    _ => unreachable!(),
                };
                let mut err = None;
                if dim == crate::ImageDimension::Cube {
                    if offset.is_some() {
                        err = Some("gsamplerCube[Array][Shadow] doesn't support texture sampling with offsets");
                    }
                    if arrayed
                        && matches!(class, crate::ImageClass::Depth { .. })
                        && matches!(level, crate::SampleLevel::Gradient { .. })
                    {
                        err = Some("samplerCubeArrayShadow don't support textureGrad");
                    }
                }
                if gather.is_some() && level != crate::SampleLevel::Zero {
                    err = Some("textureGather doesn't support LOD parameters");
                }
                if let Some(err) = err {
                    return Err(Error::Custom(String::from(err)));
                }

                // `textureLod[Offset]` on `sampler2DArrayShadow` and `samplerCubeShadow` does not exist in GLSL,
                // unless `GL_EXT_texture_shadow_lod` is present.
                // But if the target LOD is zero, we can emulate that by using `textureGrad[Offset]` with a constant gradient of 0.
                let workaround_lod_with_grad = ((dim == crate::ImageDimension::Cube && !arrayed)
                    || (dim == crate::ImageDimension::D2 && arrayed))
                    && level == crate::SampleLevel::Zero
                    && matches!(class, crate::ImageClass::Depth { .. })
                    && !self.features.contains(Features::TEXTURE_SHADOW_LOD);

                // Write the function to be used depending on the sample level
                let fun_name = match level {
                    crate::SampleLevel::Zero if gather.is_some() => "textureGather",
                    crate::SampleLevel::Zero if workaround_lod_with_grad => "textureGrad",
                    crate::SampleLevel::Auto | crate::SampleLevel::Bias(_) => "texture",
                    crate::SampleLevel::Zero | crate::SampleLevel::Exact(_) => "textureLod",
                    crate::SampleLevel::Gradient { .. } => "textureGrad",
                };
                let offset_name = match offset {
                    Some(_) => "Offset",
                    None => "",
                };

                write!(self.out, "{fun_name}{offset_name}(")?;

                // Write the image that will be used
                self.write_expr(image, ctx)?;
                // The space here isn't required but it helps with readability
                write!(self.out, ", ")?;

                // We need to get the coordinates vector size to later build a vector that's `size + 1`
                // if `depth_ref` is some, if it isn't a vector we panic as that's not a valid expression
                let mut coord_dim = match *ctx.resolve_type(coordinate, &self.module.types) {
                    TypeInner::Vector { size, .. } => size as u8,
                    TypeInner::Scalar { .. } => 1,
                    _ => unreachable!(),
                };

                if array_index.is_some() {
                    coord_dim += 1;
                }
                let merge_depth_ref = depth_ref.is_some() && gather.is_none() && coord_dim < 4;
                if merge_depth_ref {
                    coord_dim += 1;
                }

                let tex_1d_hack = dim == crate::ImageDimension::D1 && self.options.version.is_es();
                let is_vec = tex_1d_hack || coord_dim != 1;
                // Compose a new texture coordinates vector
                if is_vec {
                    write!(self.out, "vec{}(", coord_dim + tex_1d_hack as u8)?;
                }
                self.write_expr(coordinate, ctx)?;
                if tex_1d_hack {
                    write!(self.out, ", 0.0")?;
                }
                if let Some(expr) = array_index {
                    write!(self.out, ", ")?;
                    self.write_expr(expr, ctx)?;
                }
                if merge_depth_ref {
                    write!(self.out, ", ")?;
                    self.write_expr(depth_ref.unwrap(), ctx)?;
                }
                if is_vec {
                    write!(self.out, ")")?;
                }

                if let (Some(expr), false) = (depth_ref, merge_depth_ref) {
                    write!(self.out, ", ")?;
                    self.write_expr(expr, ctx)?;
                }

                match level {
                    // Auto needs no more arguments
                    crate::SampleLevel::Auto => (),
                    // Zero needs level set to 0
                    crate::SampleLevel::Zero => {
                        if workaround_lod_with_grad {
                            let vec_dim = match dim {
                                crate::ImageDimension::Cube => 3,
                                _ => 2,
                            };
                            write!(self.out, ", vec{vec_dim}(0.0), vec{vec_dim}(0.0)")?;
                        } else if gather.is_none() {
                            write!(self.out, ", 0.0")?;
                        }
                    }
                    // Exact and bias require another argument
                    crate::SampleLevel::Exact(expr) => {
                        write!(self.out, ", ")?;
                        self.write_expr(expr, ctx)?;
                    }
                    crate::SampleLevel::Bias(_) => {
                        // This needs to be done after the offset writing
                    }
                    crate::SampleLevel::Gradient { x, y } => {
                        // If we are using sampler2D to replace sampler1D, we also
                        // need to make sure to use vec2 gradients
                        if tex_1d_hack {
                            write!(self.out, ", vec2(")?;
                            self.write_expr(x, ctx)?;
                            write!(self.out, ", 0.0)")?;
                            write!(self.out, ", vec2(")?;
                            self.write_expr(y, ctx)?;
                            write!(self.out, ", 0.0)")?;
                        } else {
                            write!(self.out, ", ")?;
                            self.write_expr(x, ctx)?;
                            write!(self.out, ", ")?;
                            self.write_expr(y, ctx)?;
                        }
                    }
                }

                if let Some(constant) = offset {
                    write!(self.out, ", ")?;
                    if tex_1d_hack {
                        write!(self.out, "ivec2(")?;
                    }
                    self.write_const_expr(constant)?;
                    if tex_1d_hack {
                        write!(self.out, ", 0)")?;
                    }
                }

                // Bias is always the last argument
                if let crate::SampleLevel::Bias(expr) = level {
                    write!(self.out, ", ")?;
                    self.write_expr(expr, ctx)?;
                }

                if let (Some(component), None) = (gather, depth_ref) {
                    write!(self.out, ", {}", component as usize)?;
                }

                // End the function
                write!(self.out, ")")?
            }
            Expression::ImageLoad {
                image,
                coordinate,
                array_index,
                sample,
                level,
            } => self.write_image_load(expr, ctx, image, coordinate, array_index, sample, level)?,
            // Query translates into one of the:
            // - textureSize/imageSize
            // - textureQueryLevels
            // - textureSamples/imageSamples
            Expression::ImageQuery { image, query } => {
                use crate::ImageClass;

                // This will only panic if the module is invalid
                let (dim, class) = match *ctx.resolve_type(image, &self.module.types) {
                    TypeInner::Image {
                        dim,
                        arrayed: _,
                        class,
                    } => (dim, class),
                    _ => unreachable!(),
                };
                let components = match dim {
                    crate::ImageDimension::D1 => 1,
                    crate::ImageDimension::D2 => 2,
                    crate::ImageDimension::D3 => 3,
                    crate::ImageDimension::Cube => 2,
                };

                if let crate::ImageQuery::Size { .. } = query {
                    match components {
                        1 => write!(self.out, "uint(")?,
                        _ => write!(self.out, "uvec{components}(")?,
                    }
                } else {
                    write!(self.out, "uint(")?;
                }

                match query {
                    crate::ImageQuery::Size { level } => {
                        match class {
                            ImageClass::Sampled { multi, .. } | ImageClass::Depth { multi } => {
                                write!(self.out, "textureSize(")?;
                                self.write_expr(image, ctx)?;
                                if let Some(expr) = level {
                                    let cast_to_int = matches!(
                                        *ctx.resolve_type(expr, &self.module.types),
                                        TypeInner::Scalar(crate::Scalar {
                                            kind: crate::ScalarKind::Uint,
                                            ..
                                        })
                                    );

                                    write!(self.out, ", ")?;

                                    if cast_to_int {
                                        write!(self.out, "int(")?;
                                    }

                                    self.write_expr(expr, ctx)?;

                                    if cast_to_int {
                                        write!(self.out, ")")?;
                                    }
                                } else if !multi {
                                    // All textureSize calls requires an lod argument
                                    // except for multisampled samplers
                                    write!(self.out, ", 0")?;
                                }
                            }
                            ImageClass::Storage { .. } => {
                                write!(self.out, "imageSize(")?;
                                self.write_expr(image, ctx)?;
                            }
                        }
                        write!(self.out, ")")?;
                        if components != 1 || self.options.version.is_es() {
                            write!(self.out, ".{}", &"xyz"[..components])?;
                        }
                    }
                    crate::ImageQuery::NumLevels => {
                        write!(self.out, "textureQueryLevels(",)?;
                        self.write_expr(image, ctx)?;
                        write!(self.out, ")",)?;
                    }
                    crate::ImageQuery::NumLayers => {
                        let fun_name = match class {
                            ImageClass::Sampled { .. } | ImageClass::Depth { .. } => "textureSize",
                            ImageClass::Storage { .. } => "imageSize",
                        };
                        write!(self.out, "{fun_name}(")?;
                        self.write_expr(image, ctx)?;
                        // All textureSize calls requires an lod argument
                        // except for multisampled samplers
                        if class.is_multisampled() {
                            write!(self.out, ", 0")?;
                        }
                        write!(self.out, ")")?;
                        if components != 1 || self.options.version.is_es() {
                            write!(self.out, ".{}", back::COMPONENTS[components])?;
                        }
                    }
                    crate::ImageQuery::NumSamples => {
                        let fun_name = match class {
                            ImageClass::Sampled { .. } | ImageClass::Depth { .. } => {
                                "textureSamples"
                            }
                            ImageClass::Storage { .. } => "imageSamples",
                        };
                        write!(self.out, "{fun_name}(")?;
                        self.write_expr(image, ctx)?;
                        write!(self.out, ")",)?;
                    }
                }

