naga/valid/
analyzer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
/*! Module analyzer.

Figures out the following properties:
  - control flow uniformity
  - texture/sampler pairs
  - expression reference counts
!*/

use super::{ExpressionError, FunctionError, ModuleInfo, ShaderStages, ValidationFlags};
use crate::span::{AddSpan as _, WithSpan};
use crate::{
    arena::{Arena, Handle},
    proc::{ResolveContext, TypeResolution},
};
use std::ops;

pub type NonUniformResult = Option<Handle<crate::Expression>>;

// Remove this once we update our uniformity analysis and
// add support for the `derivative_uniformity` diagnostic
const DISABLE_UNIFORMITY_REQ_FOR_FRAGMENT_STAGE: bool = true;

bitflags::bitflags! {
    /// Kinds of expressions that require uniform control flow.
    #[cfg_attr(feature = "serialize", derive(serde::Serialize))]
    #[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
    #[derive(Clone, Copy, Debug, Eq, PartialEq)]
    pub struct UniformityRequirements: u8 {
        const WORK_GROUP_BARRIER = 0x1;
        const DERIVATIVE = if DISABLE_UNIFORMITY_REQ_FOR_FRAGMENT_STAGE { 0 } else { 0x2 };
        const IMPLICIT_LEVEL = if DISABLE_UNIFORMITY_REQ_FOR_FRAGMENT_STAGE { 0 } else { 0x4 };
    }
}

/// Uniform control flow characteristics.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
#[cfg_attr(test, derive(PartialEq))]
pub struct Uniformity {
    /// A child expression with non-uniform result.
    ///
    /// This means, when the relevant invocations are scheduled on a compute unit,
    /// they have to use vector registers to store an individual value
    /// per invocation.
    ///
    /// Whenever the control flow is conditioned on such value,
    /// the hardware needs to keep track of the mask of invocations,
    /// and process all branches of the control flow.
    ///
    /// Any operations that depend on non-uniform results also produce non-uniform.
    pub non_uniform_result: NonUniformResult,
    /// If this expression requires uniform control flow, store the reason here.
    pub requirements: UniformityRequirements,
}

impl Uniformity {
    const fn new() -> Self {
        Uniformity {
            non_uniform_result: None,
            requirements: UniformityRequirements::empty(),
        }
    }
}

bitflags::bitflags! {
    #[derive(Clone, Copy, Debug, PartialEq)]
    struct ExitFlags: u8 {
        /// Control flow may return from the function, which makes all the
        /// subsequent statements within the current function (only!)
        /// to be executed in a non-uniform control flow.
        const MAY_RETURN = 0x1;
        /// Control flow may be killed. Anything after `Statement::Kill` is
        /// considered inside non-uniform context.
        const MAY_KILL = 0x2;
    }
}

/// Uniformity characteristics of a function.
#[cfg_attr(test, derive(Debug, PartialEq))]
struct FunctionUniformity {
    result: Uniformity,
    exit: ExitFlags,
}

impl ops::BitOr for FunctionUniformity {
    type Output = Self;
    fn bitor(self, other: Self) -> Self {
        FunctionUniformity {
            result: Uniformity {
                non_uniform_result: self
                    .result
                    .non_uniform_result
                    .or(other.result.non_uniform_result),
                requirements: self.result.requirements | other.result.requirements,
            },
            exit: self.exit | other.exit,
        }
    }
}

impl FunctionUniformity {
    const fn new() -> Self {
        FunctionUniformity {
            result: Uniformity::new(),
            exit: ExitFlags::empty(),
        }
    }

    /// Returns a disruptor based on the stored exit flags, if any.
    const fn exit_disruptor(&self) -> Option<UniformityDisruptor> {
        if self.exit.contains(ExitFlags::MAY_RETURN) {
            Some(UniformityDisruptor::Return)
        } else if self.exit.contains(ExitFlags::MAY_KILL) {
            Some(UniformityDisruptor::Discard)
        } else {
            None
        }
    }
}

bitflags::bitflags! {
    /// Indicates how a global variable is used.
    #[cfg_attr(feature = "serialize", derive(serde::Serialize))]
    #[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
    #[derive(Clone, Copy, Debug, Eq, PartialEq)]
    pub struct GlobalUse: u8 {
        /// Data will be read from the variable.
        const READ = 0x1;
        /// Data will be written to the variable.
        const WRITE = 0x2;
        /// The information about the data is queried.
        const QUERY = 0x4;
    }
}

#[derive(Clone, Debug, Eq, Hash, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
pub struct SamplingKey {
    pub image: Handle<crate::GlobalVariable>,
    pub sampler: Handle<crate::GlobalVariable>,
}

#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
/// Information about an expression in a function body.
pub struct ExpressionInfo {
    /// Whether this expression is uniform, and why.
    ///
    /// If this expression's value is not uniform, this is the handle
    /// of the expression from which this one's non-uniformity
    /// originates. Otherwise, this is `None`.
    pub uniformity: Uniformity,

    /// The number of statements and other expressions using this
    /// expression's value.
    pub ref_count: usize,

    /// The global variable into which this expression produces a pointer.
    ///
    /// This is `None` unless this expression is either a
    /// [`GlobalVariable`], or an [`Access`] or [`AccessIndex`] that
    /// ultimately refers to some part of a global.
    ///
    /// [`Load`] expressions applied to pointer-typed arguments could
    /// refer to globals, but we leave this as `None` for them.
    ///
    /// [`GlobalVariable`]: crate::Expression::GlobalVariable
    /// [`Access`]: crate::Expression::Access
    /// [`AccessIndex`]: crate::Expression::AccessIndex
    /// [`Load`]: crate::Expression::Load
    assignable_global: Option<Handle<crate::GlobalVariable>>,

