naga/proc/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
/*!
[`Module`](super::Module) processing functionality.
*/

mod constant_evaluator;
mod emitter;
pub mod index;
mod layouter;
mod namer;
mod terminator;
mod typifier;

pub use constant_evaluator::{
    ConstantEvaluator, ConstantEvaluatorError, ExpressionKind, ExpressionKindTracker,
};
pub use emitter::Emitter;
pub use index::{BoundsCheckPolicies, BoundsCheckPolicy, IndexableLength, IndexableLengthError};
pub use layouter::{Alignment, LayoutError, LayoutErrorInner, Layouter, TypeLayout};
pub use namer::{EntryPointIndex, NameKey, Namer};
pub use terminator::ensure_block_returns;
pub use typifier::{ResolveContext, ResolveError, TypeResolution};

impl From<super::StorageFormat> for super::ScalarKind {
    fn from(format: super::StorageFormat) -> Self {
        use super::{ScalarKind as Sk, StorageFormat as Sf};
        match format {
            Sf::R8Unorm => Sk::Float,
            Sf::R8Snorm => Sk::Float,
            Sf::R8Uint => Sk::Uint,
            Sf::R8Sint => Sk::Sint,
            Sf::R16Uint => Sk::Uint,
            Sf::R16Sint => Sk::Sint,
            Sf::R16Float => Sk::Float,
            Sf::Rg8Unorm => Sk::Float,
            Sf::Rg8Snorm => Sk::Float,
            Sf::Rg8Uint => Sk::Uint,
            Sf::Rg8Sint => Sk::Sint,
            Sf::R32Uint => Sk::Uint,
            Sf::R32Sint => Sk::Sint,
            Sf::R32Float => Sk::Float,
            Sf::Rg16Uint => Sk::Uint,
            Sf::Rg16Sint => Sk::Sint,
            Sf::Rg16Float => Sk::Float,
            Sf::Rgba8Unorm => Sk::Float,
            Sf::Rgba8Snorm => Sk::Float,
            Sf::Rgba8Uint => Sk::Uint,
            Sf::Rgba8Sint => Sk::Sint,
            Sf::Bgra8Unorm => Sk::Float,
            Sf::Rgb10a2Uint => Sk::Uint,
            Sf::Rgb10a2Unorm => Sk::Float,
            Sf::Rg11b10Float => Sk::Float,
            Sf::Rg32Uint => Sk::Uint,
            Sf::Rg32Sint => Sk::Sint,
            Sf::Rg32Float => Sk::Float,
            Sf::Rgba16Uint => Sk::Uint,
            Sf::Rgba16Sint => Sk::Sint,
            Sf::Rgba16Float => Sk::Float,
            Sf::Rgba32Uint => Sk::Uint,
            Sf::Rgba32Sint => Sk::Sint,
            Sf::Rgba32Float => Sk::Float,
            Sf::R16Unorm => Sk::Float,
            Sf::R16Snorm => Sk::Float,
            Sf::Rg16Unorm => Sk::Float,
            Sf::Rg16Snorm => Sk::Float,
            Sf::Rgba16Unorm => Sk::Float,
            Sf::Rgba16Snorm => Sk::Float,
        }
    }
}

impl super::ScalarKind {
    pub const fn is_numeric(self) -> bool {
        match self {
            crate::ScalarKind::Sint
            | crate::ScalarKind::Uint
            | crate::ScalarKind::Float
            | crate::ScalarKind::AbstractInt
            | crate::ScalarKind::AbstractFloat => true,
            crate::ScalarKind::Bool => false,
        }
    }
}