                write!(self.out, ")")?;
            }
            Expression::Unary { op, expr } => {
                let operator_or_fn = match op {
                    crate::UnaryOperator::Negate => "-",
                    crate::UnaryOperator::LogicalNot => {
                        match *ctx.resolve_type(expr, &self.module.types) {
                            TypeInner::Vector { .. } => "not",
                            _ => "!",
                        }
                    }
                    crate::UnaryOperator::BitwiseNot => "~",
                };
                write!(self.out, "{operator_or_fn}(")?;

                self.write_expr(expr, ctx)?;

                write!(self.out, ")")?
            }
            // `Binary` we just write `left op right`, except when dealing with
            // comparison operations on vectors as they are implemented with
            // builtin functions.
            // Once again we wrap everything in parentheses to avoid precedence issues
            Expression::Binary {
                mut op,
                left,
                right,
            } => {
                // Holds `Some(function_name)` if the binary operation is
                // implemented as a function call
                use crate::{BinaryOperator as Bo, ScalarKind as Sk, TypeInner as Ti};

                let left_inner = ctx.resolve_type(left, &self.module.types);
                let right_inner = ctx.resolve_type(right, &self.module.types);

                let function = match (left_inner, right_inner) {
                    (&Ti::Vector { scalar, .. }, &Ti::Vector { .. }) => match op {
                        Bo::Less
                        | Bo::LessEqual
                        | Bo::Greater
                        | Bo::GreaterEqual
                        | Bo::Equal
                        | Bo::NotEqual => BinaryOperation::VectorCompare,
                        Bo::Modulo if scalar.kind == Sk::Float => BinaryOperation::Modulo,
                        Bo::And if scalar.kind == Sk::Bool => {
                            op = crate::BinaryOperator::LogicalAnd;
                            BinaryOperation::VectorComponentWise
                        }
                        Bo::InclusiveOr if scalar.kind == Sk::Bool => {
                            op = crate::BinaryOperator::LogicalOr;
                            BinaryOperation::VectorComponentWise
                        }
                        _ => BinaryOperation::Other,
                    },
                    _ => match (left_inner.scalar_kind(), right_inner.scalar_kind()) {
                        (Some(Sk::Float), _) | (_, Some(Sk::Float)) => match op {
                            Bo::Modulo => BinaryOperation::Modulo,
                            _ => BinaryOperation::Other,
                        },
                        (Some(Sk::Bool), Some(Sk::Bool)) => match op {
                            Bo::InclusiveOr => {
                                op = crate::BinaryOperator::LogicalOr;
                                BinaryOperation::Other
                            }
                            Bo::And => {
                                op = crate::BinaryOperator::LogicalAnd;
                                BinaryOperation::Other
                            }
                            _ => BinaryOperation::Other,
                        },
                        _ => BinaryOperation::Other,
                    },
                };

                match function {
                    BinaryOperation::VectorCompare => {
                        let op_str = match op {
                            Bo::Less => "lessThan(",
                            Bo::LessEqual => "lessThanEqual(",
                            Bo::Greater => "greaterThan(",
                            Bo::GreaterEqual => "greaterThanEqual(",
                            Bo::Equal => "equal(",
                            Bo::NotEqual => "notEqual(",
                            _ => unreachable!(),
                        };
                        write!(self.out, "{op_str}")?;
                        self.write_expr(left, ctx)?;
                        write!(self.out, ", ")?;
                        self.write_expr(right, ctx)?;
                        write!(self.out, ")")?;
                    }
                    BinaryOperation::VectorComponentWise => {
                        self.write_value_type(left_inner)?;
                        write!(self.out, "(")?;

                        let size = match *left_inner {
                            Ti::Vector { size, .. } => size,
                            _ => unreachable!(),
                        };

                        for i in 0..size as usize {
                            if i != 0 {
                                write!(self.out, ", ")?;
                            }

                            self.write_expr(left, ctx)?;
                            write!(self.out, ".{}", back::COMPONENTS[i])?;

                            write!(self.out, " {} ", back::binary_operation_str(op))?;

                            self.write_expr(right, ctx)?;
                            write!(self.out, ".{}", back::COMPONENTS[i])?;
                        }

                        write!(self.out, ")")?;
                    }
                    // TODO: handle undefined behavior of BinaryOperator::Modulo
                    //
                    // sint:
                    // if right == 0 return 0
                    // if left == min(type_of(left)) && right == -1 return 0
                    // if sign(left) == -1 || sign(right) == -1 return result as defined by WGSL
                    //
                    // uint:
                    // if right == 0 return 0
                    //
                    // float:
                    // if right == 0 return ? see https://github.com/gpuweb/gpuweb/issues/2798
                    BinaryOperation::Modulo => {
                        write!(self.out, "(")?;

                        // write `e1 - e2 * trunc(e1 / e2)`
                        self.write_expr(left, ctx)?;
                        write!(self.out, " - ")?;
                        self.write_expr(right, ctx)?;
                        write!(self.out, " * ")?;
                        write!(self.out, "trunc(")?;
                        self.write_expr(left, ctx)?;
                        write!(self.out, " / ")?;
                        self.write_expr(right, ctx)?;
                        write!(self.out, ")")?;

                        write!(self.out, ")")?;
                    }
                    BinaryOperation::Other => {
                        write!(self.out, "(")?;

                        self.write_expr(left, ctx)?;
                        write!(self.out, " {} ", back::binary_operation_str(op))?;
                        self.write_expr(right, ctx)?;

                        write!(self.out, ")")?;
                    }
                }
            }
            // `Select` is written as `condition ? accept : reject`
            // We wrap everything in parentheses to avoid precedence issues
            Expression::Select {
                condition,
                accept,
                reject,
            } => {
                let cond_ty = ctx.resolve_type(condition, &self.module.types);
                let vec_select = if let TypeInner::Vector { .. } = *cond_ty {
                    true
                } else {
                    false
                };

                // TODO: Boolean mix on desktop required GL_EXT_shader_integer_mix
                if vec_select {
                    // Glsl defines that for mix when the condition is a boolean the first element
                    // is picked if condition is false and the second if condition is true
                    write!(self.out, "mix(")?;
                    self.write_expr(reject, ctx)?;
                    write!(self.out, ", ")?;
                    self.write_expr(accept, ctx)?;
                    write!(self.out, ", ")?;
                    self.write_expr(condition, ctx)?;
                } else {
                    write!(self.out, "(")?;
                    self.write_expr(condition, ctx)?;
                    write!(self.out, " ? ")?;
                    self.write_expr(accept, ctx)?;
                    write!(self.out, " : ")?;
                    self.write_expr(reject, ctx)?;
                }

                write!(self.out, ")")?
            }
            // `Derivative` is a function call to a glsl provided function
            Expression::Derivative { axis, ctrl, expr } => {
                use crate::{DerivativeAxis as Axis, DerivativeControl as Ctrl};
                let fun_name = if self.options.version.supports_derivative_control() {
                    match (axis, ctrl) {
                        (Axis::X, Ctrl::Coarse) => "dFdxCoarse",
                        (Axis::X, Ctrl::Fine) => "dFdxFine",
                        (Axis::X, Ctrl::None) => "dFdx",
                        (Axis::Y, Ctrl::Coarse) => "dFdyCoarse",
                        (Axis::Y, Ctrl::Fine) => "dFdyFine",
                        (Axis::Y, Ctrl::None) => "dFdy",
                        (Axis::Width, Ctrl::Coarse) => "fwidthCoarse",
                        (Axis::Width, Ctrl::Fine) => "fwidthFine",
                        (Axis::Width, Ctrl::None) => "fwidth",
                    }
                } else {
                    match axis {
                        Axis::X => "dFdx",
                        Axis::Y => "dFdy",
                        Axis::Width => "fwidth",
                    }
                };
                write!(self.out, "{fun_name}(")?;
                self.write_expr(expr, ctx)?;
                write!(self.out, ")")?
            }
            // `Relational` is a normal function call to some glsl provided functions
            Expression::Relational { fun, argument } => {
                use crate::RelationalFunction as Rf;

                let fun_name = match fun {
                    Rf::IsInf => "isinf",
                    Rf::IsNan => "isnan",
                    Rf::All => "all",
                    Rf::Any => "any",
                };
                write!(self.out, "{fun_name}(")?;

                self.write_expr(argument, ctx)?;

                write!(self.out, ")")?
            }
            Expression::Math {
                fun,
                arg,
                arg1,
                arg2,
                arg3,
            } => {
                use crate::MathFunction as Mf;

                let fun_name = match fun {
                    // comparison
                    Mf::Abs => "abs",
                    Mf::Min => "min",
                    Mf::Max => "max",
                    Mf::Clamp => {
                        let scalar_kind = ctx
                            .resolve_type(arg, &self.module.types)
                            .scalar_kind()
                            .unwrap();
                        match scalar_kind {
                            crate::ScalarKind::Float => "clamp",
                            // Clamp is undefined if min > max. In practice this means it can use a median-of-three
                            // instruction to determine the value. This is fine according to the WGSL spec for float
                            // clamp, but integer clamp _must_ use min-max. As such we write out min/max.
                            _ => {
                                write!(self.out, "min(max(")?;
                                self.write_expr(arg, ctx)?;
                                write!(self.out, ", ")?;
                                self.write_expr(arg1.unwrap(), ctx)?;
                                write!(self.out, "), ")?;
                                self.write_expr(arg2.unwrap(), ctx)?;
                                write!(self.out, ")")?;

