naga/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
/*! Universal shader translator.
The central structure of the crate is [`Module`]. A `Module` contains:
- [`Function`]s, which have arguments, a return type, local variables, and a body,
- [`EntryPoint`]s, which are specialized functions that can serve as the entry
point for pipeline stages like vertex shading or fragment shading,
- [`Constant`]s and [`GlobalVariable`]s used by `EntryPoint`s and `Function`s, and
- [`Type`]s used by the above.
The body of an `EntryPoint` or `Function` is represented using two types:
- An [`Expression`] produces a value, but has no side effects or control flow.
`Expressions` include variable references, unary and binary operators, and so
on.
- A [`Statement`] can have side effects and structured control flow.
`Statement`s do not produce a value, other than by storing one in some
designated place. `Statements` include blocks, conditionals, and loops, but also
operations that have side effects, like stores and function calls.
`Statement`s form a tree, with pointers into the DAG of `Expression`s.
Restricting side effects to statements simplifies analysis and code generation.
A Naga backend can generate code to evaluate an `Expression` however and
whenever it pleases, as long as it is certain to observe the side effects of all
previously executed `Statement`s.
Many `Statement` variants use the [`Block`] type, which is `Vec<Statement>`,
with optional span info, representing a series of statements executed in order. The body of an
`EntryPoint`s or `Function` is a `Block`, and `Statement` has a
[`Block`][Statement::Block] variant.
## Arenas
To improve translator performance and reduce memory usage, most structures are
stored in an [`Arena`]. An `Arena<T>` stores a series of `T` values, indexed by
[`Handle<T>`](Handle) values, which are just wrappers around integer indexes.
For example, a `Function`'s expressions are stored in an `Arena<Expression>`,
and compound expressions refer to their sub-expressions via `Handle<Expression>`
values. (When examining the serialized form of a `Module`, note that the first
element of an `Arena` has an index of 1, not 0.)
A [`UniqueArena`] is just like an `Arena`, except that it stores only a single
instance of each value. The value type must implement `Eq` and `Hash`. Like an
`Arena`, inserting a value into a `UniqueArena` returns a `Handle` which can be
used to efficiently access the value, without a hash lookup. Inserting a value
multiple times returns the same `Handle`.
If the `span` feature is enabled, both `Arena` and `UniqueArena` can associate a
source code span with each element.
## Function Calls
Naga's representation of function calls is unusual. Most languages treat
function calls as expressions, but because calls may have side effects, Naga
represents them as a kind of statement, [`Statement::Call`]. If the function
returns a value, a call statement designates a particular [`Expression::CallResult`]
expression to represent its return value, for use by subsequent statements and
expressions.
## `Expression` evaluation time
It is essential to know when an [`Expression`] should be evaluated, because its
value may depend on previous [`Statement`]s' effects. But whereas the order of
execution for a tree of `Statement`s is apparent from its structure, it is not
so clear for `Expressions`, since an expression may be referred to by any number
of `Statement`s and other `Expression`s.
Naga's rules for when `Expression`s are evaluated are as follows:
- [`Literal`], [`Constant`], and [`ZeroValue`] expressions are
considered to be implicitly evaluated before execution begins.
- [`FunctionArgument`] and [`LocalVariable`] expressions are considered
implicitly evaluated upon entry to the function to which they belong.
Function arguments cannot be assigned to, and `LocalVariable` expressions
produce a *pointer to* the variable's value (for use with [`Load`] and
[`Store`]). Neither varies while the function executes, so it suffices to
consider these expressions evaluated once on entry.
- Similarly, [`GlobalVariable`] expressions are considered implicitly
evaluated before execution begins, since their value does not change while
code executes, for one of two reasons:
- Most `GlobalVariable` expressions produce a pointer to the variable's
value, for use with [`Load`] and [`Store`], as `LocalVariable`
expressions do. Although the variable's value may change, its address
does not.
- A `GlobalVariable` expression referring to a global in the
[`AddressSpace::Handle`] address space produces the value directly, not
a pointer. Such global variables hold opaque types like shaders or
images, and cannot be assigned to.
- A [`CallResult`] expression that is the `result` of a [`Statement::Call`],
representing the call's return value, is evaluated when the `Call` statement
is executed.
- Similarly, an [`AtomicResult`] expression that is the `result` of an
[`Atomic`] statement, representing the result of the atomic operation, is
evaluated when the `Atomic` statement is executed.
- A [`RayQueryProceedResult`] expression, which is a boolean
indicating if the ray query is finished, is evaluated when the
[`RayQuery`] statement whose [`Proceed::result`] points to it is
executed.
- All other expressions are evaluated when the (unique) [`Statement::Emit`]
statement that covers them is executed.
Now, strictly speaking, not all `Expression` variants actually care when they're
evaluated. For example, you can evaluate a [`BinaryOperator::Add`] expression
any time you like, as long as you give it the right operands. It's really only a
very small set of expressions that are affected by timing:
- [`Load`], [`ImageSample`], and [`ImageLoad`] expressions are influenced by
stores to the variables or images they access, and must execute at the
proper time relative to them.
- [`Derivative`] expressions are sensitive to control flow uniformity: they
must not be moved out of an area of uniform control flow into a non-uniform
area.
- More generally, any expression that's used by more than one other expression
or statement should probably be evaluated only once, and then stored in a
variable to be cited at each point of use.
Naga tries to help back ends handle all these cases correctly in a somewhat
circuitous way. The [`ModuleInfo`] structure returned by [`Validator::validate`]
provides a reference count for each expression in each function in the module.
Naturally, any expression with a reference count of two or more deserves to be
evaluated and stored in a temporary variable at the point that the `Emit`
statement covering it is executed. But if we selectively lower the reference
count threshold to _one_ for the sensitive expression types listed above, so
that we _always_ generate a temporary variable and save their value, then the
same code that manages multiply referenced expressions will take care of
introducing temporaries for time-sensitive expressions as well. The
`Expression::bake_ref_count` method (private to the back ends) is meant to help
with this.
## `Expression` scope
Each `Expression` has a *scope*, which is the region of the function within
which it can be used by `Statement`s and other `Expression`s. It is a validation
error to use an `Expression` outside its scope.
An expression's scope is defined as follows:
- The scope of a [`Constant`], [`GlobalVariable`], [`FunctionArgument`] or
[`LocalVariable`] expression covers the entire `Function` in which it
occurs.
- The scope of an expression evaluated by an [`Emit`] statement covers the
subsequent expressions in that `Emit`, the subsequent statements in the `Block`
to which that `Emit` belongs (if any) and their sub-statements (if any).
- The `result` expression of a [`Call`] or [`Atomic`] statement has a scope
covering the subsequent statements in the `Block` in which the statement
occurs (if any) and their sub-statements (if any).
For example, this implies that an expression evaluated by some statement in a
nested `Block` is not available in the `Block`'s parents. Such a value would
need to be stored in a local variable to be carried upwards in the statement
tree.
## Constant expressions
A Naga *constant expression* is one of the following [`Expression`]
variants, whose operands (if any) are also constant expressions:
- [`Literal`]
- [`Constant`], for [`Constant`]s
- [`ZeroValue`], for fixed-size types
- [`Compose`]
- [`Access`]
- [`AccessIndex`]
- [`Splat`]
- [`Swizzle`]
- [`Unary`]
- [`Binary`]
- [`Select`]
- [`Relational`]
- [`Math`]
- [`As`]
A constant expression can be evaluated at module translation time.
## Override expressions
A Naga *override expression* is the same as a [constant expression],
except that it is also allowed to reference other [`Override`]s.
An override expression can be evaluated at pipeline creation time.
