naga/valid/type.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
use super::Capabilities;
use crate::{arena::Handle, proc::Alignment};
bitflags::bitflags! {
/// Flags associated with [`Type`]s by [`Validator`].
///
/// [`Type`]: crate::Type
/// [`Validator`]: crate::valid::Validator
#[cfg_attr(feature = "serialize", derive(serde::Serialize))]
#[cfg_attr(feature = "deserialize", derive(serde::Deserialize))]
#[repr(transparent)]
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct TypeFlags: u8 {
/// Can be used for data variables.
///
/// This flag is required on types of local variables, function
/// arguments, array elements, and struct members.
///
/// This includes all types except [`Image`], [`Sampler`],
/// and some [`Pointer`] types.
///
/// [`Image`]: crate::TypeInner::Image
/// [`Sampler`]: crate::TypeInner::Sampler
/// [`Pointer`]: crate::TypeInner::Pointer
const DATA = 0x1;
/// The data type has a size known by pipeline creation time.
///
/// Unsized types are quite restricted. The only unsized types permitted
/// by Naga, other than the non-[`DATA`] types like [`Image`] and
/// [`Sampler`], are dynamically-sized [`Array`]s, and [`Struct`]s whose
/// last members are such arrays. See the documentation for those types
/// for details.
///
/// [`DATA`]: TypeFlags::DATA
/// [`Image`]: crate::TypeInner::Image
/// [`Sampler`]: crate::TypeInner::Sampler
/// [`Array`]: crate::TypeInner::Array
/// [`Struct`]: crate::TypeInner::Struct
const SIZED = 0x2;
/// The data can be copied around.
const COPY = 0x4;
/// Can be be used for user-defined IO between pipeline stages.
///
/// This covers anything that can be in [`Location`] binding:
/// non-bool scalars and vectors, matrices, and structs and
/// arrays containing only interface types.
///
/// [`Location`]: crate::Binding::Location
const IO_SHAREABLE = 0x8;
/// Can be used for host-shareable structures.
const HOST_SHAREABLE = 0x10;
/// This type can be passed as a function argument.
const ARGUMENT = 0x40;
/// A WGSL [constructible] type.
///
/// The constructible types are scalars, vectors, matrices, fixed-size
/// arrays of constructible types, and structs whose members are all
/// constructible.
///
/// [constructible]: https://gpuweb.github.io/gpuweb/wgsl/#constructible
const CONSTRUCTIBLE = 0x80;
}
}
#[derive(Clone, Copy, Debug, thiserror::Error)]
#[cfg_attr(test, derive(PartialEq))]
pub enum Disalignment {
#[error("The array stride {stride} is not a multiple of the required alignment {alignment}")]
ArrayStride { stride: u32, alignment: Alignment },
#[error("The struct span {span}, is not a multiple of the required alignment {alignment}")]
StructSpan { span: u32, alignment: Alignment },
#[error("The struct member[{index}] offset {offset} is not a multiple of the required alignment {alignment}")]
MemberOffset {
index: u32,
offset: u32,
alignment: Alignment,
},
#[error("The struct member[{index}] offset {offset} must be at least {expected}")]
MemberOffsetAfterStruct {
index: u32,
offset: u32,
expected: u32,
},
#[error("The struct member[{index}] is not statically sized")]
UnsizedMember { index: u32 },
#[error("The type is not host-shareable")]
NonHostShareable,
}
#[derive(Clone, Debug, thiserror::Error)]
#[cfg_attr(test, derive(PartialEq))]
pub enum TypeError {
#[error("Capability {0:?} is required")]
MissingCapability(Capabilities),
#[error("The {0:?} scalar width {1} is not supported for an atomic")]
InvalidAtomicWidth(crate::ScalarKind, crate::Bytes),
#[error("Invalid type for pointer target {0:?}")]
InvalidPointerBase(Handle<crate::Type>),
#[error("Unsized types like {base:?} must be in the `Storage` address space, not `{space:?}`")]
InvalidPointerToUnsized {
base: Handle<crate::Type>,