                                return Ok(());
                            }
                        }
                    }
                    Mf::Saturate => {
                        write!(self.out, "clamp(")?;

                        self.write_expr(arg, ctx)?;

                        match *ctx.resolve_type(arg, &self.module.types) {
                            TypeInner::Vector { size, .. } => write!(
                                self.out,
                                ", vec{}(0.0), vec{0}(1.0)",
                                back::vector_size_str(size)
                            )?,
                            _ => write!(self.out, ", 0.0, 1.0")?,
                        }

                        write!(self.out, ")")?;

                        return Ok(());
                    }
                    // trigonometry
                    Mf::Cos => "cos",
                    Mf::Cosh => "cosh",
                    Mf::Sin => "sin",
                    Mf::Sinh => "sinh",
                    Mf::Tan => "tan",
                    Mf::Tanh => "tanh",
                    Mf::Acos => "acos",
                    Mf::Asin => "asin",
                    Mf::Atan => "atan",
                    Mf::Asinh => "asinh",
                    Mf::Acosh => "acosh",
                    Mf::Atanh => "atanh",
                    Mf::Radians => "radians",
                    Mf::Degrees => "degrees",
                    // glsl doesn't have atan2 function
                    // use two-argument variation of the atan function
                    Mf::Atan2 => "atan",
                    // decomposition
                    Mf::Ceil => "ceil",
                    Mf::Floor => "floor",
                    Mf::Round => "roundEven",
                    Mf::Fract => "fract",
                    Mf::Trunc => "trunc",
                    Mf::Modf => MODF_FUNCTION,
                    Mf::Frexp => FREXP_FUNCTION,
                    Mf::Ldexp => "ldexp",
                    // exponent
                    Mf::Exp => "exp",
                    Mf::Exp2 => "exp2",
                    Mf::Log => "log",
                    Mf::Log2 => "log2",
                    Mf::Pow => "pow",
                    // geometry
                    Mf::Dot => match *ctx.resolve_type(arg, &self.module.types) {
                        TypeInner::Vector {
                            scalar:
                                crate::Scalar {
                                    kind: crate::ScalarKind::Float,
                                    ..
                                },
                            ..
                        } => "dot",
                        TypeInner::Vector { size, .. } => {
                            return self.write_dot_product(arg, arg1.unwrap(), size as usize, ctx)
                        }
                        _ => unreachable!(
                            "Correct TypeInner for dot product should be already validated"
                        ),
                    },
                    Mf::Outer => "outerProduct",
                    Mf::Cross => "cross",
                    Mf::Distance => "distance",
                    Mf::Length => "length",
                    Mf::Normalize => "normalize",
                    Mf::FaceForward => "faceforward",
                    Mf::Reflect => "reflect",
                    Mf::Refract => "refract",
                    // computational
                    Mf::Sign => "sign",
                    Mf::Fma => {
                        if self.options.version.supports_fma_function() {
                            // Use the fma function when available
                            "fma"
                        } else {
                            // No fma support. Transform the function call into an arithmetic expression
                            write!(self.out, "(")?;

                            self.write_expr(arg, ctx)?;
                            write!(self.out, " * ")?;

                            let arg1 =
                                arg1.ok_or_else(|| Error::Custom("Missing fma arg1".to_owned()))?;
                            self.write_expr(arg1, ctx)?;
                            write!(self.out, " + ")?;

                            let arg2 =
                                arg2.ok_or_else(|| Error::Custom("Missing fma arg2".to_owned()))?;
                            self.write_expr(arg2, ctx)?;
                            write!(self.out, ")")?;

                            return Ok(());
                        }
                    }
                    Mf::Mix => "mix",
                    Mf::Step => "step",
                    Mf::SmoothStep => "smoothstep",
                    Mf::Sqrt => "sqrt",
                    Mf::InverseSqrt => "inversesqrt",
                    Mf::Inverse => "inverse",
                    Mf::Transpose => "transpose",
                    Mf::Determinant => "determinant",
                    // bits
                    Mf::CountTrailingZeros => {
                        match *ctx.resolve_type(arg, &self.module.types) {
                            TypeInner::Vector { size, scalar, .. } => {
                                let s = back::vector_size_str(size);
                                if let crate::ScalarKind::Uint = scalar.kind {
                                    write!(self.out, "min(uvec{s}(findLSB(")?;
                                    self.write_expr(arg, ctx)?;
                                    write!(self.out, ")), uvec{s}(32u))")?;
                                } else {
                                    write!(self.out, "ivec{s}(min(uvec{s}(findLSB(")?;
                                    self.write_expr(arg, ctx)?;
                                    write!(self.out, ")), uvec{s}(32u)))")?;
                                }
                            }
                            TypeInner::Scalar(scalar) => {
                                if let crate::ScalarKind::Uint = scalar.kind {
                                    write!(self.out, "min(uint(findLSB(")?;
                                    self.write_expr(arg, ctx)?;
                                    write!(self.out, ")), 32u)")?;
                                } else {
                                    write!(self.out, "int(min(uint(findLSB(")?;
                                    self.write_expr(arg, ctx)?;
                                    write!(self.out, ")), 32u))")?;
                                }
                            }
                            _ => unreachable!(),
                        };
                        return Ok(());
                    }
                    Mf::CountLeadingZeros => {
                        if self.options.version.supports_integer_functions() {
                            match *ctx.resolve_type(arg, &self.module.types) {
                                TypeInner::Vector { size, scalar } => {
                                    let s = back::vector_size_str(size);

                                    if let crate::ScalarKind::Uint = scalar.kind {
                                        write!(self.out, "uvec{s}(ivec{s}(31) - findMSB(")?;
                                        self.write_expr(arg, ctx)?;
                                        write!(self.out, "))")?;
                                    } else {
                                        write!(self.out, "mix(ivec{s}(31) - findMSB(")?;
                                        self.write_expr(arg, ctx)?;
                                        write!(self.out, "), ivec{s}(0), lessThan(")?;
                                        self.write_expr(arg, ctx)?;
                                        write!(self.out, ", ivec{s}(0)))")?;
                                    }
                                }
                                TypeInner::Scalar(scalar) => {
                                    if let crate::ScalarKind::Uint = scalar.kind {
                                        write!(self.out, "uint(31 - findMSB(")?;
                                    } else {
                                        write!(self.out, "(")?;
                                        self.write_expr(arg, ctx)?;
                                        write!(self.out, " < 0 ? 0 : 31 - findMSB(")?;
                                    }

                                    self.write_expr(arg, ctx)?;
                                    write!(self.out, "))")?;
                                }
                                _ => unreachable!(),
                            };
                        } else {
                            match *ctx.resolve_type(arg, &self.module.types) {
                                TypeInner::Vector { size, scalar } => {
                                    let s = back::vector_size_str(size);

                                    if let crate::ScalarKind::Uint = scalar.kind {
                                        write!(self.out, "uvec{s}(")?;
                                        write!(self.out, "vec{s}(31.0) - floor(log2(vec{s}(")?;
                                        self.write_expr(arg, ctx)?;
                                        write!(self.out, ") + 0.5)))")?;
                                    } else {
                                        write!(self.out, "ivec{s}(")?;
                                        write!(self.out, "mix(vec{s}(31.0) - floor(log2(vec{s}(")?;
                                        self.write_expr(arg, ctx)?;
                                        write!(self.out, ") + 0.5)), ")?;
                                        write!(self.out, "vec{s}(0.0), lessThan(")?;
                                        self.write_expr(arg, ctx)?;
                                        write!(self.out, ", ivec{s}(0u))))")?;
                                    }
                                }
                                TypeInner::Scalar(scalar) => {
                                    if let crate::ScalarKind::Uint = scalar.kind {
                                        write!(self.out, "uint(31.0 - floor(log2(float(")?;
                                        self.write_expr(arg, ctx)?;
                                        write!(self.out, ") + 0.5)))")?;
                                    } else {
                                        write!(self.out, "(")?;
                                        self.write_expr(arg, ctx)?;
                                        write!(self.out, " < 0 ? 0 : int(")?;
                                        write!(self.out, "31.0 - floor(log2(float(")?;
                                        self.write_expr(arg, ctx)?;
                                        write!(self.out, ") + 0.5))))")?;
                                    }
                                }
                                _ => unreachable!(),
                            };
                        }