[`AtomicResult`]: Expression::AtomicResult
[`RayQueryProceedResult`]: Expression::RayQueryProceedResult
[`CallResult`]: Expression::CallResult
[`Constant`]: Expression::Constant
[`ZeroValue`]: Expression::ZeroValue
[`Literal`]: Expression::Literal
[`Derivative`]: Expression::Derivative
[`FunctionArgument`]: Expression::FunctionArgument
[`GlobalVariable`]: Expression::GlobalVariable
[`ImageLoad`]: Expression::ImageLoad
[`ImageSample`]: Expression::ImageSample
[`Load`]: Expression::Load
[`LocalVariable`]: Expression::LocalVariable
[`Atomic`]: Statement::Atomic
[`Call`]: Statement::Call
[`Emit`]: Statement::Emit
[`Store`]: Statement::Store
[`RayQuery`]: Statement::RayQuery
[`Proceed::result`]: RayQueryFunction::Proceed::result
[`Validator::validate`]: valid::Validator::validate
[`ModuleInfo`]: valid::ModuleInfo
[`Literal`]: Expression::Literal
[`ZeroValue`]: Expression::ZeroValue
[`Compose`]: Expression::Compose
[`Access`]: Expression::Access
[`AccessIndex`]: Expression::AccessIndex
[`Splat`]: Expression::Splat
[`Swizzle`]: Expression::Swizzle
[`Unary`]: Expression::Unary
[`Binary`]: Expression::Binary
[`Select`]: Expression::Select
[`Relational`]: Expression::Relational
[`Math`]: Expression::Math
[`As`]: Expression::As
[constant expression]: index.html#constant-expressions
*/
#![allow(
clippy::new_without_default,
clippy::unneeded_field_pattern,
clippy::match_like_matches_macro,
clippy::collapsible_if,
clippy::derive_partial_eq_without_eq,
clippy::needless_borrowed_reference,
clippy::single_match,
clippy::enum_variant_names
)]
#![warn(
trivial_casts,
trivial_numeric_casts,
unused_extern_crates,
unused_qualifications,
clippy::pattern_type_mismatch,
clippy::missing_const_for_fn,
clippy::rest_pat_in_fully_bound_structs,
clippy::match_wildcard_for_single_variants
)]
#![deny(clippy::exit)]
#![cfg_attr(
not(test),
warn(
clippy::dbg_macro,
clippy::panic,
clippy::print_stderr,
clippy::print_stdout,
clippy::todo
)
)]
mod arena;
pub mod back;
mod block;
#[cfg(feature = "compact")]
pub mod compact;
pub mod front;
pub mod keywords;
pub mod proc;
mod span;
pub mod valid;
pub use crate::arena::{Arena, Handle, Range, UniqueArena};
pub use crate::span::{SourceLocation, Span, SpanContext, WithSpan};
#[cfg(feature = "arbitrary")]
use arbitrary::Arbitrary;
#[cfg(feature = "deserialize")]
use serde::Deserialize;
#[cfg(feature = "serialize")]
use serde::Serialize;
/// Width of a boolean type, in bytes.
pub const BOOL_WIDTH: Bytes = 1;
/// Width of abstract types, in bytes.
pub const ABSTRACT_WIDTH: Bytes = 8;
/// Hash map that is faster but not resilient to DoS attacks.
pub type FastHashMap<K, T> = rustc_hash::FxHashMap<K, T>;
/// Hash set that is faster but not resilient to DoS attacks.
pub type FastHashSet<K> = rustc_hash::FxHashSet<K>;
/// Insertion-order-preserving hash set (`IndexSet<K>`), but with the same
/// hasher as `FastHashSet<K>` (faster but not resilient to DoS attacks).
pub type FastIndexSet<K> =
indexmap::IndexSet<K, std::hash::BuildHasherDefault<rustc_hash::FxHasher>>;
/// Insertion-order-preserving hash map (`IndexMap<K, V>`), but with the same
/// hasher as `FastHashMap<K, V>` (faster but not resilient to DoS attacks).
pub type FastIndexMap<K, V> =
indexmap::IndexMap<K, V, std::hash::BuildHasherDefault<rustc_hash::FxHasher>>;
/// Map of expressions that have associated variable names
pub(crate) type NamedExpressions = FastIndexMap<Handle<Expression>, String>;
/// Early fragment tests.
///
/// In a standard situation, if a driver determines that it is possible to switch on early depth test, it will.
///
/// Typical situations when early depth test is switched off:
/// - Calling `discard` in a shader.
/// - Writing to the depth buffer, unless ConservativeDepth is enabled.
///
/// To use in a shader:
/// - GLSL: `layout(early_fragment_tests) in;`
/// - HLSL: `Attribute earlydepthstencil`
/// - SPIR-V: `ExecutionMode EarlyFragmentTests`
/// - WGSL: `@early_depth_test`
///
/// For more, see:
/// - <https://www.khronos.org/opengl/wiki/Early_Fragment_Test#Explicit_specification>
/// - <https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/sm5-attributes-earlydepthstencil>
/// - <https://www.khronos.org/registry/SPIR-V/specs/unified1/SPIRV.html#Execution_Mode>
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct EarlyDepthTest {
pub conservative: Option<ConservativeDepth>,
}
/// Enables adjusting depth without disabling early Z.
///
/// To use in a shader:
/// - GLSL: `layout (depth_<greater/less/unchanged/any>) out float gl_FragDepth;`
/// - `depth_any` option behaves as if the layout qualifier was not present.
/// - HLSL: `SV_DepthGreaterEqual`/`SV_DepthLessEqual`/`SV_Depth`
/// - SPIR-V: `ExecutionMode Depth<Greater/Less/Unchanged>`
/// - WGSL: `@early_depth_test(greater_equal/less_equal/unchanged)`
///
/// For more, see:
/// - <https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_conservative_depth.txt>
/// - <https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-semantics#system-value-semantics>
/// - <https://www.khronos.org/registry/SPIR-V/specs/unified1/SPIRV.html#Execution_Mode>
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum ConservativeDepth {
/// Shader may rewrite depth only with a value greater than calculated.
GreaterEqual,
/// Shader may rewrite depth smaller than one that would have been written without the modification.
LessEqual,
/// Shader may not rewrite depth value.
Unchanged,
}
/// Stage of the programmable pipeline.
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
#[allow(missing_docs)] // The names are self evident
pub enum ShaderStage {
Vertex,
Fragment,
Compute,
}
/// Addressing space of variables.
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum AddressSpace {
/// Function locals.
Function,
/// Private data, per invocation, mutable.
Private,
/// Workgroup shared data, mutable.
WorkGroup,
/// Uniform buffer data.
Uniform,
/// Storage buffer data, potentially mutable.
Storage { access: StorageAccess },
/// Opaque handles, such as samplers and images.
Handle,
/// Push constants.
PushConstant,
}
/// Built-in inputs and outputs.
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum BuiltIn {
Position { invariant: bool },
ViewIndex,
// vertex
BaseInstance,
BaseVertex,
ClipDistance,
CullDistance,
InstanceIndex,
PointSize,
VertexIndex,
// fragment
FragDepth,
PointCoord,
FrontFacing,
PrimitiveIndex,
SampleIndex,
SampleMask,
// compute
GlobalInvocationId,
LocalInvocationId,
LocalInvocationIndex,
WorkGroupId,
WorkGroupSize,
NumWorkGroups,
// subgroup
NumSubgroups,
SubgroupId,
SubgroupSize,
SubgroupInvocationId,
}
/// Number of bytes per scalar.
pub type Bytes = u8;
/// Number of components in a vector.
#[repr(u8)]
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum VectorSize {
/// 2D vector
Bi = 2,
/// 3D vector
Tri = 3,
/// 4D vector
Quad = 4,
}
impl VectorSize {
const MAX: usize = Self::Quad as u8 as usize;
}
/// Primitive type for a scalar.
#[repr(u8)]
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum ScalarKind {
/// Signed integer type.
Sint,
/// Unsigned integer type.
Uint,
/// Floating point type.
Float,
/// Boolean type.
Bool,
/// WGSL abstract integer type.
///
/// These are forbidden by validation, and should never reach backends.
AbstractInt,
/// Abstract floating-point type.
///
/// These are forbidden by validation, and should never reach backends.