    /// The type of this expression.
    pub ty: TypeResolution,
}

impl ExpressionInfo {
    const fn new() -> Self {
        ExpressionInfo {
            uniformity: Uniformity::new(),
            ref_count: 0,
            assignable_global: None,
            // this doesn't matter at this point, will be overwritten
            ty: TypeResolution::Value(crate::TypeInner::Scalar(crate::Scalar {
                kind: crate::ScalarKind::Bool,
                width: 0,
            })),
        }
    }
}

#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
enum GlobalOrArgument {
    Global(Handle<crate::GlobalVariable>),
    Argument(u32),
}

impl GlobalOrArgument {
    fn from_expression(
        expression_arena: &Arena<crate::Expression>,
        expression: Handle<crate::Expression>,
    ) -> Result<GlobalOrArgument, ExpressionError> {
        Ok(match expression_arena[expression] {
            crate::Expression::GlobalVariable(var) => GlobalOrArgument::Global(var),
            crate::Expression::FunctionArgument(i) => GlobalOrArgument::Argument(i),
            crate::Expression::Access { base, .. }
            | crate::Expression::AccessIndex { base, .. } => match expression_arena[base] {
                crate::Expression::GlobalVariable(var) => GlobalOrArgument::Global(var),
                _ => return Err(ExpressionError::ExpectedGlobalOrArgument),
            },
            _ => return Err(ExpressionError::ExpectedGlobalOrArgument),
        })
    }
}

#[derive(Debug, Clone, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
struct Sampling {
    image: GlobalOrArgument,
    sampler: GlobalOrArgument,
}

#[derive(Debug, Clone)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
pub struct FunctionInfo {
    /// Validation flags.
    #[allow(dead_code)]
    flags: ValidationFlags,
    /// Set of shader stages where calling this function is valid.
    pub available_stages: ShaderStages,
    /// Uniformity characteristics.
    pub uniformity: Uniformity,
    /// Function may kill the invocation.
    pub may_kill: bool,

    /// All pairs of (texture, sampler) globals that may be used together in
    /// sampling operations by this function and its callees. This includes
    /// pairings that arise when this function passes textures and samplers as
    /// arguments to its callees.
    ///
    /// This table does not include uses of textures and samplers passed as
    /// arguments to this function itself, since we do not know which globals
    /// those will be. However, this table *is* exhaustive when computed for an
    /// entry point function: entry points never receive textures or samplers as
    /// arguments, so all an entry point's sampling can be reported in terms of
    /// globals.
    ///
    /// The GLSL back end uses this table to construct reflection info that
    /// clients need to construct texture-combined sampler values.
    pub sampling_set: crate::FastHashSet<SamplingKey>,

    /// How this function and its callees use this module's globals.
    ///
    /// This is indexed by `Handle<GlobalVariable>` indices. However,
    /// `FunctionInfo` implements `std::ops::Index<Handle<GlobalVariable>>`,
    /// so you can simply index this struct with a global handle to retrieve
    /// its usage information.
    global_uses: Box<[GlobalUse]>,

    /// Information about each expression in this function's body.
    ///
    /// This is indexed by `Handle<Expression>` indices. However, `FunctionInfo`
    /// implements `std::ops::Index<Handle<Expression>>`, so you can simply
    /// index this struct with an expression handle to retrieve its
    /// `ExpressionInfo`.
    expressions: Box<[ExpressionInfo]>,

    /// All (texture, sampler) pairs that may be used together in sampling
    /// operations by this function and its callees, whether they are accessed
    /// as globals or passed as arguments.
    ///
    /// Participants are represented by [`GlobalVariable`] handles whenever
    /// possible, and otherwise by indices of this function's arguments.
    ///
    /// When analyzing a function call, we combine this data about the callee
    /// with the actual arguments being passed to produce the callers' own
    /// `sampling_set` and `sampling` tables.
    ///
    /// [`GlobalVariable`]: crate::GlobalVariable
    sampling: crate::FastHashSet<Sampling>,

    /// Indicates that the function is using dual source blending.
    pub dual_source_blending: bool,
}

impl FunctionInfo {
    pub const fn global_variable_count(&self) -> usize {
        self.global_uses.len()
    }
    pub const fn expression_count(&self) -> usize {
        self.expressions.len()
    }
    pub fn dominates_global_use(&self, other: &Self) -> bool {
        for (self_global_uses, other_global_uses) in
            self.global_uses.iter().zip(other.global_uses.iter())
        {
            if !self_global_uses.contains(*other_global_uses) {
                return false;
            }
        }
        true
    }
}

impl ops::Index<Handle<crate::GlobalVariable>> for FunctionInfo {
    type Output = GlobalUse;
    fn index(&self, handle: Handle<crate::GlobalVariable>) -> &GlobalUse {
        &self.global_uses[handle.index()]
    }
}

impl ops::Index<Handle<crate::Expression>> for FunctionInfo {
    type Output = ExpressionInfo;
    fn index(&self, handle: Handle<crate::Expression>) -> &ExpressionInfo {
        &self.expressions[handle.index()]
    }
}

/// Disruptor of the uniform control flow.
#[derive(Clone, Copy, Debug, thiserror::Error)]
#[cfg_attr(test, derive(PartialEq))]
pub enum UniformityDisruptor {
    #[error("Expression {0:?} produced non-uniform result, and control flow depends on it")]
    Expression(Handle<crate::Expression>),
    #[error("There is a Return earlier in the control flow of the function")]
    Return,
    #[error("There is a Discard earlier in the entry point across all called functions")]
    Discard,
}

impl FunctionInfo {
    /// Record a use of `expr` of the sort given by `global_use`.
    ///
    /// Bump `expr`'s reference count, and return its uniformity.
    ///
    /// If `expr` is a pointer to a global variable, or some part of
    /// a global variable, add `global_use` to that global's set of
    /// uses.
    #[must_use]
    fn add_ref_impl(
        &mut self,
        expr: Handle<crate::Expression>,
        global_use: GlobalUse,
    ) -> NonUniformResult {
        let info = &mut self.expressions[expr.index()];
        info.ref_count += 1;
        // mark the used global as read
        if let Some(global) = info.assignable_global {
            self.global_uses[global.index()] |= global_use;
        }
        info.uniformity.non_uniform_result
    }