                        return Ok(());
                    }
                    Mf::CountOneBits => "bitCount",
                    Mf::ReverseBits => "bitfieldReverse",
                    Mf::ExtractBits => {
                        // The behavior of ExtractBits is undefined when offset + count > bit_width. We need
                        // to first sanitize the offset and count first. If we don't do this, AMD and Intel chips
                        // will return out-of-spec values if the extracted range is not within the bit width.
                        //
                        // This encodes the exact formula specified by the wgsl spec, without temporary values:
                        // https://gpuweb.github.io/gpuweb/wgsl/#extractBits-unsigned-builtin
                        //
                        // w = sizeof(x) * 8
                        // o = min(offset, w)
                        // c = min(count, w - o)
                        //
                        // bitfieldExtract(x, o, c)
                        //
                        // extract_bits(e, min(offset, w), min(count, w - min(offset, w))))
                        let scalar_bits = ctx
                            .resolve_type(arg, &self.module.types)
                            .scalar_width()
                            .unwrap()
                            * 8;

                        write!(self.out, "bitfieldExtract(")?;
                        self.write_expr(arg, ctx)?;
                        write!(self.out, ", int(min(")?;
                        self.write_expr(arg1.unwrap(), ctx)?;
                        write!(self.out, ", {scalar_bits}u)), int(min(",)?;
                        self.write_expr(arg2.unwrap(), ctx)?;
                        write!(self.out, ", {scalar_bits}u - min(")?;
                        self.write_expr(arg1.unwrap(), ctx)?;
                        write!(self.out, ", {scalar_bits}u))))")?;

                        return Ok(());
                    }
                    Mf::InsertBits => {
                        // InsertBits has the same considerations as ExtractBits above
                        let scalar_bits = ctx
                            .resolve_type(arg, &self.module.types)
                            .scalar_width()
                            .unwrap()
                            * 8;

                        write!(self.out, "bitfieldInsert(")?;
                        self.write_expr(arg, ctx)?;
                        write!(self.out, ", ")?;
                        self.write_expr(arg1.unwrap(), ctx)?;
                        write!(self.out, ", int(min(")?;
                        self.write_expr(arg2.unwrap(), ctx)?;
                        write!(self.out, ", {scalar_bits}u)), int(min(",)?;
                        self.write_expr(arg3.unwrap(), ctx)?;
                        write!(self.out, ", {scalar_bits}u - min(")?;
                        self.write_expr(arg2.unwrap(), ctx)?;
                        write!(self.out, ", {scalar_bits}u))))")?;

                        return Ok(());
                    }
                    Mf::FirstTrailingBit => "findLSB",
                    Mf::FirstLeadingBit => "findMSB",
                    // data packing
                    Mf::Pack4x8snorm => "packSnorm4x8",
                    Mf::Pack4x8unorm => "packUnorm4x8",
                    Mf::Pack2x16snorm => "packSnorm2x16",
                    Mf::Pack2x16unorm => "packUnorm2x16",
                    Mf::Pack2x16float => "packHalf2x16",
                    fun @ (Mf::Pack4xI8 | Mf::Pack4xU8) => {
                        let was_signed = match fun {
                            Mf::Pack4xI8 => true,
                            Mf::Pack4xU8 => false,
                            _ => unreachable!(),
                        };
                        let const_suffix = if was_signed { "" } else { "u" };
                        if was_signed {
                            write!(self.out, "uint(")?;
                        }
                        write!(self.out, "(")?;
                        self.write_expr(arg, ctx)?;
                        write!(self.out, "[0] & 0xFF{const_suffix}) | ((")?;
                        self.write_expr(arg, ctx)?;
                        write!(self.out, "[1] & 0xFF{const_suffix}) << 8) | ((")?;
                        self.write_expr(arg, ctx)?;
                        write!(self.out, "[2] & 0xFF{const_suffix}) << 16) | ((")?;
                        self.write_expr(arg, ctx)?;
                        write!(self.out, "[3] & 0xFF{const_suffix}) << 24)")?;
                        if was_signed {
                            write!(self.out, ")")?;
                        }

                        return Ok(());
                    }
                    // data unpacking
                    Mf::Unpack4x8snorm => "unpackSnorm4x8",
                    Mf::Unpack4x8unorm => "unpackUnorm4x8",
                    Mf::Unpack2x16snorm => "unpackSnorm2x16",
                    Mf::Unpack2x16unorm => "unpackUnorm2x16",
                    Mf::Unpack2x16float => "unpackHalf2x16",
                    fun @ (Mf::Unpack4xI8 | Mf::Unpack4xU8) => {
                        let sign_prefix = match fun {
                            Mf::Unpack4xI8 => 'i',
                            Mf::Unpack4xU8 => 'u',
                            _ => unreachable!(),
                        };
                        write!(self.out, "{sign_prefix}vec4(")?;
                        for i in 0..4 {
                            write!(self.out, "bitfieldExtract(")?;
                            // Since bitfieldExtract only sign extends if the value is signed, this
                            // cast is needed
                            match fun {
                                Mf::Unpack4xI8 => {
                                    write!(self.out, "int(")?;
                                    self.write_expr(arg, ctx)?;
                                    write!(self.out, ")")?;
                                }
                                Mf::Unpack4xU8 => self.write_expr(arg, ctx)?,
                                _ => unreachable!(),
                            };
                            write!(self.out, ", {}, 8)", i * 8)?;
                            if i != 3 {
                                write!(self.out, ", ")?;
                            }
                        }
                        write!(self.out, ")")?;

                        return Ok(());
                    }
                };

                let extract_bits = fun == Mf::ExtractBits;
                let insert_bits = fun == Mf::InsertBits;

                // Some GLSL functions always return signed integers (like findMSB),
                // so they need to be cast to uint if the argument is also an uint.
                let ret_might_need_int_to_uint = matches!(
                    fun,
                    Mf::FirstTrailingBit | Mf::FirstLeadingBit | Mf::CountOneBits | Mf::Abs
                );

                // Some GLSL functions only accept signed integers (like abs),
                // so they need their argument cast from uint to int.
                let arg_might_need_uint_to_int = matches!(fun, Mf::Abs);

                // Check if the argument is an unsigned integer and return the vector size
                // in case it's a vector
                let maybe_uint_size = match *ctx.resolve_type(arg, &self.module.types) {
                    TypeInner::Scalar(crate::Scalar {
                        kind: crate::ScalarKind::Uint,
                        ..
                    }) => Some(None),
                    TypeInner::Vector {
                        scalar:
                            crate::Scalar {
                                kind: crate::ScalarKind::Uint,
                                ..
                            },
                        size,
                    } => Some(Some(size)),
                    _ => None,
                };

                // Cast to uint if the function needs it
                if ret_might_need_int_to_uint {
                    if let Some(maybe_size) = maybe_uint_size {
                        match maybe_size {
                            Some(size) => write!(self.out, "uvec{}(", size as u8)?,
                            None => write!(self.out, "uint(")?,
                        }
                    }
                }

                write!(self.out, "{fun_name}(")?;

                // Cast to int if the function needs it
                if arg_might_need_uint_to_int {
                    if let Some(maybe_size) = maybe_uint_size {
                        match maybe_size {
                            Some(size) => write!(self.out, "ivec{}(", size as u8)?,
                            None => write!(self.out, "int(")?,
                        }
                    }
                }

                self.write_expr(arg, ctx)?;

                // Close the cast from uint to int
                if arg_might_need_uint_to_int && maybe_uint_size.is_some() {
                    write!(self.out, ")")?
                }

                if let Some(arg) = arg1 {
                    write!(self.out, ", ")?;
                    if extract_bits {
                        write!(self.out, "int(")?;
                        self.write_expr(arg, ctx)?;
                        write!(self.out, ")")?;
                    } else {
                        self.write_expr(arg, ctx)?;
                    }
                }
                if let Some(arg) = arg2 {
                    write!(self.out, ", ")?;
                    if extract_bits || insert_bits {
                        write!(self.out, "int(")?;
                        self.write_expr(arg, ctx)?;
                        write!(self.out, ")")?;
                    } else {
                        self.write_expr(arg, ctx)?;
                    }
                }
                if let Some(arg) = arg3 {
                    write!(self.out, ", ")?;
                    if insert_bits {
                        write!(self.out, "int(")?;
                        self.write_expr(arg, ctx)?;
                        write!(self.out, ")")?;
                    } else {
                        self.write_expr(arg, ctx)?;
                    }
                }
                write!(self.out, ")")?;

                // Close the cast from int to uint
                if ret_might_need_int_to_uint && maybe_uint_size.is_some() {
                    write!(self.out, ")")?
                }
            }
            // `As` is always a call.
            // If `convert` is true the function name is the type
            // Else the function name is one of the glsl provided bitcast functions
            Expression::As {
                expr,
                kind: target_kind,
                convert,
            } => {
                let inner = ctx.resolve_type(expr, &self.module.types);
                match convert {
                    Some(width) => {
                        // this is similar to `write_type`, but with the target kind
                        let scalar = glsl_scalar(crate::Scalar {
                            kind: target_kind,
                            width,
                        })?;
                        match *inner {
                            TypeInner::Matrix { columns, rows, .. } => write!(
                                self.out,
                                "{}mat{}x{}",
                                scalar.prefix, columns as u8, rows as u8
                            )?,
                            TypeInner::Vector { size, .. } => {
                                write!(self.out, "{}vec{}", scalar.prefix, size as u8)?
                            }
                            _ => write!(self.out, "{}", scalar.full)?,
                        }