AbstractFloat,
}
/// Characteristics of a scalar type.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct Scalar {
/// How the value's bits are to be interpreted.
pub kind: ScalarKind,
/// This size of the value in bytes.
pub width: Bytes,
}
/// Size of an array.
#[repr(u8)]
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum ArraySize {
/// The array size is constant.
Constant(std::num::NonZeroU32),
/// The array size can change at runtime.
Dynamic,
}
/// The interpolation qualifier of a binding or struct field.
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum Interpolation {
/// The value will be interpolated in a perspective-correct fashion.
/// Also known as "smooth" in glsl.
Perspective,
/// Indicates that linear, non-perspective, correct
/// interpolation must be used.
/// Also known as "no_perspective" in glsl.
Linear,
/// Indicates that no interpolation will be performed.
Flat,
}
/// The sampling qualifiers of a binding or struct field.
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum Sampling {
/// Interpolate the value at the center of the pixel.
Center,
/// Interpolate the value at a point that lies within all samples covered by
/// the fragment within the current primitive. In multisampling, use a
/// single value for all samples in the primitive.
Centroid,
/// Interpolate the value at each sample location. In multisampling, invoke
/// the fragment shader once per sample.
Sample,
}
/// Member of a user-defined structure.
// Clone is used only for error reporting and is not intended for end users
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct StructMember {
pub name: Option<String>,
/// Type of the field.
pub ty: Handle<Type>,
/// For I/O structs, defines the binding.
pub binding: Option<Binding>,
/// Offset from the beginning from the struct.
pub offset: u32,
}
/// The number of dimensions an image has.
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum ImageDimension {
/// 1D image
D1,
/// 2D image
D2,
/// 3D image
D3,
/// Cube map
Cube,
}
bitflags::bitflags! {
/// Flags describing an image.
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
#[derive(Clone, Copy, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct StorageAccess: u32 {
/// Storage can be used as a source for load ops.
const LOAD = 0x1;
/// Storage can be used as a target for store ops.
const STORE = 0x2;
}
}
/// Image storage format.
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum StorageFormat {
// 8-bit formats
R8Unorm,
R8Snorm,
R8Uint,
R8Sint,
// 16-bit formats
R16Uint,
R16Sint,
R16Float,
Rg8Unorm,
Rg8Snorm,
Rg8Uint,
Rg8Sint,
// 32-bit formats
R32Uint,
R32Sint,
R32Float,
Rg16Uint,
Rg16Sint,
Rg16Float,
Rgba8Unorm,
Rgba8Snorm,
Rgba8Uint,
Rgba8Sint,
Bgra8Unorm,
// Packed 32-bit formats
Rgb10a2Uint,
Rgb10a2Unorm,
Rg11b10Float,
// 64-bit formats
Rg32Uint,
Rg32Sint,
Rg32Float,
Rgba16Uint,
Rgba16Sint,
Rgba16Float,
// 128-bit formats
Rgba32Uint,
Rgba32Sint,
Rgba32Float,
// Normalized 16-bit per channel formats
R16Unorm,
R16Snorm,
Rg16Unorm,
Rg16Snorm,
Rgba16Unorm,
Rgba16Snorm,
}
/// Sub-class of the image type.
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum ImageClass {
/// Regular sampled image.
Sampled {
/// Kind of values to sample.
kind: ScalarKind,
/// Multi-sampled image.
///
/// A multi-sampled image holds several samples per texel. Multi-sampled
/// images cannot have mipmaps.
multi: bool,
},
/// Depth comparison image.
Depth {
/// Multi-sampled depth image.
multi: bool,
},
/// Storage image.
Storage {
format: StorageFormat,
access: StorageAccess,
},
}
/// A data type declared in the module.
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct Type {
/// The name of the type, if any.
pub name: Option<String>,
/// Inner structure that depends on the kind of the type.
pub inner: TypeInner,
}
/// Enum with additional information, depending on the kind of type.
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum TypeInner {
/// Number of integral or floating-point kind.
Scalar(Scalar),
/// Vector of numbers.
Vector { size: VectorSize, scalar: Scalar },
/// Matrix of numbers.
Matrix {
columns: VectorSize,
rows: VectorSize,
scalar: Scalar,
},
/// Atomic scalar.
Atomic(Scalar),
/// Pointer to another type.
///
/// Pointers to scalars and vectors should be treated as equivalent to
/// [`ValuePointer`] types. Use the [`TypeInner::equivalent`] method to
/// compare types in a way that treats pointers correctly.
///
/// ## Pointers to non-`SIZED` types
///
/// The `base` type of a pointer may be a non-[`SIZED`] type like a
/// dynamically-sized [`Array`], or a [`Struct`] whose last member is a
/// dynamically sized array. Such pointers occur as the types of
/// [`GlobalVariable`] or [`AccessIndex`] expressions referring to
/// dynamically-sized arrays.
///
/// However, among pointers to non-`SIZED` types, only pointers to `Struct`s
/// are [`DATA`]. Pointers to dynamically sized `Array`s cannot be passed as
/// arguments, stored in variables, or held in arrays or structures. Their
/// only use is as the types of `AccessIndex` expressions.
///
/// [`SIZED`]: valid::TypeFlags::SIZED
/// [`DATA`]: valid::TypeFlags::DATA
/// [`Array`]: TypeInner::Array
/// [`Struct`]: TypeInner::Struct
/// [`ValuePointer`]: TypeInner::ValuePointer
/// [`GlobalVariable`]: Expression::GlobalVariable
/// [`AccessIndex`]: Expression::AccessIndex
Pointer {
base: Handle<Type>,
space: AddressSpace,
},
/// Pointer to a scalar or vector.
///
/// A `ValuePointer` type is equivalent to a `Pointer` whose `base` is a
/// `Scalar` or `Vector` type. This is for use in [`TypeResolution::Value`]
/// variants; see the documentation for [`TypeResolution`] for details.
///
/// Use the [`TypeInner::equivalent`] method to compare types that could be
/// pointers, to ensure that `Pointer` and `ValuePointer` types are
/// recognized as equivalent.
///
/// [`TypeResolution`]: proc::TypeResolution
/// [`TypeResolution::Value`]: proc::TypeResolution::Value
ValuePointer {
size: Option<VectorSize>,
scalar: Scalar,
space: AddressSpace,
},
/// Homogeneous list of elements.
///
/// The `base` type must be a [`SIZED`], [`DATA`] type.
///
/// ## Dynamically sized arrays
///
/// An `Array` is [`SIZED`] unless its `size` is [`Dynamic`].
/// Dynamically-sized arrays may only appear in a few situations:
///
/// - They may appear as the type of a [`GlobalVariable`], or as the last
/// member of a [`Struct`].
///
/// - They may appear as the base type of a [`Pointer`]. An
/// [`AccessIndex`] expression referring to a struct's final
/// unsized array member would have such a pointer type. However, such
/// pointer types may only appear as the types of such intermediate
/// expressions. They are not [`DATA`], and cannot be stored in
/// variables, held in arrays or structs, or passed as parameters.
///
/// [`SIZED`]: crate::valid::TypeFlags::SIZED
/// [`DATA`]: crate::valid::TypeFlags::DATA
/// [`Dynamic`]: ArraySize::Dynamic
/// [`Struct`]: TypeInner::Struct
/// [`Pointer`]: TypeInner::Pointer
/// [`AccessIndex`]: Expression::AccessIndex
Array {
base: Handle<Type>,
size: ArraySize,
stride: u32,
},
/// User-defined structure.
///
/// There must always be at least one member.
///
/// A `Struct` type is [`DATA`], and the types of its members must be
/// `DATA` as well.
///
/// Member types must be [`SIZED`], except for the final member of a
/// struct, which may be a dynamically sized [`Array`]. The
/// `Struct` type itself is `SIZED` when all its members are `SIZED`.
///
/// [`DATA`]: crate::valid::TypeFlags::DATA
/// [`SIZED`]: crate::valid::TypeFlags::SIZED
/// [`Array`]: TypeInner::Array
Struct {
members: Vec<StructMember>,
//TODO: should this be unaligned?
span: u32,
},
/// Possibly multidimensional array of texels.