    /// Record a use of `expr` for its value.
    ///
    /// This is used for almost all expression references. Anything
    /// that writes to the value `expr` points to, or otherwise wants
    /// contribute flags other than `GlobalUse::READ`, should use
    /// `add_ref_impl` directly.
    #[must_use]
    fn add_ref(&mut self, expr: Handle<crate::Expression>) -> NonUniformResult {
        self.add_ref_impl(expr, GlobalUse::READ)
    }

    /// Record a use of `expr`, and indicate which global variable it
    /// refers to, if any.
    ///
    /// Bump `expr`'s reference count, and return its uniformity.
    ///
    /// If `expr` is a pointer to a global variable, or some part
    /// thereof, store that global in `*assignable_global`. Leave the
    /// global's uses unchanged.
    ///
    /// This is used to determine the [`assignable_global`] for
    /// [`Access`] and [`AccessIndex`] expressions that ultimately
    /// refer to a global variable. Those expressions don't contribute
    /// any usage to the global themselves; that depends on how other
    /// expressions use them.
    #[must_use]
    fn add_assignable_ref(
        &mut self,
        expr: Handle<crate::Expression>,
        assignable_global: &mut Option<Handle<crate::GlobalVariable>>,
    ) -> NonUniformResult {
        let info = &mut self.expressions[expr.index()];
        info.ref_count += 1;
        // propagate the assignable global up the chain, till it either hits
        // a value-type expression, or the assignment statement.
        if let Some(global) = info.assignable_global {
            if let Some(_old) = assignable_global.replace(global) {
                unreachable!()
            }
        }
        info.uniformity.non_uniform_result
    }

    /// Inherit information from a called function.
    fn process_call(
        &mut self,
        callee: &Self,
        arguments: &[Handle<crate::Expression>],
        expression_arena: &Arena<crate::Expression>,
    ) -> Result<FunctionUniformity, WithSpan<FunctionError>> {
        self.sampling_set
            .extend(callee.sampling_set.iter().cloned());
        for sampling in callee.sampling.iter() {
            // If the callee was passed the texture or sampler as an argument,
            // we may now be able to determine which globals those referred to.
            let image_storage = match sampling.image {
                GlobalOrArgument::Global(var) => GlobalOrArgument::Global(var),
                GlobalOrArgument::Argument(i) => {
                    let handle = arguments[i as usize];
                    GlobalOrArgument::from_expression(expression_arena, handle).map_err(
                        |source| {
                            FunctionError::Expression { handle, source }
                                .with_span_handle(handle, expression_arena)
                        },
                    )?
                }
            };

            let sampler_storage = match sampling.sampler {
                GlobalOrArgument::Global(var) => GlobalOrArgument::Global(var),
                GlobalOrArgument::Argument(i) => {
                    let handle = arguments[i as usize];
                    GlobalOrArgument::from_expression(expression_arena, handle).map_err(
                        |source| {
                            FunctionError::Expression { handle, source }
                                .with_span_handle(handle, expression_arena)
                        },
                    )?
                }
            };

            // If we've managed to pin both the image and sampler down to
            // specific globals, record that in our `sampling_set`. Otherwise,
            // record as much as we do know in our own `sampling` table, for our
            // callers to sort out.
            match (image_storage, sampler_storage) {
                (GlobalOrArgument::Global(image), GlobalOrArgument::Global(sampler)) => {
                    self.sampling_set.insert(SamplingKey { image, sampler });
                }
                (image, sampler) => {
                    self.sampling.insert(Sampling { image, sampler });
                }
            }
        }

        // Inherit global use from our callees.
        for (mine, other) in self.global_uses.iter_mut().zip(callee.global_uses.iter()) {
            *mine |= *other;
        }

        Ok(FunctionUniformity {
            result: callee.uniformity.clone(),
            exit: if callee.may_kill {
                ExitFlags::MAY_KILL
            } else {
                ExitFlags::empty()
            },
        })
    }

    /// Compute the [`ExpressionInfo`] for `handle`.
    ///
    /// Replace the dummy entry in [`self.expressions`] for `handle`
    /// with a real `ExpressionInfo` value describing that expression.
    ///
    /// This function is called as part of a forward sweep through the
    /// arena, so we can assume that all earlier expressions in the
    /// arena already have valid info. Since expressions only depend
    /// on earlier expressions, this includes all our subexpressions.
    ///
    /// Adjust the reference counts on all expressions we use.
    ///
    /// Also populate the [`sampling_set`], [`sampling`] and
    /// [`global_uses`] fields of `self`.
    ///
    /// [`self.expressions`]: FunctionInfo::expressions
    /// [`sampling_set`]: FunctionInfo::sampling_set
    /// [`sampling`]: FunctionInfo::sampling
    /// [`global_uses`]: FunctionInfo::global_uses
    #[allow(clippy::or_fun_call)]
    fn process_expression(
        &mut self,
        handle: Handle<crate::Expression>,
        expression_arena: &Arena<crate::Expression>,
        other_functions: &[FunctionInfo],
        resolve_context: &ResolveContext,
        capabilities: super::Capabilities,
    ) -> Result<(), ExpressionError> {
        use crate::{Expression as E, SampleLevel as Sl};

        let expression = &expression_arena[handle];
        let mut assignable_global = None;
        let uniformity = match *expression {
            E::Access { base, index } => {
                let base_ty = self[base].ty.inner_with(resolve_context.types);