impl super::Scalar {
    pub const I32: Self = Self {
        kind: crate::ScalarKind::Sint,
        width: 4,
    };
    pub const U32: Self = Self {
        kind: crate::ScalarKind::Uint,
        width: 4,
    };
    pub const F32: Self = Self {
        kind: crate::ScalarKind::Float,
        width: 4,
    };
    pub const F64: Self = Self {
        kind: crate::ScalarKind::Float,
        width: 8,
    };
    pub const I64: Self = Self {
        kind: crate::ScalarKind::Sint,
        width: 8,
    };
    pub const U64: Self = Self {
        kind: crate::ScalarKind::Uint,
        width: 8,
    };
    pub const BOOL: Self = Self {
        kind: crate::ScalarKind::Bool,
        width: crate::BOOL_WIDTH,
    };
    pub const ABSTRACT_INT: Self = Self {
        kind: crate::ScalarKind::AbstractInt,
        width: crate::ABSTRACT_WIDTH,
    };
    pub const ABSTRACT_FLOAT: Self = Self {
        kind: crate::ScalarKind::AbstractFloat,
        width: crate::ABSTRACT_WIDTH,
    };

    pub const fn is_abstract(self) -> bool {
        match self.kind {
            crate::ScalarKind::AbstractInt | crate::ScalarKind::AbstractFloat => true,
            crate::ScalarKind::Sint
            | crate::ScalarKind::Uint
            | crate::ScalarKind::Float
            | crate::ScalarKind::Bool => false,
        }
    }

    /// Construct a float `Scalar` with the given width.
    ///
    /// This is especially common when dealing with
    /// `TypeInner::Matrix`, where the scalar kind is implicit.
    pub const fn float(width: crate::Bytes) -> Self {
        Self {
            kind: crate::ScalarKind::Float,
            width,
        }
    }

    pub const fn to_inner_scalar(self) -> crate::TypeInner {
        crate::TypeInner::Scalar(self)
    }

    pub const fn to_inner_vector(self, size: crate::VectorSize) -> crate::TypeInner {
        crate::TypeInner::Vector { size, scalar: self }
    }

    pub const fn to_inner_atomic(self) -> crate::TypeInner {
        crate::TypeInner::Atomic(self)
    }
}

#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum HashableLiteral {
    F64(u64),
    F32(u32),
    U32(u32),
    I32(i32),
    U64(u64),
    I64(i64),
    Bool(bool),
    AbstractInt(i64),
    AbstractFloat(u64),
}

impl From<crate::Literal> for HashableLiteral {
    fn from(l: crate::Literal) -> Self {
        match l {
            crate::Literal::F64(v) => Self::F64(v.to_bits()),
            crate::Literal::F32(v) => Self::F32(v.to_bits()),
            crate::Literal::U32(v) => Self::U32(v),
            crate::Literal::I32(v) => Self::I32(v),
            crate::Literal::U64(v) => Self::U64(v),
            crate::Literal::I64(v) => Self::I64(v),
            crate::Literal::Bool(v) => Self::Bool(v),
            crate::Literal::AbstractInt(v) => Self::AbstractInt(v),
            crate::Literal::AbstractFloat(v) => Self::AbstractFloat(v.to_bits()),
        }
    }
}

impl crate::Literal {
    pub const fn new(value: u8, scalar: crate::Scalar) -> Option<Self> {
        match (value, scalar.kind, scalar.width) {
            (value, crate::ScalarKind::Float, 8) => Some(Self::F64(value as _)),
            (value, crate::ScalarKind::Float, 4) => Some(Self::F32(value as _)),
            (value, crate::ScalarKind::Uint, 4) => Some(Self::U32(value as _)),
            (value, crate::ScalarKind::Sint, 4) => Some(Self::I32(value as _)),
            (value, crate::ScalarKind::Uint, 8) => Some(Self::U64(value as _)),
            (value, crate::ScalarKind::Sint, 8) => Some(Self::I64(value as _)),
            (1, crate::ScalarKind::Bool, crate::BOOL_WIDTH) => Some(Self::Bool(true)),
            (0, crate::ScalarKind::Bool, crate::BOOL_WIDTH) => Some(Self::Bool(false)),
            _ => None,
        }
    }

    pub const fn zero(scalar: crate::Scalar) -> Option<Self> {
        Self::new(0, scalar)
    }

    pub const fn one(scalar: crate::Scalar) -> Option<Self> {
        Self::new(1, scalar)
    }