space: crate::AddressSpace,
},
#[error("Expected data type, found {0:?}")]
InvalidData(Handle<crate::Type>),
#[error("Base type {0:?} for the array is invalid")]
InvalidArrayBaseType(Handle<crate::Type>),
#[error("Matrix elements must always be floating-point types")]
MatrixElementNotFloat,
#[error("The constant {0:?} is specialized, and cannot be used as an array size")]
UnsupportedSpecializedArrayLength(Handle<crate::Constant>),
#[error("{} of dimensionality {dim:?} and class {class:?} are not supported", if *.arrayed {"Arrayed images"} else {"Images"})]
UnsupportedImageType {
dim: crate::ImageDimension,
arrayed: bool,
class: crate::ImageClass,
},
#[error("Array stride {stride} does not match the expected {expected}")]
InvalidArrayStride { stride: u32, expected: u32 },
#[error("Field '{0}' can't be dynamically-sized, has type {1:?}")]
InvalidDynamicArray(String, Handle<crate::Type>),
#[error("The base handle {0:?} has to be a struct")]
BindingArrayBaseTypeNotStruct(Handle<crate::Type>),
#[error("Structure member[{index}] at {offset} overlaps the previous member")]
MemberOverlap { index: u32, offset: u32 },
#[error(
"Structure member[{index}] at {offset} and size {size} crosses the structure boundary of size {span}"
)]
MemberOutOfBounds {
index: u32,
offset: u32,
size: u32,
span: u32,
},
#[error("Structure types must have at least one member")]
EmptyStruct,
#[error(transparent)]
WidthError(#[from] WidthError),
}
#[derive(Clone, Debug, thiserror::Error)]
#[cfg_attr(test, derive(PartialEq))]
pub enum WidthError {
#[error("The {0:?} scalar width {1} is not supported")]
Invalid(crate::ScalarKind, crate::Bytes),
#[error("Using `{name}` values requires the `naga::valid::Capabilities::{flag}` flag")]
MissingCapability {
name: &'static str,
flag: &'static str,
},
#[error("Abstract types may only appear in constant expressions")]
Abstract,
}
// Only makes sense if `flags.contains(HOST_SHAREABLE)`
type LayoutCompatibility = Result<Alignment, (Handle<crate::Type>, Disalignment)>;
fn check_member_layout(
accum: &mut LayoutCompatibility,
member: &crate::StructMember,
member_index: u32,
member_layout: LayoutCompatibility,
parent_handle: Handle<crate::Type>,
) {
*accum = match (*accum, member_layout) {
(Ok(cur_alignment), Ok(alignment)) => {
if alignment.is_aligned(member.offset) {
Ok(cur_alignment.max(alignment))
} else {
Err((
parent_handle,
Disalignment::MemberOffset {
index: member_index,
offset: member.offset,
alignment,
},
))
}
}
(Err(e), _) | (_, Err(e)) => Err(e),
};
}
/// Determine whether a pointer in `space` can be passed as an argument.
///
/// If a pointer in `space` is permitted to be passed as an argument to a
/// user-defined function, return `TypeFlags::ARGUMENT`. Otherwise, return
/// `TypeFlags::empty()`.
///
/// Pointers passed as arguments to user-defined functions must be in the
/// `Function` or `Private` address space.
const fn ptr_space_argument_flag(space: crate::AddressSpace) -> TypeFlags {
use crate::AddressSpace as As;
match space {
As::Function | As::Private => TypeFlags::ARGUMENT,
As::Uniform | As::Storage { .. } | As::Handle | As::PushConstant | As::WorkGroup => {
TypeFlags::empty()
}
}
}
#[derive(Clone, Debug)]
pub(super) struct TypeInfo {
pub flags: TypeFlags,
pub uniform_layout: LayoutCompatibility,
pub storage_layout: LayoutCompatibility,
}
impl TypeInfo {
const fn dummy() -> Self {
TypeInfo {
flags: TypeFlags::empty(),
uniform_layout: Ok(Alignment::ONE),
storage_layout: Ok(Alignment::ONE),
}
}
const fn new(flags: TypeFlags, alignment: Alignment) -> Self {
TypeInfo {
flags,
uniform_layout: Ok(alignment),
storage_layout: Ok(alignment),
}
}
}
impl super::Validator {
const fn require_type_capability(&self, capability: Capabilities) -> Result<(), TypeError> {