                // build up the caps needed if this is indexed non-uniformly
                let mut needed_caps = super::Capabilities::empty();
                let is_binding_array = match *base_ty {
                    crate::TypeInner::BindingArray {
                        base: array_element_ty_handle,
                        ..
                    } => {
                        // these are nasty aliases, but these idents are too long and break rustfmt
                        let ub_st = super::Capabilities::UNIFORM_BUFFER_AND_STORAGE_TEXTURE_ARRAY_NON_UNIFORM_INDEXING;
                        let st_sb = super::Capabilities::SAMPLED_TEXTURE_AND_STORAGE_BUFFER_ARRAY_NON_UNIFORM_INDEXING;
                        let sampler = super::Capabilities::SAMPLER_NON_UNIFORM_INDEXING;

                        // We're a binding array, so lets use the type of _what_ we are array of to determine if we can non-uniformly index it.
                        let array_element_ty =
                            &resolve_context.types[array_element_ty_handle].inner;

                        needed_caps |= match *array_element_ty {
                            // If we're an image, use the appropriate limit.
                            crate::TypeInner::Image { class, .. } => match class {
                                crate::ImageClass::Storage { .. } => ub_st,
                                _ => st_sb,
                            },
                            crate::TypeInner::Sampler { .. } => sampler,
                            // If we're anything but an image, assume we're a buffer and use the address space.
                            _ => {
                                if let E::GlobalVariable(global_handle) = expression_arena[base] {
                                    let global = &resolve_context.global_vars[global_handle];
                                    match global.space {
                                        crate::AddressSpace::Uniform => ub_st,
                                        crate::AddressSpace::Storage { .. } => st_sb,
                                        _ => unreachable!(),
                                    }
                                } else {
                                    unreachable!()
                                }
                            }
                        };

                        true
                    }
                    _ => false,
                };

                if self[index].uniformity.non_uniform_result.is_some()
                    && !capabilities.contains(needed_caps)
                    && is_binding_array
                {
                    return Err(ExpressionError::MissingCapabilities(needed_caps));
                }

                Uniformity {
                    non_uniform_result: self
                        .add_assignable_ref(base, &mut assignable_global)
                        .or(self.add_ref(index)),
                    requirements: UniformityRequirements::empty(),
                }
            }
            E::AccessIndex { base, .. } => Uniformity {
                non_uniform_result: self.add_assignable_ref(base, &mut assignable_global),
                requirements: UniformityRequirements::empty(),
            },
            // always uniform
            E::Splat { size: _, value } => Uniformity {
                non_uniform_result: self.add_ref(value),
                requirements: UniformityRequirements::empty(),
            },
            E::Swizzle { vector, .. } => Uniformity {
                non_uniform_result: self.add_ref(vector),
                requirements: UniformityRequirements::empty(),
            },
            E::Literal(_) | E::Constant(_) | E::Override(_) | E::ZeroValue(_) => Uniformity::new(),
            E::Compose { ref components, .. } => {
                let non_uniform_result = components
                    .iter()
                    .fold(None, |nur, &comp| nur.or(self.add_ref(comp)));
                Uniformity {
                    non_uniform_result,
                    requirements: UniformityRequirements::empty(),
                }
            }
            // depends on the builtin or interpolation
            E::FunctionArgument(index) => {
                let arg = &resolve_context.arguments[index as usize];
                let uniform = match arg.binding {
                    Some(crate::Binding::BuiltIn(built_in)) => match built_in {
                        // per-polygon built-ins are uniform
                        crate::BuiltIn::FrontFacing
                        // per-work-group built-ins are uniform
                        | crate::BuiltIn::WorkGroupId
                        | crate::BuiltIn::WorkGroupSize
                        | crate::BuiltIn::NumWorkGroups => true,
                        _ => false,
                    },
                    // only flat inputs are uniform
                    Some(crate::Binding::Location {
                        interpolation: Some(crate::Interpolation::Flat),
                        ..
                    }) => true,
                    _ => false,
                };
                Uniformity {
                    non_uniform_result: if uniform { None } else { Some(handle) },
                    requirements: UniformityRequirements::empty(),
                }
            }
            // depends on the address space
            E::GlobalVariable(gh) => {
                use crate::AddressSpace as As;
                assignable_global = Some(gh);
                let var = &resolve_context.global_vars[gh];
                let uniform = match var.space {
                    // local data is non-uniform
                    As::Function | As::Private => false,
                    // workgroup memory is exclusively accessed by the group
                    As::WorkGroup => true,
                    // uniform data
                    As::Uniform | As::PushConstant => true,
                    // storage data is only uniform when read-only
                    As::Storage { access } => !access.contains(crate::StorageAccess::STORE),
                    As::Handle => false,
                };
                Uniformity {
                    non_uniform_result: if uniform { None } else { Some(handle) },
                    requirements: UniformityRequirements::empty(),
                }
            }
            E::LocalVariable(_) => Uniformity {
                non_uniform_result: Some(handle),
                requirements: UniformityRequirements::empty(),
            },
            E::Load { pointer } => Uniformity {
                non_uniform_result: self.add_ref(pointer),
                requirements: UniformityRequirements::empty(),
            },
            E::ImageSample {
                image,
                sampler,
                gather: _,
                coordinate,
                array_index,
                offset: _,
                level,
                depth_ref,
            } => {
                let image_storage = GlobalOrArgument::from_expression(expression_arena, image)?;
                let sampler_storage = GlobalOrArgument::from_expression(expression_arena, sampler)?;

                match (image_storage, sampler_storage) {
                    (GlobalOrArgument::Global(image), GlobalOrArgument::Global(sampler)) => {
                        self.sampling_set.insert(SamplingKey { image, sampler });
                    }
                    _ => {
                        self.sampling.insert(Sampling {
                            image: image_storage,
                            sampler: sampler_storage,
                        });
                    }
                }