    pub const fn width(&self) -> crate::Bytes {
        match *self {
            Self::F64(_) | Self::I64(_) | Self::U64(_) => 8,
            Self::F32(_) | Self::U32(_) | Self::I32(_) => 4,
            Self::Bool(_) => crate::BOOL_WIDTH,
            Self::AbstractInt(_) | Self::AbstractFloat(_) => crate::ABSTRACT_WIDTH,
        }
    }
    pub const fn scalar(&self) -> crate::Scalar {
        match *self {
            Self::F64(_) => crate::Scalar::F64,
            Self::F32(_) => crate::Scalar::F32,
            Self::U32(_) => crate::Scalar::U32,
            Self::I32(_) => crate::Scalar::I32,
            Self::U64(_) => crate::Scalar::U64,
            Self::I64(_) => crate::Scalar::I64,
            Self::Bool(_) => crate::Scalar::BOOL,
            Self::AbstractInt(_) => crate::Scalar::ABSTRACT_INT,
            Self::AbstractFloat(_) => crate::Scalar::ABSTRACT_FLOAT,
        }
    }
    pub const fn scalar_kind(&self) -> crate::ScalarKind {
        self.scalar().kind
    }
    pub const fn ty_inner(&self) -> crate::TypeInner {
        crate::TypeInner::Scalar(self.scalar())
    }
}

pub const POINTER_SPAN: u32 = 4;

impl super::TypeInner {
    /// Return the scalar type of `self`.
    ///
    /// If `inner` is a scalar, vector, or matrix type, return
    /// its scalar type. Otherwise, return `None`.
    pub const fn scalar(&self) -> Option<super::Scalar> {
        use crate::TypeInner as Ti;
        match *self {
            Ti::Scalar(scalar) | Ti::Vector { scalar, .. } => Some(scalar),
            Ti::Matrix { scalar, .. } => Some(scalar),
            _ => None,
        }
    }

    pub fn scalar_kind(&self) -> Option<super::ScalarKind> {
        self.scalar().map(|scalar| scalar.kind)
    }

    /// Returns the scalar width in bytes
    pub fn scalar_width(&self) -> Option<u8> {
        self.scalar().map(|scalar| scalar.width)
    }

    pub const fn pointer_space(&self) -> Option<crate::AddressSpace> {
        match *self {
            Self::Pointer { space, .. } => Some(space),
            Self::ValuePointer { space, .. } => Some(space),
            _ => None,
        }
    }

    pub fn is_atomic_pointer(&self, types: &crate::UniqueArena<crate::Type>) -> bool {
        match *self {
            crate::TypeInner::Pointer { base, .. } => match types[base].inner {
                crate::TypeInner::Atomic { .. } => true,
                _ => false,
            },
            _ => false,
        }
    }

    /// Get the size of this type.
    pub fn size(&self, _gctx: GlobalCtx) -> u32 {
        match *self {
            Self::Scalar(scalar) | Self::Atomic(scalar) => scalar.width as u32,
            Self::Vector { size, scalar } => size as u32 * scalar.width as u32,
            // matrices are treated as arrays of aligned columns
            Self::Matrix {
                columns,
                rows,
                scalar,
            } => Alignment::from(rows) * scalar.width as u32 * columns as u32,
            Self::Pointer { .. } | Self::ValuePointer { .. } => POINTER_SPAN,
            Self::Array {
                base: _,
                size,
                stride,
            } => {
                let count = match size {
                    super::ArraySize::Constant(count) => count.get(),
                    // A dynamically-sized array has to have at least one element
                    super::ArraySize::Dynamic => 1,
                };
                count * stride
            }
            Self::Struct { span, .. } => span,
            Self::Image { .. }
            | Self::Sampler { .. }
            | Self::AccelerationStructure
            | Self::RayQuery
            | Self::BindingArray { .. } => 0,
        }
    }