if self.capabilities.contains(capability) {
Ok(())
} else {
Err(TypeError::MissingCapability(capability))
}
}
pub(super) const fn check_width(&self, scalar: crate::Scalar) -> Result<(), WidthError> {
let good = match scalar.kind {
crate::ScalarKind::Bool => scalar.width == crate::BOOL_WIDTH,
crate::ScalarKind::Float => {
if scalar.width == 8 {
if !self.capabilities.contains(Capabilities::FLOAT64) {
return Err(WidthError::MissingCapability {
name: "f64",
flag: "FLOAT64",
});
}
true
} else {
scalar.width == 4
}
}
crate::ScalarKind::Sint => {
if scalar.width == 8 {
if !self.capabilities.contains(Capabilities::SHADER_INT64) {
return Err(WidthError::MissingCapability {
name: "i64",
flag: "SHADER_INT64",
});
}
true
} else {
scalar.width == 4
}
}
crate::ScalarKind::Uint => {
if scalar.width == 8 {
if !self.capabilities.contains(Capabilities::SHADER_INT64) {
return Err(WidthError::MissingCapability {
name: "u64",
flag: "SHADER_INT64",
});
}
true
} else {
scalar.width == 4
}
}
crate::ScalarKind::AbstractInt | crate::ScalarKind::AbstractFloat => {
return Err(WidthError::Abstract);
}
};
if good {
Ok(())
} else {
Err(WidthError::Invalid(scalar.kind, scalar.width))
}
}
pub(super) fn reset_types(&mut self, size: usize) {
self.types.clear();
self.types.resize(size, TypeInfo::dummy());
self.layouter.clear();
}
pub(super) fn validate_type(
&self,
handle: Handle<crate::Type>,
gctx: crate::proc::GlobalCtx,
) -> Result<TypeInfo, TypeError> {
use crate::TypeInner as Ti;
Ok(match gctx.types[handle].inner {
Ti::Scalar(scalar) => {
self.check_width(scalar)?;
let shareable = if scalar.kind.is_numeric() {
TypeFlags::IO_SHAREABLE | TypeFlags::HOST_SHAREABLE
} else {
TypeFlags::empty()
};
TypeInfo::new(
TypeFlags::DATA
| TypeFlags::SIZED
| TypeFlags::COPY
| TypeFlags::ARGUMENT
| TypeFlags::CONSTRUCTIBLE
| shareable,
Alignment::from_width(scalar.width),
)
}
Ti::Vector { size, scalar } => {
self.check_width(scalar)?;
let shareable = if scalar.kind.is_numeric() {
TypeFlags::IO_SHAREABLE | TypeFlags::HOST_SHAREABLE
} else {
TypeFlags::empty()
};
TypeInfo::new(
TypeFlags::DATA
| TypeFlags::SIZED
| TypeFlags::COPY
| TypeFlags::ARGUMENT
| TypeFlags::CONSTRUCTIBLE
| shareable,
Alignment::from(size) * Alignment::from_width(scalar.width),
)
}
Ti::Matrix {
columns: _,
rows,
scalar,
} => {
if scalar.kind != crate::ScalarKind::Float {
return Err(TypeError::MatrixElementNotFloat);
}
self.check_width(scalar)?;
TypeInfo::new(
TypeFlags::DATA
| TypeFlags::SIZED
| TypeFlags::COPY
| TypeFlags::HOST_SHAREABLE
| TypeFlags::ARGUMENT
| TypeFlags::CONSTRUCTIBLE,
Alignment::from(rows) * Alignment::from_width(scalar.width),
)
}
Ti::Atomic(crate::Scalar { kind, width }) => {
match kind {
crate::ScalarKind::Bool
| crate::ScalarKind::Float
| crate::ScalarKind::AbstractInt
| crate::ScalarKind::AbstractFloat => {
return Err(TypeError::InvalidAtomicWidth(kind, width))
}
crate::ScalarKind::Sint | crate::ScalarKind::Uint => {
if width == 8 {
if !self.capabilities.intersects(
Capabilities::SHADER_INT64_ATOMIC_ALL_OPS
| Capabilities::SHADER_INT64_ATOMIC_MIN_MAX,
) {
return Err(TypeError::MissingCapability(
Capabilities::SHADER_INT64_ATOMIC_ALL_OPS,
));
}
} else if width != 4 {
return Err(TypeError::InvalidAtomicWidth(kind, width));
}
}
};
TypeInfo::new(
TypeFlags::DATA | TypeFlags::SIZED | TypeFlags::HOST_SHAREABLE,
Alignment::from_width(width),
)
}
Ti::Pointer { base, space } => {
use crate::AddressSpace as As;
let base_info = &self.types[base.index()];
if !base_info.flags.contains(TypeFlags::DATA) {
return Err(TypeError::InvalidPointerBase(base));
}
// Runtime-sized values can only live in the `Storage` address
// space, so it's useless to have a pointer to such a type in
// any other space.