                        write!(self.out, "(")?;
                        self.write_expr(expr, ctx)?;
                        write!(self.out, ")")?
                    }
                    None => {
                        use crate::ScalarKind as Sk;

                        let target_vector_type = match *inner {
                            TypeInner::Vector { size, scalar } => Some(TypeInner::Vector {
                                size,
                                scalar: crate::Scalar {
                                    kind: target_kind,
                                    width: scalar.width,
                                },
                            }),
                            _ => None,
                        };

                        let source_kind = inner.scalar_kind().unwrap();

                        match (source_kind, target_kind, target_vector_type) {
                            // No conversion needed
                            (Sk::Sint, Sk::Sint, _)
                            | (Sk::Uint, Sk::Uint, _)
                            | (Sk::Float, Sk::Float, _)
                            | (Sk::Bool, Sk::Bool, _) => {
                                self.write_expr(expr, ctx)?;
                                return Ok(());
                            }

                            // Cast to/from floats
                            (Sk::Float, Sk::Sint, _) => write!(self.out, "floatBitsToInt")?,
                            (Sk::Float, Sk::Uint, _) => write!(self.out, "floatBitsToUint")?,
                            (Sk::Sint, Sk::Float, _) => write!(self.out, "intBitsToFloat")?,
                            (Sk::Uint, Sk::Float, _) => write!(self.out, "uintBitsToFloat")?,

                            // Cast between vector types
                            (_, _, Some(vector)) => {
                                self.write_value_type(&vector)?;
                            }

                            // There is no way to bitcast between Uint/Sint in glsl. Use constructor conversion
                            (Sk::Uint | Sk::Bool, Sk::Sint, None) => write!(self.out, "int")?,
                            (Sk::Sint | Sk::Bool, Sk::Uint, None) => write!(self.out, "uint")?,
                            (Sk::Bool, Sk::Float, None) => write!(self.out, "float")?,
                            (Sk::Sint | Sk::Uint | Sk::Float, Sk::Bool, None) => {
                                write!(self.out, "bool")?
                            }

                            (Sk::AbstractInt | Sk::AbstractFloat, _, _)
                            | (_, Sk::AbstractInt | Sk::AbstractFloat, _) => unreachable!(),
                        };

                        write!(self.out, "(")?;
                        self.write_expr(expr, ctx)?;
                        write!(self.out, ")")?;
                    }
                }
            }
            // These expressions never show up in `Emit`.
            Expression::CallResult(_)
            | Expression::AtomicResult { .. }
            | Expression::RayQueryProceedResult
            | Expression::WorkGroupUniformLoadResult { .. }
            | Expression::SubgroupOperationResult { .. }
            | Expression::SubgroupBallotResult => unreachable!(),
            // `ArrayLength` is written as `expr.length()` and we convert it to a uint
            Expression::ArrayLength(expr) => {
                write!(self.out, "uint(")?;
                self.write_expr(expr, ctx)?;
                write!(self.out, ".length())")?
            }
            // not supported yet
            Expression::RayQueryGetIntersection { .. } => unreachable!(),
        }

        Ok(())
    }

    /// Helper function to write the local holding the clamped lod
    fn write_clamped_lod(
        &mut self,
        ctx: &back::FunctionCtx,
        expr: Handle<crate::Expression>,
        image: Handle<crate::Expression>,
        level_expr: Handle<crate::Expression>,
    ) -> Result<(), Error> {
        // Define our local and start a call to `clamp`
        write!(
            self.out,
            "int {}{} = clamp(",
            Baked(expr),
            CLAMPED_LOD_SUFFIX
        )?;
        // Write the lod that will be clamped
        self.write_expr(level_expr, ctx)?;
        // Set the min value to 0 and start a call to `textureQueryLevels` to get
        // the maximum value
        write!(self.out, ", 0, textureQueryLevels(")?;
        // Write the target image as an argument to `textureQueryLevels`
        self.write_expr(image, ctx)?;
        // Close the call to `textureQueryLevels` subtract 1 from it since
        // the lod argument is 0 based, close the `clamp` call and end the
        // local declaration statement.
        writeln!(self.out, ") - 1);")?;

        Ok(())
    }

    // Helper method used to retrieve how many elements a coordinate vector
    // for the images operations need.
    fn get_coordinate_vector_size(&self, dim: crate::ImageDimension, arrayed: bool) -> u8 {
        // openGL es doesn't have 1D images so we need workaround it
        let tex_1d_hack = dim == crate::ImageDimension::D1 && self.options.version.is_es();
        // Get how many components the coordinate vector needs for the dimensions only
        let tex_coord_size = match dim {
            crate::ImageDimension::D1 => 1,
            crate::ImageDimension::D2 => 2,
            crate::ImageDimension::D3 => 3,
            crate::ImageDimension::Cube => 2,
        };
        // Calculate the true size of the coordinate vector by adding 1 for arrayed images
        // and another 1 if we need to workaround 1D images by making them 2D
        tex_coord_size + tex_1d_hack as u8 + arrayed as u8
    }

    /// Helper method to write the coordinate vector for image operations
    fn write_texture_coord(
        &mut self,
        ctx: &back::FunctionCtx,
        vector_size: u8,
        coordinate: Handle<crate::Expression>,
        array_index: Option<Handle<crate::Expression>>,
        // Emulate 1D images as 2D for profiles that don't support it (glsl es)
        tex_1d_hack: bool,
    ) -> Result<(), Error> {
        match array_index {
            // If the image needs an array indice we need to add it to the end of our
            // coordinate vector, to do so we will use the `ivec(ivec, scalar)`
            // constructor notation (NOTE: the inner `ivec` can also be a scalar, this
            // is important for 1D arrayed images).
            Some(layer_expr) => {
                write!(self.out, "ivec{vector_size}(")?;
                self.write_expr(coordinate, ctx)?;
                write!(self.out, ", ")?;
                // If we are replacing sampler1D with sampler2D we also need
                // to add another zero to the coordinates vector for the y component
                if tex_1d_hack {
                    write!(self.out, "0, ")?;
                }
                self.write_expr(layer_expr, ctx)?;
                write!(self.out, ")")?;
            }
            // Otherwise write just the expression (and the 1D hack if needed)
            None => {
                let uvec_size = match *ctx.resolve_type(coordinate, &self.module.types) {
                    TypeInner::Scalar(crate::Scalar {
                        kind: crate::ScalarKind::Uint,
                        ..
                    }) => Some(None),
                    TypeInner::Vector {
                        size,
                        scalar:
                            crate::Scalar {
                                kind: crate::ScalarKind::Uint,
                                ..
                            },
                    } => Some(Some(size as u32)),
                    _ => None,
                };
                if tex_1d_hack {
                    write!(self.out, "ivec2(")?;
                } else if uvec_size.is_some() {
                    match uvec_size {
                        Some(None) => write!(self.out, "int(")?,
                        Some(Some(size)) => write!(self.out, "ivec{size}(")?,
                        _ => {}
                    }
                }
                self.write_expr(coordinate, ctx)?;
                if tex_1d_hack {
                    write!(self.out, ", 0)")?;
                } else if uvec_size.is_some() {
                    write!(self.out, ")")?;
                }
            }
        }

        Ok(())
    }

    /// Helper method to write the `ImageStore` statement
    fn write_image_store(
        &mut self,
        ctx: &back::FunctionCtx,
        image: Handle<crate::Expression>,
        coordinate: Handle<crate::Expression>,
        array_index: Option<Handle<crate::Expression>>,
        value: Handle<crate::Expression>,
    ) -> Result<(), Error> {
        use crate::ImageDimension as IDim;

        // NOTE: openGL requires that `imageStore`s have no effets when the texel is invalid
        // so we don't need to generate bounds checks (OpenGL 4.2 Core ยง3.9.20)

        // This will only panic if the module is invalid
        let dim = match *ctx.resolve_type(image, &self.module.types) {
            TypeInner::Image { dim, .. } => dim,
            _ => unreachable!(),
        };

        // Begin our call to `imageStore`
        write!(self.out, "imageStore(")?;
        self.write_expr(image, ctx)?;
        // Separate the image argument from the coordinates
        write!(self.out, ", ")?;

        // openGL es doesn't have 1D images so we need workaround it
        let tex_1d_hack = dim == IDim::D1 && self.options.version.is_es();
        // Write the coordinate vector
        self.write_texture_coord(
            ctx,
            // Get the size of the coordinate vector
            self.get_coordinate_vector_size(dim, array_index.is_some()),
            coordinate,
            array_index,
            tex_1d_hack,
        )?;

        // Separate the coordinate from the value to write and write the expression
        // of the value to write.
        write!(self.out, ", ")?;
        self.write_expr(value, ctx)?;
        // End the call to `imageStore` and the statement.
        writeln!(self.out, ");")?;

        Ok(())
    }

    /// Helper method for writing an `ImageLoad` expression.
    #[allow(clippy::too_many_arguments)]
    fn write_image_load(
        &mut self,
        handle: Handle<crate::Expression>,
        ctx: &back::FunctionCtx,
        image: Handle<crate::Expression>,
        coordinate: Handle<crate::Expression>,
        array_index: Option<Handle<crate::Expression>>,
        sample: Option<Handle<crate::Expression>>,
        level: Option<Handle<crate::Expression>>,
    ) -> Result<(), Error> {
        use crate::ImageDimension as IDim;

        // `ImageLoad` is a bit complicated.
        // There are two functions one for sampled
        // images another for storage images, the former uses `texelFetch` and the
        // latter uses `imageLoad`.
        //
        // Furthermore we have `level` which is always `Some` for sampled images
        // and `None` for storage images, so we end up with two functions:
        // - `texelFetch(image, coordinate, level)` for sampled images
        // - `imageLoad(image, coordinate)` for storage images
        //
        // Finally we also have to consider bounds checking, for storage images
        // this is easy since openGL requires that invalid texels always return
        // 0, for sampled images we need to either verify that all arguments are
        // in bounds (`ReadZeroSkipWrite`) or make them a valid texel (`Restrict`).