                // "nur" == "Non-Uniform Result"
                let array_nur = array_index.and_then(|h| self.add_ref(h));
                let level_nur = match level {
                    Sl::Auto | Sl::Zero => None,
                    Sl::Exact(h) | Sl::Bias(h) => self.add_ref(h),
                    Sl::Gradient { x, y } => self.add_ref(x).or(self.add_ref(y)),
                };
                let dref_nur = depth_ref.and_then(|h| self.add_ref(h));
                Uniformity {
                    non_uniform_result: self
                        .add_ref(image)
                        .or(self.add_ref(sampler))
                        .or(self.add_ref(coordinate))
                        .or(array_nur)
                        .or(level_nur)
                        .or(dref_nur),
                    requirements: if level.implicit_derivatives() {
                        UniformityRequirements::IMPLICIT_LEVEL
                    } else {
                        UniformityRequirements::empty()
                    },
                }
            }
            E::ImageLoad {
                image,
                coordinate,
                array_index,
                sample,
                level,
            } => {
                let array_nur = array_index.and_then(|h| self.add_ref(h));
                let sample_nur = sample.and_then(|h| self.add_ref(h));
                let level_nur = level.and_then(|h| self.add_ref(h));
                Uniformity {
                    non_uniform_result: self
                        .add_ref(image)
                        .or(self.add_ref(coordinate))
                        .or(array_nur)
                        .or(sample_nur)
                        .or(level_nur),
                    requirements: UniformityRequirements::empty(),
                }
            }
            E::ImageQuery { image, query } => {
                let query_nur = match query {
                    crate::ImageQuery::Size { level: Some(h) } => self.add_ref(h),
                    _ => None,
                };
                Uniformity {
                    non_uniform_result: self.add_ref_impl(image, GlobalUse::QUERY).or(query_nur),
                    requirements: UniformityRequirements::empty(),
                }
            }
            E::Unary { expr, .. } => Uniformity {
                non_uniform_result: self.add_ref(expr),
                requirements: UniformityRequirements::empty(),
            },
            E::Binary { left, right, .. } => Uniformity {
                non_uniform_result: self.add_ref(left).or(self.add_ref(right)),
                requirements: UniformityRequirements::empty(),
            },
            E::Select {
                condition,
                accept,
                reject,
            } => Uniformity {
                non_uniform_result: self
                    .add_ref(condition)
                    .or(self.add_ref(accept))
                    .or(self.add_ref(reject)),
                requirements: UniformityRequirements::empty(),
            },
            // explicit derivatives require uniform
            E::Derivative { expr, .. } => Uniformity {
                //Note: taking a derivative of a uniform doesn't make it non-uniform
                non_uniform_result: self.add_ref(expr),
                requirements: UniformityRequirements::DERIVATIVE,
            },
            E::Relational { argument, .. } => Uniformity {
                non_uniform_result: self.add_ref(argument),
                requirements: UniformityRequirements::empty(),
            },
            E::Math {
                fun: _,
                arg,
                arg1,
                arg2,
                arg3,
            } => {
                let arg1_nur = arg1.and_then(|h| self.add_ref(h));
                let arg2_nur = arg2.and_then(|h| self.add_ref(h));
                let arg3_nur = arg3.and_then(|h| self.add_ref(h));
                Uniformity {
                    non_uniform_result: self.add_ref(arg).or(arg1_nur).or(arg2_nur).or(arg3_nur),
                    requirements: UniformityRequirements::empty(),
                }
            }
            E::As { expr, .. } => Uniformity {
                non_uniform_result: self.add_ref(expr),
                requirements: UniformityRequirements::empty(),
            },
            E::CallResult(function) => other_functions[function.index()].uniformity.clone(),
            E::AtomicResult { .. } | E::RayQueryProceedResult => Uniformity {
                non_uniform_result: Some(handle),
                requirements: UniformityRequirements::empty(),
            },
            E::WorkGroupUniformLoadResult { .. } => Uniformity {
                // The result of WorkGroupUniformLoad is always uniform by definition
                non_uniform_result: None,
                // The call is what cares about uniformity, not the expression
                // This expression is never emitted, so this requirement should never be used anyway?
                requirements: UniformityRequirements::empty(),
            },
            E::ArrayLength(expr) => Uniformity {
                non_uniform_result: self.add_ref_impl(expr, GlobalUse::QUERY),
                requirements: UniformityRequirements::empty(),
            },
            E::RayQueryGetIntersection {
                query,
                committed: _,
            } => Uniformity {
                non_uniform_result: self.add_ref(query),
                requirements: UniformityRequirements::empty(),
            },
            E::SubgroupBallotResult => Uniformity {
                non_uniform_result: Some(handle),
                requirements: UniformityRequirements::empty(),
            },
            E::SubgroupOperationResult { .. } => Uniformity {
                non_uniform_result: Some(handle),
                requirements: UniformityRequirements::empty(),
            },
        };

        let ty = resolve_context.resolve(expression, |h| Ok(&self[h].ty))?;
        self.expressions[handle.index()] = ExpressionInfo {
            uniformity,
            ref_count: 0,
            assignable_global,
            ty,
        };
        Ok(())
    }