//
// Detecting this problem here prevents the definition of
// functions like:
//
// fn f(p: ptr<workgroup, UnsizedType>) -> ... { ... }
//
// which would otherwise be permitted, but uncallable. (They
// may also present difficulties in code generation).
if !base_info.flags.contains(TypeFlags::SIZED) {
match space {
As::Storage { .. } => {}
_ => {
return Err(TypeError::InvalidPointerToUnsized { base, space });
}
}
}
// `Validator::validate_function` actually checks the address
// space of pointer arguments explicitly before checking the
// `ARGUMENT` flag, to give better error messages. But it seems
// best to set `ARGUMENT` accurately anyway.
let argument_flag = ptr_space_argument_flag(space);
// Pointers cannot be stored in variables, structure members, or
// array elements, so we do not mark them as `DATA`.
TypeInfo::new(
argument_flag | TypeFlags::SIZED | TypeFlags::COPY,
Alignment::ONE,
)
}
Ti::ValuePointer {
size: _,
scalar,
space,
} => {
// ValuePointer should be treated the same way as the equivalent
// Pointer / Scalar / Vector combination, so each step in those
// variants' match arms should have a counterpart here.
//
// However, some cases are trivial: All our implicit base types
// are DATA and SIZED, so we can never return
// `InvalidPointerBase` or `InvalidPointerToUnsized`.
self.check_width(scalar)?;
// `Validator::validate_function` actually checks the address
// space of pointer arguments explicitly before checking the
// `ARGUMENT` flag, to give better error messages. But it seems
// best to set `ARGUMENT` accurately anyway.
let argument_flag = ptr_space_argument_flag(space);
// Pointers cannot be stored in variables, structure members, or
// array elements, so we do not mark them as `DATA`.
TypeInfo::new(
argument_flag | TypeFlags::SIZED | TypeFlags::COPY,
Alignment::ONE,
)
}
Ti::Array { base, size, stride } => {
let base_info = &self.types[base.index()];
if !base_info.flags.contains(TypeFlags::DATA | TypeFlags::SIZED) {
return Err(TypeError::InvalidArrayBaseType(base));
}
let base_layout = self.layouter[base];
let general_alignment = base_layout.alignment;
let uniform_layout = match base_info.uniform_layout {
Ok(base_alignment) => {
let alignment = base_alignment
.max(general_alignment)
.max(Alignment::MIN_UNIFORM);
if alignment.is_aligned(stride) {
Ok(alignment)
} else {
Err((handle, Disalignment::ArrayStride { stride, alignment }))
}
}
Err(e) => Err(e),
};
let storage_layout = match base_info.storage_layout {
Ok(base_alignment) => {
let alignment = base_alignment.max(general_alignment);
if alignment.is_aligned(stride) {
Ok(alignment)
} else {
Err((handle, Disalignment::ArrayStride { stride, alignment }))
}
}
Err(e) => Err(e),
};
let type_info_mask = match size {
crate::ArraySize::Constant(_) => {
TypeFlags::DATA
| TypeFlags::SIZED
| TypeFlags::COPY
| TypeFlags::HOST_SHAREABLE
| TypeFlags::ARGUMENT
| TypeFlags::CONSTRUCTIBLE
}
crate::ArraySize::Dynamic => {
// Non-SIZED types may only appear as the last element of a structure.
// This is enforced by checks for SIZED-ness for all compound types,
// and a special case for structs.
TypeFlags::DATA | TypeFlags::COPY | TypeFlags::HOST_SHAREABLE
}
};
TypeInfo {
flags: base_info.flags & type_info_mask,
uniform_layout,
storage_layout,
}
}
Ti::Struct { ref members, span } => {
if members.is_empty() {
return Err(TypeError::EmptyStruct);
}
let mut ti = TypeInfo::new(
TypeFlags::DATA
| TypeFlags::SIZED
| TypeFlags::COPY
| TypeFlags::HOST_SHAREABLE
| TypeFlags::IO_SHAREABLE
| TypeFlags::ARGUMENT
| TypeFlags::CONSTRUCTIBLE,
Alignment::ONE,
);
ti.uniform_layout = Ok(Alignment::MIN_UNIFORM);
let mut min_offset = 0;
let mut prev_struct_data: Option<(u32, u32)> = None;
for (i, member) in members.iter().enumerate() {
let base_info = &self.types[member.ty.index()];
if !base_info.flags.contains(TypeFlags::DATA) {
return Err(TypeError::InvalidData(member.ty));
}
if !base_info.flags.contains(TypeFlags::HOST_SHAREABLE) {
if ti.uniform_layout.is_ok() {
ti.uniform_layout = Err((member.ty, Disalignment::NonHostShareable));
}
if ti.storage_layout.is_ok() {
ti.storage_layout = Err((member.ty, Disalignment::NonHostShareable));
}
}
ti.flags &= base_info.flags;
if member.offset < min_offset {
// HACK: this could be nicer. We want to allow some structures
// to not bother with offsets/alignments if they are never
// used for host sharing.