    /// Return the canonical form of `self`, or `None` if it's already in
    /// canonical form.
    ///
    /// Certain types have multiple representations in `TypeInner`. This
    /// function converts all forms of equivalent types to a single
    /// representative of their class, so that simply applying `Eq` to the
    /// result indicates whether the types are equivalent, as far as Naga IR is
    /// concerned.
    pub fn canonical_form(
        &self,
        types: &crate::UniqueArena<crate::Type>,
    ) -> Option<crate::TypeInner> {
        use crate::TypeInner as Ti;
        match *self {
            Ti::Pointer { base, space } => match types[base].inner {
                Ti::Scalar(scalar) => Some(Ti::ValuePointer {
                    size: None,
                    scalar,
                    space,
                }),
                Ti::Vector { size, scalar } => Some(Ti::ValuePointer {
                    size: Some(size),
                    scalar,
                    space,
                }),
                _ => None,
            },
            _ => None,
        }
    }

    /// Compare `self` and `rhs` as types.
    ///
    /// This is mostly the same as `<TypeInner as Eq>::eq`, but it treats
    /// `ValuePointer` and `Pointer` types as equivalent.
    ///
    /// When you know that one side of the comparison is never a pointer, it's
    /// fine to not bother with canonicalization, and just compare `TypeInner`
    /// values with `==`.
    pub fn equivalent(
        &self,
        rhs: &crate::TypeInner,
        types: &crate::UniqueArena<crate::Type>,
    ) -> bool {
        let left = self.canonical_form(types);
        let right = rhs.canonical_form(types);
        left.as_ref().unwrap_or(self) == right.as_ref().unwrap_or(rhs)
    }

    pub fn is_dynamically_sized(&self, types: &crate::UniqueArena<crate::Type>) -> bool {
        use crate::TypeInner as Ti;
        match *self {
            Ti::Array { size, .. } => size == crate::ArraySize::Dynamic,
            Ti::Struct { ref members, .. } => members
                .last()
                .map(|last| types[last.ty].inner.is_dynamically_sized(types))
                .unwrap_or(false),
            _ => false,
        }
    }

    pub fn components(&self) -> Option<u32> {
        Some(match *self {
            Self::Vector { size, .. } => size as u32,
            Self::Matrix { columns, .. } => columns as u32,
            Self::Array {
                size: crate::ArraySize::Constant(len),
                ..
            } => len.get(),
            Self::Struct { ref members, .. } => members.len() as u32,
            _ => return None,
        })
    }

    pub fn component_type(&self, index: usize) -> Option<TypeResolution> {
        Some(match *self {
            Self::Vector { scalar, .. } => TypeResolution::Value(crate::TypeInner::Scalar(scalar)),
            Self::Matrix { rows, scalar, .. } => {
                TypeResolution::Value(crate::TypeInner::Vector { size: rows, scalar })
            }
            Self::Array {
                base,
                size: crate::ArraySize::Constant(_),
                ..
            } => TypeResolution::Handle(base),
            Self::Struct { ref members, .. } => TypeResolution::Handle(members[index].ty),
            _ => return None,
        })
    }
}

impl super::AddressSpace {
    pub fn access(self) -> crate::StorageAccess {
        use crate::StorageAccess as Sa;
        match self {
            crate::AddressSpace::Function
            | crate::AddressSpace::Private
            | crate::AddressSpace::WorkGroup => Sa::LOAD | Sa::STORE,
            crate::AddressSpace::Uniform => Sa::LOAD,
            crate::AddressSpace::Storage { access } => access,
            crate::AddressSpace::Handle => Sa::LOAD,
            crate::AddressSpace::PushConstant => Sa::LOAD,
        }
    }
}