Image {
dim: ImageDimension,
arrayed: bool,
//TODO: consider moving `multisampled: bool` out
class: ImageClass,
},
/// Can be used to sample values from images.
Sampler { comparison: bool },
/// Opaque object representing an acceleration structure of geometry.
AccelerationStructure,
/// Locally used handle for ray queries.
RayQuery,
/// Array of bindings.
///
/// A `BindingArray` represents an array where each element draws its value
/// from a separate bound resource. The array's element type `base` may be
/// [`Image`], [`Sampler`], or any type that would be permitted for a global
/// in the [`Uniform`] or [`Storage`] address spaces. Only global variables
/// may be binding arrays; on the host side, their values are provided by
/// [`TextureViewArray`], [`SamplerArray`], or [`BufferArray`]
/// bindings.
///
/// Since each element comes from a distinct resource, a binding array of
/// images could have images of varying sizes (but not varying dimensions;
/// they must all have the same `Image` type). Or, a binding array of
/// buffers could have elements that are dynamically sized arrays, each with
/// a different length.
///
/// Binding arrays are in the same address spaces as their underlying type.
/// As such, referring to an array of images produces an [`Image`] value
/// directly (as opposed to a pointer). The only operation permitted on
/// `BindingArray` values is indexing, which works transparently: indexing
/// a binding array of samplers yields a [`Sampler`], indexing a pointer to the
/// binding array of storage buffers produces a pointer to the storage struct.
///
/// Unlike textures and samplers, binding arrays are not [`ARGUMENT`], so
/// they cannot be passed as arguments to functions.
///
/// Naga's WGSL front end supports binding arrays with the type syntax
/// `binding_array<T, N>`.
///
/// [`Image`]: TypeInner::Image
/// [`Sampler`]: TypeInner::Sampler
/// [`Uniform`]: AddressSpace::Uniform
/// [`Storage`]: AddressSpace::Storage
/// [`TextureViewArray`]: https://docs.rs/wgpu/latest/wgpu/enum.BindingResource.html#variant.TextureViewArray
/// [`SamplerArray`]: https://docs.rs/wgpu/latest/wgpu/enum.BindingResource.html#variant.SamplerArray
/// [`BufferArray`]: https://docs.rs/wgpu/latest/wgpu/enum.BindingResource.html#variant.BufferArray
/// [`DATA`]: crate::valid::TypeFlags::DATA
/// [`ARGUMENT`]: crate::valid::TypeFlags::ARGUMENT
/// [naga#1864]: https://github.com/gfx-rs/naga/issues/1864
BindingArray { base: Handle<Type>, size: ArraySize },
}
#[derive(Debug, Clone, Copy, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum Literal {
/// May not be NaN or infinity.
F64(f64),
/// May not be NaN or infinity.
F32(f32),
U32(u32),
I32(i32),
U64(u64),
I64(i64),
Bool(bool),
AbstractInt(i64),
AbstractFloat(f64),
}
/// Pipeline-overridable constant.
#[derive(Debug, PartialEq, Clone)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct Override {
pub name: Option<String>,
/// Pipeline Constant ID.
pub id: Option<u16>,
pub ty: Handle<Type>,
/// The default value of the pipeline-overridable constant.
///
/// This [`Handle`] refers to [`Module::global_expressions`], not
/// any [`Function::expressions`] arena.
pub init: Option<Handle<Expression>>,
}
/// Constant value.
#[derive(Debug, PartialEq, Clone)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct Constant {
pub name: Option<String>,
pub ty: Handle<Type>,
/// The value of the constant.
///
/// This [`Handle`] refers to [`Module::global_expressions`], not
/// any [`Function::expressions`] arena.
pub init: Handle<Expression>,
}
/// Describes how an input/output variable is to be bound.
#[derive(Clone, Debug, Eq, PartialEq, Hash)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum Binding {
/// Built-in shader variable.
BuiltIn(BuiltIn),
/// Indexed location.
///
/// Values passed from the [`Vertex`] stage to the [`Fragment`] stage must
/// have their `interpolation` defaulted (i.e. not `None`) by the front end
/// as appropriate for that language.
///
/// For other stages, we permit interpolations even though they're ignored.
/// When a front end is parsing a struct type, it usually doesn't know what
/// stages will be using it for IO, so it's easiest if it can apply the
/// defaults to anything with a `Location` binding, just in case.
///
/// For anything other than floating-point scalars and vectors, the
/// interpolation must be `Flat`.
///
/// [`Vertex`]: crate::ShaderStage::Vertex
/// [`Fragment`]: crate::ShaderStage::Fragment
Location {
location: u32,
/// Indicates the 2nd input to the blender when dual-source blending.
second_blend_source: bool,
interpolation: Option<Interpolation>,
sampling: Option<Sampling>,
},
}
/// Pipeline binding information for global resources.
#[derive(Clone, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct ResourceBinding {
/// The bind group index.
pub group: u32,
/// Binding number within the group.
pub binding: u32,
}
/// Variable defined at module level.
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct GlobalVariable {
/// Name of the variable, if any.
pub name: Option<String>,
/// How this variable is to be stored.
pub space: AddressSpace,
/// For resources, defines the binding point.
pub binding: Option<ResourceBinding>,
/// The type of this variable.
pub ty: Handle<Type>,
/// Initial value for this variable.
///
/// Expression handle lives in global_expressions
pub init: Option<Handle<Expression>>,
}
/// Variable defined at function level.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct LocalVariable {
/// Name of the variable, if any.
pub name: Option<String>,
/// The type of this variable.
pub ty: Handle<Type>,
/// Initial value for this variable.
///
/// This handle refers to this `LocalVariable`'s function's
/// [`expressions`] arena, but it is required to be an evaluated
/// override expression.
///
/// [`expressions`]: Function::expressions
pub init: Option<Handle<Expression>>,
}
/// Operation that can be applied on a single value.
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum UnaryOperator {
Negate,
LogicalNot,
BitwiseNot,
}
/// Operation that can be applied on two values.
///
/// ## Arithmetic type rules
///
/// The arithmetic operations `Add`, `Subtract`, `Multiply`, `Divide`, and
/// `Modulo` can all be applied to [`Scalar`] types other than [`Bool`], or
/// [`Vector`]s thereof. Both operands must have the same type.
///
/// `Add` and `Subtract` can also be applied to [`Matrix`] values. Both operands
/// must have the same type.
///
/// `Multiply` supports additional cases:
///
/// - A [`Matrix`] or [`Vector`] can be multiplied by a scalar [`Float`],
/// either on the left or the right.
///
/// - A [`Matrix`] on the left can be multiplied by a [`Vector`] on the right
/// if the matrix has as many columns as the vector has components (`matCxR
/// * VecC`).
///
/// - A [`Vector`] on the left can be multiplied by a [`Matrix`] on the right
/// if the matrix has as many rows as the vector has components (`VecR *
/// matCxR`).
///
/// - Two matrices can be multiplied if the left operand has as many columns
/// as the right operand has rows (`matNxR * matCxN`).
///
/// In all the above `Multiply` cases, the byte widths of the underlying scalar
/// types of both operands must be the same.
///
/// Note that `Multiply` supports mixed vector and scalar operations directly,
/// whereas the other arithmetic operations require an explicit [`Splat`] for
/// mixed-type use.
///
/// [`Scalar`]: TypeInner::Scalar
/// [`Vector`]: TypeInner::Vector
/// [`Matrix`]: TypeInner::Matrix
/// [`Float`]: ScalarKind::Float
/// [`Bool`]: ScalarKind::Bool
/// [`Splat`]: Expression::Splat
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum BinaryOperator {
Add,
Subtract,
Multiply,
Divide,
/// Equivalent of the WGSL's `%` operator or SPIR-V's `OpFRem`
Modulo,
Equal,
NotEqual,
Less,
LessEqual,
Greater,
GreaterEqual,
And,
ExclusiveOr,
InclusiveOr,
LogicalAnd,
LogicalOr,
ShiftLeft,
/// Right shift carries the sign of signed integers only.