        // This will only panic if the module is invalid
        let (dim, class) = match *ctx.resolve_type(image, &self.module.types) {
            TypeInner::Image {
                dim,
                arrayed: _,
                class,
            } => (dim, class),
            _ => unreachable!(),
        };

        // Get the name of the function to be used for the load operation
        // and the policy to be used with it.
        let (fun_name, policy) = match class {
            // Sampled images inherit the policy from the user passed policies
            crate::ImageClass::Sampled { .. } => ("texelFetch", self.policies.image_load),
            crate::ImageClass::Storage { .. } => {
                // OpenGL ES 3.1 mentions in Chapter "8.22 Texture Image Loads and Stores" that:
                // "Invalid image loads will return a vector where the value of R, G, and B components
                // is 0 and the value of the A component is undefined."
                //
                // OpenGL 4.2 Core mentions in Chapter "3.9.20 Texture Image Loads and Stores" that:
                // "Invalid image loads will return zero."
                //
                // So, we only inject bounds checks for ES
                let policy = if self.options.version.is_es() {
                    self.policies.image_load
                } else {
                    proc::BoundsCheckPolicy::Unchecked
                };
                ("imageLoad", policy)
            }
            // TODO: Is there even a function for this?
            crate::ImageClass::Depth { multi: _ } => {
                return Err(Error::Custom(
                    "WGSL `textureLoad` from depth textures is not supported in GLSL".to_string(),
                ))
            }
        };

        // openGL es doesn't have 1D images so we need workaround it
        let tex_1d_hack = dim == IDim::D1 && self.options.version.is_es();
        // Get the size of the coordinate vector
        let vector_size = self.get_coordinate_vector_size(dim, array_index.is_some());

        if let proc::BoundsCheckPolicy::ReadZeroSkipWrite = policy {
            // To write the bounds checks for `ReadZeroSkipWrite` we will use a
            // ternary operator since we are in the middle of an expression and
            // need to return a value.
            //
            // NOTE: glsl does short circuit when evaluating logical
            // expressions so we can be sure that after we test a
            // condition it will be true for the next ones

            // Write parentheses around the ternary operator to prevent problems with
            // expressions emitted before or after it having more precedence
            write!(self.out, "(",)?;

            // The lod check needs to precede the size check since we need
            // to use the lod to get the size of the image at that level.
            if let Some(level_expr) = level {
                self.write_expr(level_expr, ctx)?;
                write!(self.out, " < textureQueryLevels(",)?;
                self.write_expr(image, ctx)?;
                // Chain the next check
                write!(self.out, ") && ")?;
            }

            // Check that the sample arguments doesn't exceed the number of samples
            if let Some(sample_expr) = sample {
                self.write_expr(sample_expr, ctx)?;
                write!(self.out, " < textureSamples(",)?;
                self.write_expr(image, ctx)?;
                // Chain the next check
                write!(self.out, ") && ")?;
            }

            // We now need to write the size checks for the coordinates and array index
            // first we write the comparison function in case the image is 1D non arrayed
            // (and no 1D to 2D hack was needed) we are comparing scalars so the less than
            // operator will suffice, but otherwise we'll be comparing two vectors so we'll
            // need to use the `lessThan` function but it returns a vector of booleans (one
            // for each comparison) so we need to fold it all in one scalar boolean, since
            // we want all comparisons to pass we use the `all` function which will only
            // return `true` if all the elements of the boolean vector are also `true`.
            //
            // So we'll end with one of the following forms
            // - `coord < textureSize(image, lod)` for 1D images
            // - `all(lessThan(coord, textureSize(image, lod)))` for normal images
            // - `all(lessThan(ivec(coord, array_index), textureSize(image, lod)))`
            //    for arrayed images
            // - `all(lessThan(coord, textureSize(image)))` for multi sampled images

            if vector_size != 1 {
                write!(self.out, "all(lessThan(")?;
            }

            // Write the coordinate vector
            self.write_texture_coord(ctx, vector_size, coordinate, array_index, tex_1d_hack)?;

            if vector_size != 1 {
                // If we used the `lessThan` function we need to separate the
                // coordinates from the image size.
                write!(self.out, ", ")?;
            } else {
                // If we didn't use it (ie. 1D images) we perform the comparison
                // using the less than operator.
                write!(self.out, " < ")?;
            }

            // Call `textureSize` to get our image size
            write!(self.out, "textureSize(")?;
            self.write_expr(image, ctx)?;
            // `textureSize` uses the lod as a second argument for mipmapped images
            if let Some(level_expr) = level {
                // Separate the image from the lod
                write!(self.out, ", ")?;
                self.write_expr(level_expr, ctx)?;
            }
            // Close the `textureSize` call
            write!(self.out, ")")?;

            if vector_size != 1 {
                // Close the `all` and `lessThan` calls
                write!(self.out, "))")?;
            }

            // Finally end the condition part of the ternary operator
            write!(self.out, " ? ")?;
        }

        // Begin the call to the function used to load the texel
        write!(self.out, "{fun_name}(")?;
        self.write_expr(image, ctx)?;
        write!(self.out, ", ")?;

        // If we are using `Restrict` bounds checking we need to pass valid texel
        // coordinates, to do so we use the `clamp` function to get a value between
        // 0 and the image size - 1 (indexing begins at 0)
        if let proc::BoundsCheckPolicy::Restrict = policy {
            write!(self.out, "clamp(")?;
        }

        // Write the coordinate vector
        self.write_texture_coord(ctx, vector_size, coordinate, array_index, tex_1d_hack)?;

        // If we are using `Restrict` bounds checking we need to write the rest of the
        // clamp we initiated before writing the coordinates.
        if let proc::BoundsCheckPolicy::Restrict = policy {
            // Write the min value 0
            if vector_size == 1 {
                write!(self.out, ", 0")?;
            } else {
                write!(self.out, ", ivec{vector_size}(0)")?;
            }
            // Start the `textureSize` call to use as the max value.
            write!(self.out, ", textureSize(")?;
            self.write_expr(image, ctx)?;
            // If the image is mipmapped we need to add the lod argument to the
            // `textureSize` call, but this needs to be the clamped lod, this should
            // have been generated earlier and put in a local.
            if class.is_mipmapped() {
                write!(self.out, ", {}{}", Baked(handle), CLAMPED_LOD_SUFFIX)?;
            }
            // Close the `textureSize` call
            write!(self.out, ")")?;

            // Subtract 1 from the `textureSize` call since the coordinates are zero based.
            if vector_size == 1 {
                write!(self.out, " - 1")?;
            } else {
                write!(self.out, " - ivec{vector_size}(1)")?;
            }

            // Close the `clamp` call
            write!(self.out, ")")?;

            // Add the clamped lod (if present) as the second argument to the
            // image load function.
            if level.is_some() {
                write!(self.out, ", {}{}", Baked(handle), CLAMPED_LOD_SUFFIX)?;
            }

            // If a sample argument is needed we need to clamp it between 0 and
            // the number of samples the image has.
            if let Some(sample_expr) = sample {
                write!(self.out, ", clamp(")?;
                self.write_expr(sample_expr, ctx)?;
                // Set the min value to 0 and start the call to `textureSamples`
                write!(self.out, ", 0, textureSamples(")?;
                self.write_expr(image, ctx)?;
                // Close the `textureSamples` call, subtract 1 from it since the sample
                // argument is zero based, and close the `clamp` call
                writeln!(self.out, ") - 1)")?;
            }
        } else if let Some(sample_or_level) = sample.or(level) {
            // If no bounds checking is need just add the sample or level argument
            // after the coordinates
            write!(self.out, ", ")?;
            self.write_expr(sample_or_level, ctx)?;
        }

        // Close the image load function.
        write!(self.out, ")")?;

        // If we were using the `ReadZeroSkipWrite` policy we need to end the first branch
        // (which is taken if the condition is `true`) with a colon (`:`) and write the
        // second branch which is just a 0 value.
        if let proc::BoundsCheckPolicy::ReadZeroSkipWrite = policy {
            // Get the kind of the output value.
            let kind = match class {
                // Only sampled images can reach here since storage images
                // don't need bounds checks and depth images aren't implemented
                crate::ImageClass::Sampled { kind, .. } => kind,
                _ => unreachable!(),
            };

            // End the first branch
            write!(self.out, " : ")?;
            // Write the 0 value
            write!(
                self.out,
                "{}vec4(",
                glsl_scalar(crate::Scalar { kind, width: 4 })?.prefix,
            )?;
            self.write_zero_init_scalar(kind)?;
            // Close the zero value constructor
            write!(self.out, ")")?;
            // Close the parentheses surrounding our ternary
            write!(self.out, ")")?;
        }