if member.offset == 0 {
ti.flags.set(TypeFlags::HOST_SHAREABLE, false);
} else {
return Err(TypeError::MemberOverlap {
index: i as u32,
offset: member.offset,
});
}
}
let base_size = gctx.types[member.ty].inner.size(gctx);
min_offset = member.offset + base_size;
if min_offset > span {
return Err(TypeError::MemberOutOfBounds {
index: i as u32,
offset: member.offset,
size: base_size,
span,
});
}
check_member_layout(
&mut ti.uniform_layout,
member,
i as u32,
base_info.uniform_layout,
handle,
);
check_member_layout(
&mut ti.storage_layout,
member,
i as u32,
base_info.storage_layout,
handle,
);
// Validate rule: If a structure member itself has a structure type S,
// then the number of bytes between the start of that member and
// the start of any following member must be at least roundUp(16, SizeOf(S)).
if let Some((span, offset)) = prev_struct_data {
let diff = member.offset - offset;
let min = Alignment::MIN_UNIFORM.round_up(span);
if diff < min {
ti.uniform_layout = Err((
handle,
Disalignment::MemberOffsetAfterStruct {
index: i as u32,
offset: member.offset,
expected: offset + min,
},
));
}
};
prev_struct_data = match gctx.types[member.ty].inner {
crate::TypeInner::Struct { span, .. } => Some((span, member.offset)),
_ => None,
};
// The last field may be an unsized array.
if !base_info.flags.contains(TypeFlags::SIZED) {
let is_array = match gctx.types[member.ty].inner {
crate::TypeInner::Array { .. } => true,
_ => false,
};
if !is_array || i + 1 != members.len() {
let name = member.name.clone().unwrap_or_default();
return Err(TypeError::InvalidDynamicArray(name, member.ty));
}
if ti.uniform_layout.is_ok() {
ti.uniform_layout =
Err((handle, Disalignment::UnsizedMember { index: i as u32 }));
}
}
}
let alignment = self.layouter[handle].alignment;
if !alignment.is_aligned(span) {
ti.uniform_layout = Err((handle, Disalignment::StructSpan { span, alignment }));
ti.storage_layout = Err((handle, Disalignment::StructSpan { span, alignment }));
}
ti
}
Ti::Image {
dim,
arrayed,
class,
} => {
if arrayed && matches!(dim, crate::ImageDimension::D3) {
return Err(TypeError::UnsupportedImageType {
dim,
arrayed,
class,
});
}
if arrayed && matches!(dim, crate::ImageDimension::Cube) {
self.require_type_capability(Capabilities::CUBE_ARRAY_TEXTURES)?;
}
TypeInfo::new(TypeFlags::ARGUMENT, Alignment::ONE)
}
Ti::Sampler { .. } => TypeInfo::new(TypeFlags::ARGUMENT, Alignment::ONE),
Ti::AccelerationStructure => {
self.require_type_capability(Capabilities::RAY_QUERY)?;
TypeInfo::new(TypeFlags::ARGUMENT, Alignment::ONE)
}
Ti::RayQuery => {
self.require_type_capability(Capabilities::RAY_QUERY)?;
TypeInfo::new(
TypeFlags::DATA | TypeFlags::CONSTRUCTIBLE | TypeFlags::SIZED,
Alignment::ONE,
)
}
Ti::BindingArray { base, size } => {
let type_info_mask = match size {
crate::ArraySize::Constant(_) => TypeFlags::SIZED | TypeFlags::HOST_SHAREABLE,
crate::ArraySize::Dynamic => {
// Final type is non-sized
TypeFlags::HOST_SHAREABLE
}
};
let base_info = &self.types[base.index()];
if base_info.flags.contains(TypeFlags::DATA) {
// Currently Naga only supports binding arrays of structs for non-handle types.
match gctx.types[base].inner {
crate::TypeInner::Struct { .. } => {}
_ => return Err(TypeError::BindingArrayBaseTypeNotStruct(base)),
};
}
TypeInfo::new(base_info.flags & type_info_mask, Alignment::ONE)
}
})
}
}