    /// Analyzes the uniformity requirements of a block (as a sequence of statements).
    /// Returns the uniformity characteristics at the *function* level, i.e.
    /// whether or not the function requires to be called in uniform control flow,
    /// and whether the produced result is not disrupting the control flow.
    ///
    /// The parent control flow is uniform if `disruptor.is_none()`.
    ///
    /// Returns a `NonUniformControlFlow` error if any of the expressions in the block
    /// require uniformity, but the current flow is non-uniform.
    #[allow(clippy::or_fun_call)]
    fn process_block(
        &mut self,
        statements: &crate::Block,
        other_functions: &[FunctionInfo],
        mut disruptor: Option<UniformityDisruptor>,
        expression_arena: &Arena<crate::Expression>,
    ) -> Result<FunctionUniformity, WithSpan<FunctionError>> {
        use crate::Statement as S;

        let mut combined_uniformity = FunctionUniformity::new();
        for statement in statements {
            let uniformity = match *statement {
                S::Emit(ref range) => {
                    let mut requirements = UniformityRequirements::empty();
                    for expr in range.clone() {
                        let req = self.expressions[expr.index()].uniformity.requirements;
                        if self
                            .flags
                            .contains(ValidationFlags::CONTROL_FLOW_UNIFORMITY)
                            && !req.is_empty()
                        {
                            if let Some(cause) = disruptor {
                                return Err(FunctionError::NonUniformControlFlow(req, expr, cause)
                                    .with_span_handle(expr, expression_arena));
                            }
                        }
                        requirements |= req;
                    }
                    FunctionUniformity {
                        result: Uniformity {
                            non_uniform_result: None,
                            requirements,
                        },
                        exit: ExitFlags::empty(),
                    }
                }
                S::Break | S::Continue => FunctionUniformity::new(),
                S::Kill => FunctionUniformity {
                    result: Uniformity::new(),
                    exit: if disruptor.is_some() {
                        ExitFlags::MAY_KILL
                    } else {
                        ExitFlags::empty()
                    },
                },
                S::Barrier(_) => FunctionUniformity {
                    result: Uniformity {
                        non_uniform_result: None,
                        requirements: UniformityRequirements::WORK_GROUP_BARRIER,
                    },
                    exit: ExitFlags::empty(),
                },
                S::WorkGroupUniformLoad { pointer, .. } => {
                    let _condition_nur = self.add_ref(pointer);

                    // Don't check that this call occurs in uniform control flow until Naga implements WGSL's standard
                    // uniformity analysis (https://github.com/gfx-rs/naga/issues/1744).
                    // The uniformity analysis Naga uses now is less accurate than the one in the WGSL standard,
                    // causing Naga to reject correct uses of `workgroupUniformLoad` in some interesting programs.

                    /*
                    if self
                        .flags
                        .contains(super::ValidationFlags::CONTROL_FLOW_UNIFORMITY)
                    {
                        let condition_nur = self.add_ref(pointer);
                        let this_disruptor =
                            disruptor.or(condition_nur.map(UniformityDisruptor::Expression));
                        if let Some(cause) = this_disruptor {
                            return Err(FunctionError::NonUniformWorkgroupUniformLoad(cause)
                                .with_span_static(*span, "WorkGroupUniformLoad"));
                        }
                    } */
                    FunctionUniformity {
                        result: Uniformity {
                            non_uniform_result: None,
                            requirements: UniformityRequirements::WORK_GROUP_BARRIER,
                        },
                        exit: ExitFlags::empty(),
                    }
                }
                S::Block(ref b) => {
                    self.process_block(b, other_functions, disruptor, expression_arena)?
                }
                S::If {
                    condition,
                    ref accept,
                    ref reject,
                } => {
                    let condition_nur = self.add_ref(condition);
                    let branch_disruptor =
                        disruptor.or(condition_nur.map(UniformityDisruptor::Expression));
                    let accept_uniformity = self.process_block(
                        accept,
                        other_functions,
                        branch_disruptor,
                        expression_arena,
                    )?;
                    let reject_uniformity = self.process_block(
                        reject,
                        other_functions,
                        branch_disruptor,
                        expression_arena,
                    )?;
                    accept_uniformity | reject_uniformity
                }
                S::Switch {
                    selector,
                    ref cases,
                } => {
                    let selector_nur = self.add_ref(selector);
                    let branch_disruptor =
                        disruptor.or(selector_nur.map(UniformityDisruptor::Expression));
                    let mut uniformity = FunctionUniformity::new();
                    let mut case_disruptor = branch_disruptor;
                    for case in cases.iter() {
                        let case_uniformity = self.process_block(
                            &case.body,
                            other_functions,
                            case_disruptor,
                            expression_arena,
                        )?;
                        case_disruptor = if case.fall_through {
                            case_disruptor.or(case_uniformity.exit_disruptor())
                        } else {
                            branch_disruptor
                        };
                        uniformity = uniformity | case_uniformity;
                    }
                    uniformity
                }
                S::Loop {
                    ref body,
                    ref continuing,
                    break_if,
                } => {
                    let body_uniformity =
                        self.process_block(body, other_functions, disruptor, expression_arena)?;
                    let continuing_disruptor = disruptor.or(body_uniformity.exit_disruptor());
                    let continuing_uniformity = self.process_block(
                        continuing,
                        other_functions,
                        continuing_disruptor,
                        expression_arena,
                    )?;
                    if let Some(expr) = break_if {
                        let _ = self.add_ref(expr);
                    }
                    body_uniformity | continuing_uniformity
                }
                S::Return { value } => FunctionUniformity {
                    result: Uniformity {
                        non_uniform_result: value.and_then(|expr| self.add_ref(expr)),
                        requirements: UniformityRequirements::empty(),
                    },
                    exit: if disruptor.is_some() {
                        ExitFlags::MAY_RETURN
                    } else {
                        ExitFlags::empty()
                    },
                },
                // Here and below, the used expressions are already emitted,
                // and their results do not affect the function return value,
                // so we can ignore their non-uniformity.
                S::Store { pointer, value } => {
                    let _ = self.add_ref_impl(pointer, GlobalUse::WRITE);
                    let _ = self.add_ref(value);
                    FunctionUniformity::new()
                }
                S::ImageStore {
                    image,
                    coordinate,
                    array_index,
                    value,
                } => {
                    let _ = self.add_ref_impl(image, GlobalUse::WRITE);
                    if let Some(expr) = array_index {
                        let _ = self.add_ref(expr);
                    }
                    let _ = self.add_ref(coordinate);
                    let _ = self.add_ref(value);
                    FunctionUniformity::new()
                }
                S::Call {
                    function,
                    ref arguments,
                    result: _,
                } => {
                    for &argument in arguments {
                        let _ = self.add_ref(argument);
                    }
                    let info = &other_functions[function.index()];
                    //Note: the result is validated by the Validator, not here
                    self.process_call(info, arguments, expression_arena)?
                }
                S::Atomic {
                    pointer,
                    ref fun,
                    value,
                    result: _,
                } => {
                    let _ = self.add_ref_impl(pointer, GlobalUse::WRITE);
                    let _ = self.add_ref(value);
                    if let crate::AtomicFunction::Exchange { compare: Some(cmp) } = *fun {
                        let _ = self.add_ref(cmp);
                    }
                    FunctionUniformity::new()
                }
                S::RayQuery { query, ref fun } => {
                    let _ = self.add_ref(query);
                    if let crate::RayQueryFunction::Initialize {
                        acceleration_structure,
                        descriptor,
                    } = *fun
                    {
                        let _ = self.add_ref(acceleration_structure);
                        let _ = self.add_ref(descriptor);
                    }
                    FunctionUniformity::new()
                }
                S::SubgroupBallot {
                    result: _,
                    predicate,
                } => {
                    if let Some(predicate) = predicate {
                        let _ = self.add_ref(predicate);
                    }
                    FunctionUniformity::new()
                }
                S::SubgroupCollectiveOperation {
                    op: _,
                    collective_op: _,
                    argument,
                    result: _,
                } => {
                    let _ = self.add_ref(argument);
                    FunctionUniformity::new()
                }
                S::SubgroupGather {
                    mode,
                    argument,
                    result: _,
                } => {
                    let _ = self.add_ref(argument);
                    match mode {
                        crate::GatherMode::BroadcastFirst => {}
                        crate::GatherMode::Broadcast(index)
                        | crate::GatherMode::Shuffle(index)
                        | crate::GatherMode::ShuffleDown(index)
                        | crate::GatherMode::ShuffleUp(index)
                        | crate::GatherMode::ShuffleXor(index) => {
                            let _ = self.add_ref(index);
                        }
                    }
                    FunctionUniformity::new()
                }
            };