impl super::MathFunction {
    pub const fn argument_count(&self) -> usize {
        match *self {
            // comparison
            Self::Abs => 1,
            Self::Min => 2,
            Self::Max => 2,
            Self::Clamp => 3,
            Self::Saturate => 1,
            // trigonometry
            Self::Cos => 1,
            Self::Cosh => 1,
            Self::Sin => 1,
            Self::Sinh => 1,
            Self::Tan => 1,
            Self::Tanh => 1,
            Self::Acos => 1,
            Self::Asin => 1,
            Self::Atan => 1,
            Self::Atan2 => 2,
            Self::Asinh => 1,
            Self::Acosh => 1,
            Self::Atanh => 1,
            Self::Radians => 1,
            Self::Degrees => 1,
            // decomposition
            Self::Ceil => 1,
            Self::Floor => 1,
            Self::Round => 1,
            Self::Fract => 1,
            Self::Trunc => 1,
            Self::Modf => 1,
            Self::Frexp => 1,
            Self::Ldexp => 2,
            // exponent
            Self::Exp => 1,
            Self::Exp2 => 1,
            Self::Log => 1,
            Self::Log2 => 1,
            Self::Pow => 2,
            // geometry
            Self::Dot => 2,
            Self::Outer => 2,
            Self::Cross => 2,
            Self::Distance => 2,
            Self::Length => 1,
            Self::Normalize => 1,
            Self::FaceForward => 3,
            Self::Reflect => 2,
            Self::Refract => 3,
            // computational
            Self::Sign => 1,
            Self::Fma => 3,
            Self::Mix => 3,
            Self::Step => 2,
            Self::SmoothStep => 3,
            Self::Sqrt => 1,
            Self::InverseSqrt => 1,
            Self::Inverse => 1,
            Self::Transpose => 1,
            Self::Determinant => 1,
            // bits
            Self::CountTrailingZeros => 1,
            Self::CountLeadingZeros => 1,
            Self::CountOneBits => 1,
            Self::ReverseBits => 1,
            Self::ExtractBits => 3,
            Self::InsertBits => 4,
            Self::FindLsb => 1,
            Self::FindMsb => 1,
            // data packing
            Self::Pack4x8snorm => 1,
            Self::Pack4x8unorm => 1,
            Self::Pack2x16snorm => 1,
            Self::Pack2x16unorm => 1,
            Self::Pack2x16float => 1,
            // data unpacking
            Self::Unpack4x8snorm => 1,
            Self::Unpack4x8unorm => 1,
            Self::Unpack2x16snorm => 1,
            Self::Unpack2x16unorm => 1,
            Self::Unpack2x16float => 1,
        }
    }
}

impl crate::Expression {
    /// Returns true if the expression is considered emitted at the start of a function.
    pub const fn needs_pre_emit(&self) -> bool {
        match *self {
            Self::Literal(_)
            | Self::Constant(_)
            | Self::Override(_)
            | Self::ZeroValue(_)
            | Self::FunctionArgument(_)
            | Self::GlobalVariable(_)
            | Self::LocalVariable(_) => true,
            _ => false,
        }
    }

    /// Return true if this expression is a dynamic array index, for [`Access`].
    ///
    /// This method returns true if this expression is a dynamically computed
    /// index, and as such can only be used to index matrices and arrays when
    /// they appear behind a pointer. See the documentation for [`Access`] for
    /// details.
    ///
    /// Note, this does not check the _type_ of the given expression. It's up to
    /// the caller to establish that the `Access` expression is well-typed
    /// through other means, like [`ResolveContext`].
    ///
    /// [`Access`]: crate::Expression::Access
    /// [`ResolveContext`]: crate::proc::ResolveContext
    pub const fn is_dynamic_index(&self) -> bool {
        match *self {
            Self::Literal(_) | Self::ZeroValue(_) | Self::Constant(_) => false,
            _ => true,
        }
    }
}

impl crate::Function {
    /// Return the global variable being accessed by the expression `pointer`.
    ///
    /// Assuming that `pointer` is a series of `Access` and `AccessIndex`
    /// expressions that ultimately access some part of a `GlobalVariable`,
    /// return a handle for that global.
    ///
    /// If the expression does not ultimately access a global variable, return
    /// `None`.
    pub fn originating_global(
        &self,
        mut pointer: crate::Handle<crate::Expression>,
    ) -> Option<crate::Handle<crate::GlobalVariable>> {
        loop {
            pointer = match self.expressions[pointer] {
                crate::Expression::Access { base, .. } => base,
                crate::Expression::AccessIndex { base, .. } => base,
                crate::Expression::GlobalVariable(handle) => return Some(handle),
                crate::Expression::LocalVariable(_) => return None,
                crate::Expression::FunctionArgument(_) => return None,
                // There are no other expressions that produce pointer values.
                _ => unreachable!(),
            }
        }
    }
}