        Ok(())
    }

    fn write_named_expr(
        &mut self,
        handle: Handle<crate::Expression>,
        name: String,
        // The expression which is being named.
        // Generally, this is the same as handle, except in WorkGroupUniformLoad
        named: Handle<crate::Expression>,
        ctx: &back::FunctionCtx,
    ) -> BackendResult {
        match ctx.info[named].ty {
            proc::TypeResolution::Handle(ty_handle) => match self.module.types[ty_handle].inner {
                TypeInner::Struct { .. } => {
                    let ty_name = &self.names[&NameKey::Type(ty_handle)];
                    write!(self.out, "{ty_name}")?;
                }
                _ => {
                    self.write_type(ty_handle)?;
                }
            },
            proc::TypeResolution::Value(ref inner) => {
                self.write_value_type(inner)?;
            }
        }

        let resolved = ctx.resolve_type(named, &self.module.types);

        write!(self.out, " {name}")?;
        if let TypeInner::Array { base, size, .. } = *resolved {
            self.write_array_size(base, size)?;
        }
        write!(self.out, " = ")?;
        self.write_expr(handle, ctx)?;
        writeln!(self.out, ";")?;
        self.named_expressions.insert(named, name);

        Ok(())
    }

    /// Helper function that write string with default zero initialization for supported types
    fn write_zero_init_value(&mut self, ty: Handle<crate::Type>) -> BackendResult {
        let inner = &self.module.types[ty].inner;
        match *inner {
            TypeInner::Scalar(scalar) | TypeInner::Atomic(scalar) => {
                self.write_zero_init_scalar(scalar.kind)?;
            }
            TypeInner::Vector { scalar, .. } => {
                self.write_value_type(inner)?;
                write!(self.out, "(")?;
                self.write_zero_init_scalar(scalar.kind)?;
                write!(self.out, ")")?;
            }
            TypeInner::Matrix { .. } => {
                self.write_value_type(inner)?;
                write!(self.out, "(")?;
                self.write_zero_init_scalar(crate::ScalarKind::Float)?;
                write!(self.out, ")")?;
            }
            TypeInner::Array { base, size, .. } => {
                let count = match size
                    .to_indexable_length(self.module)
                    .expect("Bad array size")
                {
                    proc::IndexableLength::Known(count) => count,
                    proc::IndexableLength::Dynamic => return Ok(()),
                };
                self.write_type(base)?;
                self.write_array_size(base, size)?;
                write!(self.out, "(")?;
                for _ in 1..count {
                    self.write_zero_init_value(base)?;
                    write!(self.out, ", ")?;
                }
                // write last parameter without comma and space
                self.write_zero_init_value(base)?;
                write!(self.out, ")")?;
            }
            TypeInner::Struct { ref members, .. } => {
                let name = &self.names[&NameKey::Type(ty)];
                write!(self.out, "{name}(")?;
                for (index, member) in members.iter().enumerate() {
                    if index != 0 {
                        write!(self.out, ", ")?;
                    }
                    self.write_zero_init_value(member.ty)?;
                }
                write!(self.out, ")")?;
            }
            _ => unreachable!(),
        }

        Ok(())
    }

    /// Helper function that write string with zero initialization for scalar
    fn write_zero_init_scalar(&mut self, kind: crate::ScalarKind) -> BackendResult {
        match kind {
            crate::ScalarKind::Bool => write!(self.out, "false")?,
            crate::ScalarKind::Uint => write!(self.out, "0u")?,
            crate::ScalarKind::Float => write!(self.out, "0.0")?,
            crate::ScalarKind::Sint => write!(self.out, "0")?,
            crate::ScalarKind::AbstractInt | crate::ScalarKind::AbstractFloat => {
                return Err(Error::Custom(
                    "Abstract types should not appear in IR presented to backends".to_string(),
                ))
            }
        }

        Ok(())
    }

    /// Issue a memory barrier. Please note that to ensure visibility,
    /// OpenGL always requires a call to the `barrier()` function after a `memoryBarrier*()`
    fn write_barrier(&mut self, flags: crate::Barrier, level: back::Level) -> BackendResult {
        if flags.contains(crate::Barrier::STORAGE) {
            writeln!(self.out, "{level}memoryBarrierBuffer();")?;
        }
        if flags.contains(crate::Barrier::WORK_GROUP) {
            writeln!(self.out, "{level}memoryBarrierShared();")?;
        }
        if flags.contains(crate::Barrier::SUB_GROUP) {
            writeln!(self.out, "{level}subgroupMemoryBarrier();")?;
        }
        writeln!(self.out, "{level}barrier();")?;
        Ok(())
    }

    /// Helper function that return the glsl storage access string of [`StorageAccess`](crate::StorageAccess)
    ///
    /// glsl allows adding both `readonly` and `writeonly` but this means that
    /// they can only be used to query information about the resource which isn't what
    /// we want here so when storage access is both `LOAD` and `STORE` add no modifiers
    fn write_storage_access(&mut self, storage_access: crate::StorageAccess) -> BackendResult {
        if !storage_access.contains(crate::StorageAccess::STORE) {
            write!(self.out, "readonly ")?;
        }
        if !storage_access.contains(crate::StorageAccess::LOAD) {
            write!(self.out, "writeonly ")?;
        }
        Ok(())
    }

    /// Helper method used to produce the reflection info that's returned to the user
    fn collect_reflection_info(&mut self) -> Result<ReflectionInfo, Error> {
        use std::collections::hash_map::Entry;
        let info = self.info.get_entry_point(self.entry_point_idx as usize);
        let mut texture_mapping = crate::FastHashMap::default();
        let mut uniforms = crate::FastHashMap::default();

        for sampling in info.sampling_set.iter() {
            let tex_name = self.reflection_names_globals[&sampling.image].clone();

            match texture_mapping.entry(tex_name) {
                Entry::Vacant(v) => {
                    v.insert(TextureMapping {
                        texture: sampling.image,
                        sampler: Some(sampling.sampler),
                    });
                }
                Entry::Occupied(e) => {
                    if e.get().sampler != Some(sampling.sampler) {
                        log::error!("Conflicting samplers for {}", e.key());
                        return Err(Error::ImageMultipleSamplers);
                    }
                }
            }
        }

        let mut push_constant_info = None;
        for (handle, var) in self.module.global_variables.iter() {
            if info[handle].is_empty() {
                continue;
            }
            match self.module.types[var.ty].inner {
                TypeInner::Image { .. } => {
                    let tex_name = self.reflection_names_globals[&handle].clone();
                    match texture_mapping.entry(tex_name) {
                        Entry::Vacant(v) => {
                            v.insert(TextureMapping {
                                texture: handle,
                                sampler: None,
                            });
                        }
                        Entry::Occupied(_) => {
                            // already used with a sampler, do nothing
                        }
                    }
                }
                _ => match var.space {
                    crate::AddressSpace::Uniform | crate::AddressSpace::Storage { .. } => {
                        let name = self.reflection_names_globals[&handle].clone();
                        uniforms.insert(handle, name);
                    }
                    crate::AddressSpace::PushConstant => {
                        let name = self.reflection_names_globals[&handle].clone();
                        push_constant_info = Some((name, var.ty));
                    }
                    _ => (),
                },
            }
        }

        let mut push_constant_segments = Vec::new();
        let mut push_constant_items = vec![];

        if let Some((name, ty)) = push_constant_info {
            // We don't have a layouter available to us, so we need to create one.
            //
            // This is potentially a bit wasteful, but the set of types in the program
            // shouldn't be too large.
            let mut layouter = proc::Layouter::default();
            layouter.update(self.module.to_ctx()).unwrap();

            // We start with the name of the binding itself.
            push_constant_segments.push(name);

            // We then recursively collect all the uniform fields of the push constant.
            self.collect_push_constant_items(
                ty,
                &mut push_constant_segments,
                &layouter,
                &mut 0,
                &mut push_constant_items,
            );
        }

        Ok(ReflectionInfo {
            texture_mapping,
            uniforms,
            varying: mem::take(&mut self.varying),
            push_constant_items,
        })
    }

    fn collect_push_constant_items(
        &mut self,
        ty: Handle<crate::Type>,
        segments: &mut Vec<String>,
        layouter: &proc::Layouter,
        offset: &mut u32,
        items: &mut Vec<PushConstantItem>,
    ) {
        // At this point in the recursion, `segments` contains the path
        // needed to access `ty` from the root.

        let layout = &layouter[ty];
        *offset = layout.alignment.round_up(*offset);
        match self.module.types[ty].inner {
            // All these types map directly to GL uniforms.
            TypeInner::Scalar { .. } | TypeInner::Vector { .. } | TypeInner::Matrix { .. } => {
                // Build the full name, by combining all current segments.
                let name: String = segments.iter().map(String::as_str).collect();
                items.push(PushConstantItem {
                    access_path: name,
                    offset: *offset,
                    ty,
                });
                *offset += layout.size;
            }
            // Arrays are recursed into.
            TypeInner::Array { base, size, .. } => {
                let crate::ArraySize::Constant(count) = size else {
                    unreachable!("Cannot have dynamic arrays in push constants");
                };

                for i in 0..count.get() {
                    // Add the array accessor and recurse.
                    segments.push(format!("[{i}]"));
                    self.collect_push_constant_items(base, segments, layouter, offset, items);
                    segments.pop();
                }