            disruptor = disruptor.or(uniformity.exit_disruptor());
            combined_uniformity = combined_uniformity | uniformity;
        }
        Ok(combined_uniformity)
    }
}

impl ModuleInfo {
    /// Populates `self.const_expression_types`
    pub(super) fn process_const_expression(
        &mut self,
        handle: Handle<crate::Expression>,
        resolve_context: &ResolveContext,
        gctx: crate::proc::GlobalCtx,
    ) -> Result<(), super::ConstExpressionError> {
        self.const_expression_types[handle.index()] =
            resolve_context.resolve(&gctx.global_expressions[handle], |h| Ok(&self[h]))?;
        Ok(())
    }

    /// Builds the `FunctionInfo` based on the function, and validates the
    /// uniform control flow if required by the expressions of this function.
    pub(super) fn process_function(
        &self,
        fun: &crate::Function,
        module: &crate::Module,
        flags: ValidationFlags,
        capabilities: super::Capabilities,
    ) -> Result<FunctionInfo, WithSpan<FunctionError>> {
        let mut info = FunctionInfo {
            flags,
            available_stages: ShaderStages::all(),
            uniformity: Uniformity::new(),
            may_kill: false,
            sampling_set: crate::FastHashSet::default(),
            global_uses: vec![GlobalUse::empty(); module.global_variables.len()].into_boxed_slice(),
            expressions: vec![ExpressionInfo::new(); fun.expressions.len()].into_boxed_slice(),
            sampling: crate::FastHashSet::default(),
            dual_source_blending: false,
        };
        let resolve_context =
            ResolveContext::with_locals(module, &fun.local_variables, &fun.arguments);

        for (handle, _) in fun.expressions.iter() {
            if let Err(source) = info.process_expression(
                handle,
                &fun.expressions,
                &self.functions,
                &resolve_context,
                capabilities,
            ) {
                return Err(FunctionError::Expression { handle, source }
                    .with_span_handle(handle, &fun.expressions));
            }
        }

        for (_, expr) in fun.local_variables.iter() {
            if let Some(init) = expr.init {
                let _ = info.add_ref(init);
            }
        }

        let uniformity = info.process_block(&fun.body, &self.functions, None, &fun.expressions)?;
        info.uniformity = uniformity.result;
        info.may_kill = uniformity.exit.contains(ExitFlags::MAY_KILL);

        Ok(info)
    }

    pub fn get_entry_point(&self, index: usize) -> &FunctionInfo {
        &self.entry_points[index]
    }
}

#[test]
fn uniform_control_flow() {
    use crate::{Expression as E, Statement as S};

    let mut type_arena = crate::UniqueArena::new();
    let ty = type_arena.insert(
        crate::Type {
            name: None,
            inner: crate::TypeInner::Vector {
                size: crate::VectorSize::Bi,
                scalar: crate::Scalar::F32,
            },
        },
        Default::default(),
    );
    let mut global_var_arena = Arena::new();
    let non_uniform_global = global_var_arena.append(
        crate::GlobalVariable {
            name: None,
            init: None,
            ty,
            space: crate::AddressSpace::Handle,
            binding: None,
        },
        Default::default(),
    );
    let uniform_global = global_var_arena.append(
        crate::GlobalVariable {
            name: None,
            init: None,
            ty,
            binding: None,
            space: crate::AddressSpace::Uniform,
        },
        Default::default(),
    );

    let mut expressions = Arena::new();
    // checks the uniform control flow
    let constant_expr = expressions.append(E::Literal(crate::Literal::U32(0)), Default::default());
    // checks the non-uniform control flow
    let derivative_expr = expressions.append(
        E::Derivative {
            axis: crate::DerivativeAxis::X,
            ctrl: crate::DerivativeControl::None,
            expr: constant_expr,
        },
        Default::default(),
    );
    let emit_range_constant_derivative = expressions.range_from(0);
    let non_uniform_global_expr =
        expressions.append(E::GlobalVariable(non_uniform_global), Default::default());
    let uniform_global_expr =
        expressions.append(E::GlobalVariable(uniform_global), Default::default());
    let emit_range_globals = expressions.range_from(2);