impl crate::SampleLevel {
    pub const fn implicit_derivatives(&self) -> bool {
        match *self {
            Self::Auto | Self::Bias(_) => true,
            Self::Zero | Self::Exact(_) | Self::Gradient { .. } => false,
        }
    }
}

impl crate::Binding {
    pub const fn to_built_in(&self) -> Option<crate::BuiltIn> {
        match *self {
            crate::Binding::BuiltIn(built_in) => Some(built_in),
            Self::Location { .. } => None,
        }
    }
}

impl super::SwizzleComponent {
    pub const XYZW: [Self; 4] = [Self::X, Self::Y, Self::Z, Self::W];

    pub const fn index(&self) -> u32 {
        match *self {
            Self::X => 0,
            Self::Y => 1,
            Self::Z => 2,
            Self::W => 3,
        }
    }
    pub const fn from_index(idx: u32) -> Self {
        match idx {
            0 => Self::X,
            1 => Self::Y,
            2 => Self::Z,
            _ => Self::W,
        }
    }
}

impl super::ImageClass {
    pub const fn is_multisampled(self) -> bool {
        match self {
            crate::ImageClass::Sampled { multi, .. } | crate::ImageClass::Depth { multi } => multi,
            crate::ImageClass::Storage { .. } => false,
        }
    }

    pub const fn is_mipmapped(self) -> bool {
        match self {
            crate::ImageClass::Sampled { multi, .. } | crate::ImageClass::Depth { multi } => !multi,
            crate::ImageClass::Storage { .. } => false,
        }
    }
}

impl crate::Module {
    pub const fn to_ctx(&self) -> GlobalCtx<'_> {
        GlobalCtx {
            types: &self.types,
            constants: &self.constants,
            overrides: &self.overrides,
            global_expressions: &self.global_expressions,
        }
    }
}

#[derive(Debug)]
pub(super) enum U32EvalError {
    NonConst,
    Negative,
}

#[derive(Clone, Copy)]
pub struct GlobalCtx<'a> {
    pub types: &'a crate::UniqueArena<crate::Type>,
    pub constants: &'a crate::Arena<crate::Constant>,
    pub overrides: &'a crate::Arena<crate::Override>,
    pub global_expressions: &'a crate::Arena<crate::Expression>,
}

impl GlobalCtx<'_> {
    /// Try to evaluate the expression in `self.global_expressions` using its `handle` and return it as a `u32`.
    #[allow(dead_code)]
    pub(super) fn eval_expr_to_u32(
        &self,
        handle: crate::Handle<crate::Expression>,
    ) -> Result<u32, U32EvalError> {
        self.eval_expr_to_u32_from(handle, self.global_expressions)
    }

    /// Try to evaluate the expression in the `arena` using its `handle` and return it as a `u32`.
    pub(super) fn eval_expr_to_u32_from(
        &self,
        handle: crate::Handle<crate::Expression>,
        arena: &crate::Arena<crate::Expression>,
    ) -> Result<u32, U32EvalError> {
        match self.eval_expr_to_literal_from(handle, arena) {
            Some(crate::Literal::U32(value)) => Ok(value),
            Some(crate::Literal::I32(value)) => {
                value.try_into().map_err(|_| U32EvalError::Negative)
            }
            _ => Err(U32EvalError::NonConst),
        }
    }