ShiftRight,
}
/// Function on an atomic value.
///
/// Note: these do not include load/store, which use the existing
/// [`Expression::Load`] and [`Statement::Store`].
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum AtomicFunction {
Add,
Subtract,
And,
ExclusiveOr,
InclusiveOr,
Min,
Max,
Exchange { compare: Option<Handle<Expression>> },
}
/// Hint at which precision to compute a derivative.
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum DerivativeControl {
Coarse,
Fine,
None,
}
/// Axis on which to compute a derivative.
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum DerivativeAxis {
X,
Y,
Width,
}
/// Built-in shader function for testing relation between values.
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum RelationalFunction {
All,
Any,
IsNan,
IsInf,
}
/// Built-in shader function for math.
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum MathFunction {
// comparison
Abs,
Min,
Max,
Clamp,
Saturate,
// trigonometry
Cos,
Cosh,
Sin,
Sinh,
Tan,
Tanh,
Acos,
Asin,
Atan,
Atan2,
Asinh,
Acosh,
Atanh,
Radians,
Degrees,
// decomposition
Ceil,
Floor,
Round,
Fract,
Trunc,
Modf,
Frexp,
Ldexp,
// exponent
Exp,
Exp2,
Log,
Log2,
Pow,
// geometry
Dot,
Outer,
Cross,
Distance,
Length,
Normalize,
FaceForward,
Reflect,
Refract,
// computational
Sign,
Fma,
Mix,
Step,
SmoothStep,
Sqrt,
InverseSqrt,
Inverse,
Transpose,
Determinant,
// bits
CountTrailingZeros,
CountLeadingZeros,
CountOneBits,
ReverseBits,
ExtractBits,
InsertBits,
FindLsb,
FindMsb,
// data packing
Pack4x8snorm,
Pack4x8unorm,
Pack2x16snorm,
Pack2x16unorm,
Pack2x16float,
// data unpacking
Unpack4x8snorm,
Unpack4x8unorm,
Unpack2x16snorm,
Unpack2x16unorm,
Unpack2x16float,
}
/// Sampling modifier to control the level of detail.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum SampleLevel {
Auto,
Zero,
Exact(Handle<Expression>),
Bias(Handle<Expression>),
Gradient {
x: Handle<Expression>,
y: Handle<Expression>,
},
}
/// Type of an image query.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum ImageQuery {
/// Get the size at the specified level.
///
/// The return value is a `u32` for 1D images, and a `vecN<u32>`
/// for an image with dimensions N > 2.
Size {
/// If `None`, the base level is considered.
level: Option<Handle<Expression>>,
},
/// Get the number of mipmap levels, a `u32`.
NumLevels,
/// Get the number of array layers, a `u32`.
NumLayers,
/// Get the number of samples, a `u32`.
NumSamples,
}
/// Component selection for a vector swizzle.
#[repr(u8)]
#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum SwizzleComponent {
///
X = 0,
///
Y = 1,
///
Z = 2,
///
W = 3,
}
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum GatherMode {
/// All gather from the active lane with the smallest index
BroadcastFirst,
/// All gather from the same lane at the index given by the expression
Broadcast(Handle<Expression>),
/// Each gathers from a different lane at the index given by the expression
Shuffle(Handle<Expression>),
/// Each gathers from their lane plus the shift given by the expression
ShuffleDown(Handle<Expression>),
/// Each gathers from their lane minus the shift given by the expression
ShuffleUp(Handle<Expression>),
/// Each gathers from their lane xored with the given by the expression
ShuffleXor(Handle<Expression>),
}
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum SubgroupOperation {
All = 0,
Any = 1,
Add = 2,
Mul = 3,
Min = 4,
Max = 5,
And = 6,
Or = 7,
Xor = 8,
}
#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum CollectiveOperation {
Reduce = 0,
InclusiveScan = 1,
ExclusiveScan = 2,
}
bitflags::bitflags! {
/// Memory barrier flags.
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
#[derive(Clone, Copy, Debug, Default, Eq, PartialEq)]
pub struct Barrier: u32 {
/// Barrier affects all `AddressSpace::Storage` accesses.
const STORAGE = 1 << 0;
/// Barrier affects all `AddressSpace::WorkGroup` accesses.
const WORK_GROUP = 1 << 1;
/// Barrier synchronizes execution across all invocations within a subgroup that exectue this instruction.
const SUB_GROUP = 1 << 2;
}
}
/// An expression that can be evaluated to obtain a value.
///
/// This is a Single Static Assignment (SSA) scheme similar to SPIR-V.
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum Expression {
/// Literal.
Literal(Literal),
/// Constant value.
Constant(Handle<Constant>),
/// Pipeline-overridable constant.
Override(Handle<Override>),
/// Zero value of a type.
ZeroValue(Handle<Type>),
/// Composite expression.
Compose {
ty: Handle<Type>,
components: Vec<Handle<Expression>>,
},
/// Array access with a computed index.
///
/// ## Typing rules
///
/// The `base` operand must be some composite type: [`Vector`], [`Matrix`],
/// [`Array`], a [`Pointer`] to one of those, or a [`ValuePointer`] with a
/// `size`.
///
/// The `index` operand must be an integer, signed or unsigned.
///
/// Indexing a [`Vector`] or [`Array`] produces a value of its element type.
/// Indexing a [`Matrix`] produces a [`Vector`].
///
/// Indexing a [`Pointer`] to any of the above produces a pointer to the
/// element/component type, in the same [`space`]. In the case of [`Array`],
/// the result is an actual [`Pointer`], but for vectors and matrices, there
/// may not be any type in the arena representing the component's type, so
/// those produce [`ValuePointer`] types equivalent to the appropriate
/// [`Pointer`].
///
/// ## Dynamic indexing restrictions
///
/// To accommodate restrictions in some of the shader languages that Naga
/// targets, it is not permitted to subscript a matrix or array with a
/// dynamically computed index unless that matrix or array appears behind a
/// pointer. In other words, if the inner type of `base` is [`Array`] or
/// [`Matrix`], then `index` must be a constant. But if the type of `base`
/// is a [`Pointer`] to an array or matrix or a [`ValuePointer`] with a
/// `size`, then the index may be any expression of integer type.
///
/// You can use the [`Expression::is_dynamic_index`] method to determine
/// whether a given index expression requires matrix or array base operands
/// to be behind a pointer.
///
/// (It would be simpler to always require the use of `AccessIndex` when
/// subscripting arrays and matrices that are not behind pointers, but to
/// accommodate existing front ends, Naga also permits `Access`, with a
/// restricted `index`.)
///
/// [`Vector`]: TypeInner::Vector
/// [`Matrix`]: TypeInner::Matrix
/// [`Array`]: TypeInner::Array
/// [`Pointer`]: TypeInner::Pointer
/// [`space`]: TypeInner::Pointer::space
/// [`ValuePointer`]: TypeInner::ValuePointer
/// [`Float`]: ScalarKind::Float
Access {
base: Handle<Expression>,
index: Handle<Expression>,
},
/// Access the same types as [`Access`], plus [`Struct`] with a known index.
///
/// [`Access`]: Expression::Access
/// [`Struct`]: TypeInner::Struct
AccessIndex {
base: Handle<Expression>,
index: u32,
},
/// Splat scalar into a vector.
Splat {
size: VectorSize,
value: Handle<Expression>,
},
/// Vector swizzle.
Swizzle {
size: VectorSize,
vector: Handle<Expression>,
pattern: [SwizzleComponent; 4],
},
/// Reference a function parameter, by its index.
///
/// A `FunctionArgument` expression evaluates to a pointer to the argument's
/// value. You must use a [`Load`] expression to retrieve its value, or a
/// [`Store`] statement to assign it a new value.
///
/// [`Load`]: Expression::Load
/// [`Store`]: Statement::Store
FunctionArgument(u32),
/// Reference a global variable.