    // checks the QUERY flag
    let query_expr = expressions.append(E::ArrayLength(uniform_global_expr), Default::default());
    // checks the transitive WRITE flag
    let access_expr = expressions.append(
        E::AccessIndex {
            base: non_uniform_global_expr,
            index: 1,
        },
        Default::default(),
    );
    let emit_range_query_access_globals = expressions.range_from(2);

    let mut info = FunctionInfo {
        flags: ValidationFlags::all(),
        available_stages: ShaderStages::all(),
        uniformity: Uniformity::new(),
        may_kill: false,
        sampling_set: crate::FastHashSet::default(),
        global_uses: vec![GlobalUse::empty(); global_var_arena.len()].into_boxed_slice(),
        expressions: vec![ExpressionInfo::new(); expressions.len()].into_boxed_slice(),
        sampling: crate::FastHashSet::default(),
        dual_source_blending: false,
    };
    let resolve_context = ResolveContext {
        constants: &Arena::new(),
        overrides: &Arena::new(),
        types: &type_arena,
        special_types: &crate::SpecialTypes::default(),
        global_vars: &global_var_arena,
        local_vars: &Arena::new(),
        functions: &Arena::new(),
        arguments: &[],
    };
    for (handle, _) in expressions.iter() {
        info.process_expression(
            handle,
            &expressions,
            &[],
            &resolve_context,
            super::Capabilities::empty(),
        )
        .unwrap();
    }
    assert_eq!(info[non_uniform_global_expr].ref_count, 1);
    assert_eq!(info[uniform_global_expr].ref_count, 1);
    assert_eq!(info[query_expr].ref_count, 0);
    assert_eq!(info[access_expr].ref_count, 0);
    assert_eq!(info[non_uniform_global], GlobalUse::empty());
    assert_eq!(info[uniform_global], GlobalUse::QUERY);

    let stmt_emit1 = S::Emit(emit_range_globals.clone());
    let stmt_if_uniform = S::If {
        condition: uniform_global_expr,
        accept: crate::Block::new(),
        reject: vec![
            S::Emit(emit_range_constant_derivative.clone()),
            S::Store {
                pointer: constant_expr,
                value: derivative_expr,
            },
        ]
        .into(),
    };
    assert_eq!(
        info.process_block(
            &vec![stmt_emit1, stmt_if_uniform].into(),
            &[],
            None,
            &expressions
        ),
        Ok(FunctionUniformity {
            result: Uniformity {
                non_uniform_result: None,
                requirements: UniformityRequirements::DERIVATIVE,
            },
            exit: ExitFlags::empty(),
        }),
    );
    assert_eq!(info[constant_expr].ref_count, 2);
    assert_eq!(info[uniform_global], GlobalUse::READ | GlobalUse::QUERY);

    let stmt_emit2 = S::Emit(emit_range_globals.clone());
    let stmt_if_non_uniform = S::If {
        condition: non_uniform_global_expr,
        accept: vec![
            S::Emit(emit_range_constant_derivative),
            S::Store {
                pointer: constant_expr,
                value: derivative_expr,
            },
        ]
        .into(),
        reject: crate::Block::new(),
    };
    {
        let block_info = info.process_block(
            &vec![stmt_emit2, stmt_if_non_uniform].into(),
            &[],
            None,
            &expressions,
        );
        if DISABLE_UNIFORMITY_REQ_FOR_FRAGMENT_STAGE {
            assert_eq!(info[derivative_expr].ref_count, 2);
        } else {
            assert_eq!(
                block_info,
                Err(FunctionError::NonUniformControlFlow(
                    UniformityRequirements::DERIVATIVE,
                    derivative_expr,
                    UniformityDisruptor::Expression(non_uniform_global_expr)
                )
                .with_span()),
            );
            assert_eq!(info[derivative_expr].ref_count, 1);
        }
    }
    assert_eq!(info[non_uniform_global], GlobalUse::READ);

    let stmt_emit3 = S::Emit(emit_range_globals);
    let stmt_return_non_uniform = S::Return {
        value: Some(non_uniform_global_expr),
    };
    assert_eq!(
        info.process_block(
            &vec![stmt_emit3, stmt_return_non_uniform].into(),
            &[],
            Some(UniformityDisruptor::Return),
            &expressions
        ),
        Ok(FunctionUniformity {
            result: Uniformity {
                non_uniform_result: Some(non_uniform_global_expr),
                requirements: UniformityRequirements::empty(),
            },
            exit: ExitFlags::MAY_RETURN,
        }),
    );
    assert_eq!(info[non_uniform_global_expr].ref_count, 3);

    // Check that uniformity requirements reach through a pointer
    let stmt_emit4 = S::Emit(emit_range_query_access_globals);
    let stmt_assign = S::Store {
        pointer: access_expr,
        value: query_expr,
    };
    let stmt_return_pointer = S::Return {
        value: Some(access_expr),
    };
    let stmt_kill = S::Kill;
    assert_eq!(
        info.process_block(
            &vec![stmt_emit4, stmt_assign, stmt_kill, stmt_return_pointer].into(),
            &[],
            Some(UniformityDisruptor::Discard),
            &expressions
        ),
        Ok(FunctionUniformity {
            result: Uniformity {
                non_uniform_result: Some(non_uniform_global_expr),
                requirements: UniformityRequirements::empty(),
            },
            exit: ExitFlags::all(),
        }),
    );
    assert_eq!(info[non_uniform_global], GlobalUse::READ | GlobalUse::WRITE);
}