    #[allow(dead_code)]
    pub(crate) fn eval_expr_to_literal(
        &self,
        handle: crate::Handle<crate::Expression>,
    ) -> Option<crate::Literal> {
        self.eval_expr_to_literal_from(handle, self.global_expressions)
    }

    fn eval_expr_to_literal_from(
        &self,
        handle: crate::Handle<crate::Expression>,
        arena: &crate::Arena<crate::Expression>,
    ) -> Option<crate::Literal> {
        fn get(
            gctx: GlobalCtx,
            handle: crate::Handle<crate::Expression>,
            arena: &crate::Arena<crate::Expression>,
        ) -> Option<crate::Literal> {
            match arena[handle] {
                crate::Expression::Literal(literal) => Some(literal),
                crate::Expression::ZeroValue(ty) => match gctx.types[ty].inner {
                    crate::TypeInner::Scalar(scalar) => crate::Literal::zero(scalar),
                    _ => None,
                },
                _ => None,
            }
        }
        match arena[handle] {
            crate::Expression::Constant(c) => {
                get(*self, self.constants[c].init, self.global_expressions)
            }
            _ => get(*self, handle, arena),
        }
    }
}

/// Return an iterator over the individual components assembled by a
/// `Compose` expression.
///
/// Given `ty` and `components` from an `Expression::Compose`, return an
/// iterator over the components of the resulting value.
///
/// Normally, this would just be an iterator over `components`. However,
/// `Compose` expressions can concatenate vectors, in which case the i'th
/// value being composed is not generally the i'th element of `components`.
/// This function consults `ty` to decide if this concatenation is occurring,
/// and returns an iterator that produces the components of the result of
/// the `Compose` expression in either case.
pub fn flatten_compose<'arenas>(
    ty: crate::Handle<crate::Type>,
    components: &'arenas [crate::Handle<crate::Expression>],
    expressions: &'arenas crate::Arena<crate::Expression>,
    types: &'arenas crate::UniqueArena<crate::Type>,
) -> impl Iterator<Item = crate::Handle<crate::Expression>> + 'arenas {
    // Returning `impl Iterator` is a bit tricky. We may or may not
    // want to flatten the components, but we have to settle on a
    // single concrete type to return. This function returns a single
    // iterator chain that handles both the flattening and
    // non-flattening cases.
    let (size, is_vector) = if let crate::TypeInner::Vector { size, .. } = types[ty].inner {
        (size as usize, true)
    } else {
        (components.len(), false)
    };

    /// Flatten `Compose` expressions if `is_vector` is true.
    fn flatten_compose<'c>(
        component: &'c crate::Handle<crate::Expression>,
        is_vector: bool,
        expressions: &'c crate::Arena<crate::Expression>,
    ) -> &'c [crate::Handle<crate::Expression>] {
        if is_vector {
            if let crate::Expression::Compose {
                ty: _,
                components: ref subcomponents,
            } = expressions[*component]
            {
                return subcomponents;
            }
        }
        std::slice::from_ref(component)
    }

    /// Flatten `Splat` expressions if `is_vector` is true.
    fn flatten_splat<'c>(
        component: &'c crate::Handle<crate::Expression>,
        is_vector: bool,
        expressions: &'c crate::Arena<crate::Expression>,
    ) -> impl Iterator<Item = crate::Handle<crate::Expression>> {
        let mut expr = *component;
        let mut count = 1;
        if is_vector {
            if let crate::Expression::Splat { size, value } = expressions[expr] {
                expr = value;
                count = size as usize;
            }
        }
        std::iter::repeat(expr).take(count)
    }

    // Expressions like `vec4(vec3(vec2(6, 7), 8), 9)` require us to
    // flatten up to two levels of `Compose` expressions.
    //
    // Expressions like `vec4(vec3(1.0), 1.0)` require us to flatten
    // `Splat` expressions. Fortunately, the operand of a `Splat` must
    // be a scalar, so we can stop there.
    components
        .iter()
        .flat_map(move |component| flatten_compose(component, is_vector, expressions))
        .flat_map(move |component| flatten_compose(component, is_vector, expressions))
        .flat_map(move |component| flatten_splat(component, is_vector, expressions))
        .take(size)
}

#[test]
fn test_matrix_size() {
    let module = crate::Module::default();
    assert_eq!(
        crate::TypeInner::Matrix {
            columns: crate::VectorSize::Tri,
            rows: crate::VectorSize::Tri,
            scalar: crate::Scalar::F32,
        }
        .size(module.to_ctx()),
        48,
    );
}