///
/// If the given `GlobalVariable`'s [`space`] is [`AddressSpace::Handle`],
/// then the variable stores some opaque type like a sampler or an image,
/// and a `GlobalVariable` expression referring to it produces the
/// variable's value directly.
///
/// For any other address space, a `GlobalVariable` expression produces a
/// pointer to the variable's value. You must use a [`Load`] expression to
/// retrieve its value, or a [`Store`] statement to assign it a new value.
///
/// [`space`]: GlobalVariable::space
/// [`Load`]: Expression::Load
/// [`Store`]: Statement::Store
GlobalVariable(Handle<GlobalVariable>),
/// Reference a local variable.
///
/// A `LocalVariable` expression evaluates to a pointer to the variable's value.
/// You must use a [`Load`](Expression::Load) expression to retrieve its value,
/// or a [`Store`](Statement::Store) statement to assign it a new value.
LocalVariable(Handle<LocalVariable>),
/// Load a value indirectly.
///
/// For [`TypeInner::Atomic`] the result is a corresponding scalar.
/// For other types behind the `pointer<T>`, the result is `T`.
Load { pointer: Handle<Expression> },
/// Sample a point from a sampled or a depth image.
ImageSample {
image: Handle<Expression>,
sampler: Handle<Expression>,
/// If Some(), this operation is a gather operation
/// on the selected component.
gather: Option<SwizzleComponent>,
coordinate: Handle<Expression>,
array_index: Option<Handle<Expression>>,
/// Expression handle lives in global_expressions
offset: Option<Handle<Expression>>,
level: SampleLevel,
depth_ref: Option<Handle<Expression>>,
},
/// Load a texel from an image.
///
/// For most images, this returns a four-element vector of the same
/// [`ScalarKind`] as the image. If the format of the image does not have
/// four components, default values are provided: the first three components
/// (typically R, G, and B) default to zero, and the final component
/// (typically alpha) defaults to one.
///
/// However, if the image's [`class`] is [`Depth`], then this returns a
/// [`Float`] scalar value.
///
/// [`ScalarKind`]: ScalarKind
/// [`class`]: TypeInner::Image::class
/// [`Depth`]: ImageClass::Depth
/// [`Float`]: ScalarKind::Float
ImageLoad {
/// The image to load a texel from. This must have type [`Image`]. (This
/// will necessarily be a [`GlobalVariable`] or [`FunctionArgument`]
/// expression, since no other expressions are allowed to have that
/// type.)
///
/// [`Image`]: TypeInner::Image
/// [`GlobalVariable`]: Expression::GlobalVariable
/// [`FunctionArgument`]: Expression::FunctionArgument
image: Handle<Expression>,
/// The coordinate of the texel we wish to load. This must be a scalar
/// for [`D1`] images, a [`Bi`] vector for [`D2`] images, and a [`Tri`]
/// vector for [`D3`] images. (Array indices, sample indices, and
/// explicit level-of-detail values are supplied separately.) Its
/// component type must be [`Sint`].
///
/// [`D1`]: ImageDimension::D1
/// [`D2`]: ImageDimension::D2
/// [`D3`]: ImageDimension::D3
/// [`Bi`]: VectorSize::Bi
/// [`Tri`]: VectorSize::Tri
/// [`Sint`]: ScalarKind::Sint
coordinate: Handle<Expression>,
/// The index into an arrayed image. If the [`arrayed`] flag in
/// `image`'s type is `true`, then this must be `Some(expr)`, where
/// `expr` is a [`Sint`] scalar. Otherwise, it must be `None`.
///
/// [`arrayed`]: TypeInner::Image::arrayed
/// [`Sint`]: ScalarKind::Sint
array_index: Option<Handle<Expression>>,
/// A sample index, for multisampled [`Sampled`] and [`Depth`] images.
///
/// [`Sampled`]: ImageClass::Sampled
/// [`Depth`]: ImageClass::Depth
sample: Option<Handle<Expression>>,
/// A level of detail, for mipmapped images.
///
/// This must be present when accessing non-multisampled
/// [`Sampled`] and [`Depth`] images, even if only the
/// full-resolution level is present (in which case the only
/// valid level is zero).
///
/// [`Sampled`]: ImageClass::Sampled
/// [`Depth`]: ImageClass::Depth
level: Option<Handle<Expression>>,
},
/// Query information from an image.
ImageQuery {
image: Handle<Expression>,
query: ImageQuery,
},
/// Apply an unary operator.
Unary {
op: UnaryOperator,
expr: Handle<Expression>,
},
/// Apply a binary operator.
Binary {
op: BinaryOperator,
left: Handle<Expression>,
right: Handle<Expression>,
},
/// Select between two values based on a condition.
///
/// Note that, because expressions have no side effects, it is unobservable
/// whether the non-selected branch is evaluated.
Select {
/// Boolean expression
condition: Handle<Expression>,
accept: Handle<Expression>,
reject: Handle<Expression>,
},
/// Compute the derivative on an axis.
Derivative {
axis: DerivativeAxis,
ctrl: DerivativeControl,
expr: Handle<Expression>,
},
/// Call a relational function.
Relational {
fun: RelationalFunction,
argument: Handle<Expression>,
},
/// Call a math function
Math {
fun: MathFunction,
arg: Handle<Expression>,
arg1: Option<Handle<Expression>>,
arg2: Option<Handle<Expression>>,
arg3: Option<Handle<Expression>>,
},
/// Cast a simple type to another kind.
As {
/// Source expression, which can only be a scalar or a vector.
expr: Handle<Expression>,
/// Target scalar kind.
kind: ScalarKind,
/// If provided, converts to the specified byte width.
/// Otherwise, bitcast.
convert: Option<Bytes>,
},
/// Result of calling another function.
CallResult(Handle<Function>),
/// Result of an atomic operation.
AtomicResult { ty: Handle<Type>, comparison: bool },
/// Result of a [`WorkGroupUniformLoad`] statement.
///
/// [`WorkGroupUniformLoad`]: Statement::WorkGroupUniformLoad
WorkGroupUniformLoadResult {
/// The type of the result
ty: Handle<Type>,
},
/// Get the length of an array.
/// The expression must resolve to a pointer to an array with a dynamic size.
///
/// This doesn't match the semantics of spirv's `OpArrayLength`, which must be passed
/// a pointer to a structure containing a runtime array in its' last field.
ArrayLength(Handle<Expression>),
/// Result of a [`Proceed`] [`RayQuery`] statement.
///
/// [`Proceed`]: RayQueryFunction::Proceed
/// [`RayQuery`]: Statement::RayQuery
RayQueryProceedResult,
/// Return an intersection found by `query`.
///
/// If `committed` is true, return the committed result available when
RayQueryGetIntersection {
query: Handle<Expression>,
committed: bool,
},
/// Result of a [`SubgroupBallot`] statement.
///
/// [`SubgroupBallot`]: Statement::SubgroupBallot
SubgroupBallotResult,
/// Result of a [`SubgroupCollectiveOperation`] or [`SubgroupGather`] statement.
///
/// [`SubgroupCollectiveOperation`]: Statement::SubgroupCollectiveOperation
/// [`SubgroupGather`]: Statement::SubgroupGather
SubgroupOperationResult { ty: Handle<Type> },
}
pub use block::Block;
/// The value of the switch case.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum SwitchValue {
I32(i32),
U32(u32),
Default,
}
/// A case for a switch statement.
// Clone is used only for error reporting and is not intended for end users
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct SwitchCase {
/// Value, upon which the case is considered true.
pub value: SwitchValue,
/// Body of the case.
pub body: Block,
/// If true, the control flow continues to the next case in the list,
/// or default.
pub fall_through: bool,
}
/// An operation that a [`RayQuery` statement] applies to its [`query`] operand.
///
/// [`RayQuery` statement]: Statement::RayQuery
/// [`query`]: Statement::RayQuery::query
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum RayQueryFunction {
/// Initialize the `RayQuery` object.
Initialize {
/// The acceleration structure within which this query should search for hits.