                // Ensure the stride is kept by rounding up to the alignment.
                *offset = layout.alignment.round_up(*offset)
            }
            TypeInner::Struct { ref members, .. } => {
                for (index, member) in members.iter().enumerate() {
                    // Add struct accessor and recurse.
                    segments.push(format!(
                        ".{}",
                        self.names[&NameKey::StructMember(ty, index as u32)]
                    ));
                    self.collect_push_constant_items(member.ty, segments, layouter, offset, items);
                    segments.pop();
                }

                // Ensure ending padding is kept by rounding up to the alignment.
                *offset = layout.alignment.round_up(*offset)
            }
            _ => unreachable!(),
        }
    }
}

/// Structure returned by [`glsl_scalar`]
///
/// It contains both a prefix used in other types and the full type name
struct ScalarString<'a> {
    /// The prefix used to compose other types
    prefix: &'a str,
    /// The name of the scalar type
    full: &'a str,
}

/// Helper function that returns scalar related strings
///
/// Check [`ScalarString`] for the information provided
///
/// # Errors
/// If a [`Float`](crate::ScalarKind::Float) with an width that isn't 4 or 8
const fn glsl_scalar(scalar: crate::Scalar) -> Result<ScalarString<'static>, Error> {
    use crate::ScalarKind as Sk;

    Ok(match scalar.kind {
        Sk::Sint => ScalarString {
            prefix: "i",
            full: "int",
        },
        Sk::Uint => ScalarString {
            prefix: "u",
            full: "uint",
        },
        Sk::Float => match scalar.width {
            4 => ScalarString {
                prefix: "",
                full: "float",
            },
            8 => ScalarString {
                prefix: "d",
                full: "double",
            },
            _ => return Err(Error::UnsupportedScalar(scalar)),
        },
        Sk::Bool => ScalarString {
            prefix: "b",
            full: "bool",
        },
        Sk::AbstractInt | Sk::AbstractFloat => {
            return Err(Error::UnsupportedScalar(scalar));
        }
    })
}

/// Helper function that returns the glsl variable name for a builtin
const fn glsl_built_in(built_in: crate::BuiltIn, options: VaryingOptions) -> &'static str {
    use crate::BuiltIn as Bi;

    match built_in {
        Bi::Position { .. } => {
            if options.output {
                "gl_Position"
            } else {
                "gl_FragCoord"
            }
        }
        Bi::ViewIndex if options.targeting_webgl => "int(gl_ViewID_OVR)",
        Bi::ViewIndex => "gl_ViewIndex",
        // vertex
        Bi::BaseInstance => "uint(gl_BaseInstance)",
        Bi::BaseVertex => "uint(gl_BaseVertex)",
        Bi::ClipDistance => "gl_ClipDistance",
        Bi::CullDistance => "gl_CullDistance",
        Bi::InstanceIndex => {
            if options.draw_parameters {
                "(uint(gl_InstanceID) + uint(gl_BaseInstanceARB))"
            } else {
                // Must match FIRST_INSTANCE_BINDING
                "(uint(gl_InstanceID) + naga_vs_first_instance)"
            }
        }
        Bi::PointSize => "gl_PointSize",
        Bi::VertexIndex => "uint(gl_VertexID)",
        Bi::DrawID => "gl_DrawID",
        // fragment
        Bi::FragDepth => "gl_FragDepth",
        Bi::PointCoord => "gl_PointCoord",
        Bi::FrontFacing => "gl_FrontFacing",
        Bi::PrimitiveIndex => "uint(gl_PrimitiveID)",
        Bi::SampleIndex => "gl_SampleID",
        Bi::SampleMask => {
            if options.output {
                "gl_SampleMask"
            } else {
                "gl_SampleMaskIn"
            }
        }
        // compute
        Bi::GlobalInvocationId => "gl_GlobalInvocationID",
        Bi::LocalInvocationId => "gl_LocalInvocationID",
        Bi::LocalInvocationIndex => "gl_LocalInvocationIndex",
        Bi::WorkGroupId => "gl_WorkGroupID",
        Bi::WorkGroupSize => "gl_WorkGroupSize",
        Bi::NumWorkGroups => "gl_NumWorkGroups",
        // subgroup
        Bi::NumSubgroups => "gl_NumSubgroups",
        Bi::SubgroupId => "gl_SubgroupID",
        Bi::SubgroupSize => "gl_SubgroupSize",
        Bi::SubgroupInvocationId => "gl_SubgroupInvocationID",
    }
}

/// Helper function that returns the string corresponding to the address space
const fn glsl_storage_qualifier(space: crate::AddressSpace) -> Option<&'static str> {
    use crate::AddressSpace as As;

    match space {
        As::Function => None,
        As::Private => None,
        As::Storage { .. } => Some("buffer"),
        As::Uniform => Some("uniform"),
        As::Handle => Some("uniform"),
        As::WorkGroup => Some("shared"),
        As::PushConstant => Some("uniform"),
    }
}

/// Helper function that returns the string corresponding to the glsl interpolation qualifier
const fn glsl_interpolation(interpolation: crate::Interpolation) -> &'static str {
    use crate::Interpolation as I;

    match interpolation {
        I::Perspective => "smooth",
        I::Linear => "noperspective",
        I::Flat => "flat",
    }
}

/// Return the GLSL auxiliary qualifier for the given sampling value.
const fn glsl_sampling(sampling: crate::Sampling) -> BackendResult<Option<&'static str>> {
    use crate::Sampling as S;

    Ok(match sampling {
        S::First => return Err(Error::FirstSamplingNotSupported),
        S::Center | S::Either => None,
        S::Centroid => Some("centroid"),
        S::Sample => Some("sample"),
    })
}

/// Helper function that returns the glsl dimension string of [`ImageDimension`](crate::ImageDimension)
const fn glsl_dimension(dim: crate::ImageDimension) -> &'static str {
    use crate::ImageDimension as IDim;

    match dim {
        IDim::D1 => "1D",
        IDim::D2 => "2D",
        IDim::D3 => "3D",
        IDim::Cube => "Cube",
    }
}

/// Helper function that returns the glsl storage format string of [`StorageFormat`](crate::StorageFormat)
fn glsl_storage_format(format: crate::StorageFormat) -> Result<&'static str, Error> {
    use crate::StorageFormat as Sf;

    Ok(match format {
        Sf::R8Unorm => "r8",
        Sf::R8Snorm => "r8_snorm",
        Sf::R8Uint => "r8ui",
        Sf::R8Sint => "r8i",
        Sf::R16Uint => "r16ui",
        Sf::R16Sint => "r16i",
        Sf::R16Float => "r16f",
        Sf::Rg8Unorm => "rg8",
        Sf::Rg8Snorm => "rg8_snorm",
        Sf::Rg8Uint => "rg8ui",
        Sf::Rg8Sint => "rg8i",
        Sf::R32Uint => "r32ui",
        Sf::R32Sint => "r32i",
        Sf::R32Float => "r32f",
        Sf::Rg16Uint => "rg16ui",
        Sf::Rg16Sint => "rg16i",
        Sf::Rg16Float => "rg16f",
        Sf::Rgba8Unorm => "rgba8",
        Sf::Rgba8Snorm => "rgba8_snorm",
        Sf::Rgba8Uint => "rgba8ui",
        Sf::Rgba8Sint => "rgba8i",
        Sf::Rgb10a2Uint => "rgb10_a2ui",
        Sf::Rgb10a2Unorm => "rgb10_a2",
        Sf::Rg11b10Ufloat => "r11f_g11f_b10f",
        Sf::Rg32Uint => "rg32ui",
        Sf::Rg32Sint => "rg32i",
        Sf::Rg32Float => "rg32f",
        Sf::Rgba16Uint => "rgba16ui",
        Sf::Rgba16Sint => "rgba16i",
        Sf::Rgba16Float => "rgba16f",
        Sf::Rgba32Uint => "rgba32ui",
        Sf::Rgba32Sint => "rgba32i",
        Sf::Rgba32Float => "rgba32f",
        Sf::R16Unorm => "r16",
        Sf::R16Snorm => "r16_snorm",
        Sf::Rg16Unorm => "rg16",
        Sf::Rg16Snorm => "rg16_snorm",
        Sf::Rgba16Unorm => "rgba16",
        Sf::Rgba16Snorm => "rgba16_snorm",

        Sf::Bgra8Unorm => {
            return Err(Error::Custom(
                "Support format BGRA8 is not implemented".into(),
            ))
        }
    })
}

fn is_value_init_supported(module: &crate::Module, ty: Handle<crate::Type>) -> bool {
    match module.types[ty].inner {
        TypeInner::Scalar { .. } | TypeInner::Vector { .. } | TypeInner::Matrix { .. } => true,
        TypeInner::Array { base, size, .. } => {
            size != crate::ArraySize::Dynamic && is_value_init_supported(module, base)
        }
        TypeInner::Struct { ref members, .. } => members
            .iter()
            .all(|member| is_value_init_supported(module, member.ty)),
        _ => false,
    }
}