///
/// The expression must be an [`AccelerationStructure`].
///
/// [`AccelerationStructure`]: TypeInner::AccelerationStructure
acceleration_structure: Handle<Expression>,
#[allow(rustdoc::private_intra_doc_links)]
/// A struct of detailed parameters for the ray query.
///
/// This expression should have the struct type given in
/// [`SpecialTypes::ray_desc`]. This is available in the WGSL
/// front end as the `RayDesc` type.
descriptor: Handle<Expression>,
},
/// Start or continue the query given by the statement's [`query`] operand.
///
/// After executing this statement, the `result` expression is a
/// [`Bool`] scalar indicating whether there are more intersection
/// candidates to consider.
///
/// [`query`]: Statement::RayQuery::query
/// [`Bool`]: ScalarKind::Bool
Proceed {
result: Handle<Expression>,
},
Terminate,
}
//TODO: consider removing `Clone`. It's not valid to clone `Statement::Emit` anyway.
/// Instructions which make up an executable block.
// Clone is used only for error reporting and is not intended for end users
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum Statement {
/// Emit a range of expressions, visible to all statements that follow in this block.
///
/// See the [module-level documentation][emit] for details.
///
/// [emit]: index.html#expression-evaluation-time
Emit(Range<Expression>),
/// A block containing more statements, to be executed sequentially.
Block(Block),
/// Conditionally executes one of two blocks, based on the value of the condition.
///
/// Naga IR does not have "phi" instructions. If you need to use
/// values computed in an `accept` or `reject` block after the `If`,
/// store them in a [`LocalVariable`].
If {
condition: Handle<Expression>, //bool
accept: Block,
reject: Block,
},
/// Conditionally executes one of multiple blocks, based on the value of the selector.
///
/// Each case must have a distinct [`value`], exactly one of which must be
/// [`Default`]. The `Default` may appear at any position, and covers all
/// values not explicitly appearing in other cases. A `Default` appearing in
/// the midst of the list of cases does not shadow the cases that follow.
///
/// Some backend languages don't support fallthrough (HLSL due to FXC,
/// WGSL), and may translate fallthrough cases in the IR by duplicating
/// code. However, all backend languages do support cases selected by
/// multiple values, like `case 1: case 2: case 3: { ... }`. This is
/// represented in the IR as a series of fallthrough cases with empty
/// bodies, except for the last.
///
/// Naga IR does not have "phi" instructions. If you need to use
/// values computed in a [`SwitchCase::body`] block after the `Switch`,
/// store them in a [`LocalVariable`].
///
/// [`value`]: SwitchCase::value
/// [`body`]: SwitchCase::body
/// [`Default`]: SwitchValue::Default
Switch {
selector: Handle<Expression>,
cases: Vec<SwitchCase>,
},
/// Executes a block repeatedly.
///
/// Each iteration of the loop executes the `body` block, followed by the
/// `continuing` block.
///
/// Executing a [`Break`], [`Return`] or [`Kill`] statement exits the loop.
///
/// A [`Continue`] statement in `body` jumps to the `continuing` block. The
/// `continuing` block is meant to be used to represent structures like the
/// third expression of a C-style `for` loop head, to which `continue`
/// statements in the loop's body jump.
///
/// The `continuing` block and its substatements must not contain `Return`
/// or `Kill` statements, or any `Break` or `Continue` statements targeting
/// this loop. (It may have `Break` and `Continue` statements targeting
/// loops or switches nested within the `continuing` block.) Expressions
/// emitted in `body` are in scope in `continuing`.
///
/// If present, `break_if` is an expression which is evaluated after the
/// continuing block. Expressions emitted in `body` or `continuing` are
/// considered to be in scope. If the expression's value is true, control
/// continues after the `Loop` statement, rather than branching back to the
/// top of body as usual. The `break_if` expression corresponds to a "break
/// if" statement in WGSL, or a loop whose back edge is an
/// `OpBranchConditional` instruction in SPIR-V.
///
/// Naga IR does not have "phi" instructions. If you need to use
/// values computed in a `body` or `continuing` block after the
/// `Loop`, store them in a [`LocalVariable`].
///
/// [`Break`]: Statement::Break
/// [`Continue`]: Statement::Continue
/// [`Kill`]: Statement::Kill
/// [`Return`]: Statement::Return
/// [`break if`]: Self::Loop::break_if
Loop {
body: Block,
continuing: Block,
break_if: Option<Handle<Expression>>,
},
/// Exits the innermost enclosing [`Loop`] or [`Switch`].
///
/// A `Break` statement may only appear within a [`Loop`] or [`Switch`]
/// statement. It may not break out of a [`Loop`] from within the loop's
/// `continuing` block.
///
/// [`Loop`]: Statement::Loop
/// [`Switch`]: Statement::Switch
Break,
/// Skips to the `continuing` block of the innermost enclosing [`Loop`].
///
/// A `Continue` statement may only appear within the `body` block of the
/// innermost enclosing [`Loop`] statement. It must not appear within that
/// loop's `continuing` block.
///
/// [`Loop`]: Statement::Loop
Continue,
/// Returns from the function (possibly with a value).
///
/// `Return` statements are forbidden within the `continuing` block of a
/// [`Loop`] statement.
///
/// [`Loop`]: Statement::Loop
Return { value: Option<Handle<Expression>> },
/// Aborts the current shader execution.
///
/// `Kill` statements are forbidden within the `continuing` block of a
/// [`Loop`] statement.
///
/// [`Loop`]: Statement::Loop
Kill,
/// Synchronize invocations within the work group.
/// The `Barrier` flags control which memory accesses should be synchronized.
/// If empty, this becomes purely an execution barrier.
Barrier(Barrier),
/// Stores a value at an address.
///
/// For [`TypeInner::Atomic`] type behind the pointer, the value
/// has to be a corresponding scalar.
/// For other types behind the `pointer<T>`, the value is `T`.
///
/// This statement is a barrier for any operations on the
/// `Expression::LocalVariable` or `Expression::GlobalVariable`
/// that is the destination of an access chain, started
/// from the `pointer`.
Store {
pointer: Handle<Expression>,
value: Handle<Expression>,
},
/// Stores a texel value to an image.
///
/// The `image`, `coordinate`, and `array_index` fields have the same
/// meanings as the corresponding operands of an [`ImageLoad`] expression;
/// see that documentation for details. Storing into multisampled images or
/// images with mipmaps is not supported, so there are no `level` or
/// `sample` operands.
///
/// This statement is a barrier for any operations on the corresponding
/// [`Expression::GlobalVariable`] for this image.
///
/// [`ImageLoad`]: Expression::ImageLoad
ImageStore {
image: Handle<Expression>,
coordinate: Handle<Expression>,
array_index: Option<Handle<Expression>>,
value: Handle<Expression>,
},
/// Atomic function.
Atomic {
/// Pointer to an atomic value.
pointer: Handle<Expression>,
/// Function to run on the atomic.
fun: AtomicFunction,
/// Value to use in the function.
value: Handle<Expression>,
/// [`AtomicResult`] expression representing this function's result.
///
/// [`AtomicResult`]: crate::Expression::AtomicResult
result: Handle<Expression>,
},
/// Load uniformly from a uniform pointer in the workgroup address space.
///
/// Corresponds to the [`workgroupUniformLoad`](https://www.w3.org/TR/WGSL/#workgroupUniformLoad-builtin)
/// built-in function of wgsl, and has the same barrier semantics
WorkGroupUniformLoad {
/// This must be of type [`Pointer`] in the [`WorkGroup`] address space
///
/// [`Pointer`]: TypeInner::Pointer
/// [`WorkGroup`]: AddressSpace::WorkGroup
pointer: Handle<Expression>,
/// The [`WorkGroupUniformLoadResult`] expression representing this load's result.
///
/// [`WorkGroupUniformLoadResult`]: Expression::WorkGroupUniformLoadResult
result: Handle<Expression>,
},
/// Calls a function.
///
/// If the `result` is `Some`, the corresponding expression has to be
/// `Expression::CallResult`, and this statement serves as a barrier for any
/// operations on that expression.
Call {
function: Handle<Function>,
arguments: Vec<Handle<Expression>>,
result: Option<Handle<Expression>>,
},
RayQuery {
/// The [`RayQuery`] object this statement operates on.
///
/// [`RayQuery`]: TypeInner::RayQuery
query: Handle<Expression>,
/// The specific operation we're performing on `query`.
fun: RayQueryFunction,
},
/// Calculate a bitmask using a boolean from each active thread in the subgroup
SubgroupBallot {
/// The [`SubgroupBallotResult`] expression representing this load's result.
///
/// [`SubgroupBallotResult`]: Expression::SubgroupBallotResult
result: Handle<Expression>,
/// The value from this thread to store in the ballot
predicate: Option<Handle<Expression>>,
},
/// Gather a value from another active thread in the subgroup
SubgroupGather {
/// Specifies which thread to gather from
mode: GatherMode,
/// The value to broadcast over
argument: Handle<Expression>,
/// The [`SubgroupOperationResult`] expression representing this load's result.
///
/// [`SubgroupOperationResult`]: Expression::SubgroupOperationResult
result: Handle<Expression>,
},
/// Compute a collective operation across all active threads in the subgroup
SubgroupCollectiveOperation {
/// What operation to compute
op: SubgroupOperation,
/// How to combine the results
collective_op: CollectiveOperation,
/// The value to compute over
argument: Handle<Expression>,
/// The [`SubgroupOperationResult`] expression representing this load's result.
///
/// [`SubgroupOperationResult`]: Expression::SubgroupOperationResult
result: Handle<Expression>,
},
}
/// A function argument.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct FunctionArgument {
/// Name of the argument, if any.
pub name: Option<String>,
/// Type of the argument.
pub ty: Handle<Type>,
/// For entry points, an argument has to have a binding
/// unless it's a structure.
pub binding: Option<Binding>,
}
/// A function result.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct FunctionResult {
/// Type of the result.
pub ty: Handle<Type>,
/// For entry points, the result has to have a binding
/// unless it's a structure.
pub binding: Option<Binding>,
}
/// A function defined in the module.
#[derive(Debug, Default, Clone)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct Function {
/// Name of the function, if any.
pub name: Option<String>,
/// Information about function argument.
pub arguments: Vec<FunctionArgument>,
/// The result of this function, if any.
pub result: Option<FunctionResult>,
/// Local variables defined and used in the function.
pub local_variables: Arena<LocalVariable>,
/// Expressions used inside this function.
///
/// An `Expression` must occur before all other `Expression`s that use its
/// value.
pub expressions: Arena<Expression>,
/// Map of expressions that have associated variable names
pub named_expressions: NamedExpressions,
/// Block of instructions comprising the body of the function.
pub body: Block,
}
/// The main function for a pipeline stage.
///
/// An [`EntryPoint`] is a [`Function`] that serves as the main function for a
/// graphics or compute pipeline stage. For example, an `EntryPoint` whose
/// [`stage`] is [`ShaderStage::Vertex`] can serve as a graphics pipeline's
/// vertex shader.
///
/// Since an entry point is called directly by the graphics or compute pipeline,
/// not by other WGSL functions, you must specify what the pipeline should pass
/// as the entry point's arguments, and what values it will return. For example,
/// a vertex shader needs a vertex's attributes as its arguments, but if it's
/// used for instanced draw calls, it will also want to know the instance id.
/// The vertex shader's return value will usually include an output vertex
/// position, and possibly other attributes to be interpolated and passed along
/// to a fragment shader.
///
/// To specify this, the arguments and result of an `EntryPoint`'s [`function`]
/// must each have a [`Binding`], or be structs whose members all have
/// `Binding`s. This associates every value passed to or returned from the entry
/// point with either a [`BuiltIn`] or a [`Location`]:
///
/// - A [`BuiltIn`] has special semantics, usually specific to its pipeline
/// stage. For example, the result of a vertex shader can include a
/// [`BuiltIn::Position`] value, which determines the position of a vertex
/// of a rendered primitive. Or, a compute shader might take an argument
/// whose binding is [`BuiltIn::WorkGroupSize`], through which the compute
/// pipeline would pass the number of invocations in your workgroup.
///
/// - A [`Location`] indicates user-defined IO to be passed from one pipeline
/// stage to the next. For example, a vertex shader might also produce a
/// `uv` texture location as a user-defined IO value.
///
/// In other words, the pipeline stage's input and output interface are
/// determined by the bindings of the arguments and result of the `EntryPoint`'s
/// [`function`].
///
/// [`Function`]: crate::Function
/// [`Location`]: Binding::Location
/// [`function`]: EntryPoint::function
/// [`stage`]: EntryPoint::stage
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct EntryPoint {
/// Name of this entry point, visible externally.
///
/// Entry point names for a given `stage` must be distinct within a module.
pub name: String,
/// Shader stage.
pub stage: ShaderStage,
/// Early depth test for fragment stages.
pub early_depth_test: Option<EarlyDepthTest>,
/// Workgroup size for compute stages
pub workgroup_size: [u32; 3],
/// The entrance function.
pub function: Function,
}
/// Return types predeclared for the frexp, modf, and atomicCompareExchangeWeak built-in functions.
///
/// These cannot be spelled in WGSL source.
///
/// Stored in [`SpecialTypes::predeclared_types`] and created by [`Module::generate_predeclared_type`].
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub enum PredeclaredType {
AtomicCompareExchangeWeakResult(Scalar),
ModfResult {
size: Option<VectorSize>,
width: Bytes,
},
FrexpResult {
size: Option<VectorSize>,
width: Bytes,
},
}
/// Set of special types that can be optionally generated by the frontends.
#[derive(Debug, Default, Clone)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct SpecialTypes {
/// Type for `RayDesc`.
///
/// Call [`Module::generate_ray_desc_type`] to populate this if
/// needed and return the handle.
pub ray_desc: Option<Handle<Type>>,
/// Type for `RayIntersection`.
///
/// Call [`Module::generate_ray_intersection_type`] to populate
/// this if needed and return the handle.
pub ray_intersection: Option<Handle<Type>>,
/// Types for predeclared wgsl types instantiated on demand.
///
/// Call [`Module::generate_predeclared_type`] to populate this if
/// needed and return the handle.
pub predeclared_types: FastIndexMap<PredeclaredType, Handle<Type>>,
}
/// Shader module.
///
/// A module is a set of constants, global variables and functions, as well as
/// the types required to define them.
///
/// Some functions are marked as entry points, to be used in a certain shader stage.
///
/// To create a new module, use the `Default` implementation.
/// Alternatively, you can load an existing shader using one of the [available front ends][front].
///
/// When finished, you can export modules using one of the [available backends][back].
#[derive(Debug, Default, Clone)]
#[cfg_attr(feature = "serialize", derive(Serialize))]
#[cfg_attr(feature = "deserialize", derive(Deserialize))]
#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
pub struct Module {
/// Arena for the types defined in this module.
pub types: UniqueArena<Type>,
/// Dictionary of special type handles.
pub special_types: SpecialTypes,
/// Arena for the constants defined in this module.
pub constants: Arena<Constant>,
/// Arena for the pipeline-overridable constants defined in this module.
pub overrides: Arena<Override>,
/// Arena for the global variables defined in this module.
pub global_variables: Arena<GlobalVariable>,
/// [Constant expressions] and [override expressions] used by this module.
///
/// Each `Expression` must occur in the arena before any
/// `Expression` that uses its value.
///
/// [Constant expressions]: index.html#constant-expressions
/// [override expressions]: index.html#override-expressions
pub global_expressions: Arena<Expression>,
/// Arena for the functions defined in this module.
///
/// Each function must appear in this arena strictly before all its callers.
/// Recursion is not supported.
pub functions: Arena<Function>,
/// Entry points.
pub entry_points: Vec<EntryPoint>,
}