nalgebra/base/
edition.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
use num::{One, Zero};
use std::cmp;
#[cfg(any(feature = "std", feature = "alloc"))]
use std::iter::ExactSizeIterator;
use std::ptr;

use crate::base::allocator::{Allocator, Reallocator};
use crate::base::constraint::{DimEq, SameNumberOfColumns, SameNumberOfRows, ShapeConstraint};
#[cfg(any(feature = "std", feature = "alloc"))]
use crate::base::dimension::Dyn;
use crate::base::dimension::{Const, Dim, DimAdd, DimDiff, DimMin, DimMinimum, DimSub, DimSum, U1};
use crate::base::storage::{RawStorage, RawStorageMut, ReshapableStorage};
use crate::base::{DefaultAllocator, Matrix, OMatrix, RowVector, Scalar, Vector};
use crate::{Storage, UninitMatrix};
use std::mem::MaybeUninit;

/// # Triangular matrix extraction
impl<T: Scalar + Zero, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
    /// Extracts the upper triangular part of this matrix (including the diagonal).
    #[inline]
    #[must_use]
    pub fn upper_triangle(&self) -> OMatrix<T, R, C>
    where
        DefaultAllocator: Allocator<R, C>,
    {
        let mut res = self.clone_owned();
        res.fill_lower_triangle(T::zero(), 1);

        res
    }

    /// Extracts the lower triangular part of this matrix (including the diagonal).
    #[inline]
    #[must_use]
    pub fn lower_triangle(&self) -> OMatrix<T, R, C>
    where
        DefaultAllocator: Allocator<R, C>,
    {
        let mut res = self.clone_owned();
        res.fill_upper_triangle(T::zero(), 1);

        res
    }
}

/// # Rows and columns extraction
impl<T: Scalar, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
    /// Creates a new matrix by extracting the given set of rows from `self`.
    #[cfg(any(feature = "std", feature = "alloc"))]
    #[must_use]
    pub fn select_rows<'a, I>(&self, irows: I) -> OMatrix<T, Dyn, C>
    where
        I: IntoIterator<Item = &'a usize>,
        I::IntoIter: ExactSizeIterator + Clone,
        DefaultAllocator: Allocator<Dyn, C>,
    {
        let irows = irows.into_iter();
        let ncols = self.shape_generic().1;
        let mut res = Matrix::uninit(Dyn(irows.len()), ncols);

        // First, check that all the indices from irows are valid.
        // This will allow us to use unchecked access in the inner loop.
        for i in irows.clone() {
            assert!(*i < self.nrows(), "Row index out of bounds.")
        }

        for j in 0..ncols.value() {
            // TODO: use unchecked column indexing
            let mut res = res.column_mut(j);
            let src = self.column(j);

            for (destination, source) in irows.clone().enumerate() {
                // Safety: all indices are in range.
                unsafe {
                    *res.vget_unchecked_mut(destination) =
                        MaybeUninit::new(src.vget_unchecked(*source).clone());
                }
            }
        }

        // Safety: res is now fully initialized.
        unsafe { res.assume_init() }
    }

    /// Creates a new matrix by extracting the given set of columns from `self`.
    #[cfg(any(feature = "std", feature = "alloc"))]
    #[must_use]
    pub fn select_columns<'a, I>(&self, icols: I) -> OMatrix<T, R, Dyn>
    where
        I: IntoIterator<Item = &'a usize>,
        I::IntoIter: ExactSizeIterator,
        DefaultAllocator: Allocator<R, Dyn>,
    {
        let icols = icols.into_iter();
        let nrows = self.shape_generic().0;
        let mut res = Matrix::uninit(nrows, Dyn(icols.len()));

        for (destination, source) in icols.enumerate() {
            // NOTE: this is basically a copy_frow but wrapping the values insnide of MaybeUninit.
            res.column_mut(destination)
                .zip_apply(&self.column(*source), |out, e| *out = MaybeUninit::new(e));
        }

        // Safety: res is now fully initialized.
        unsafe { res.assume_init() }
    }
}

/// # Set rows, columns, and diagonal
impl<T: Scalar, R: Dim, C: Dim, S: RawStorageMut<T, R, C>> Matrix<T, R, C, S> {
    /// Fills the diagonal of this matrix with the content of the given vector.
    #[inline]
    pub fn set_diagonal<R2: Dim, S2>(&mut self, diag: &Vector<T, R2, S2>)
    where
        R: DimMin<C>,
        S2: RawStorage<T, R2>,
        ShapeConstraint: DimEq<DimMinimum<R, C>, R2>,
    {
        let (nrows, ncols) = self.shape();
        let min_nrows_ncols = cmp::min(nrows, ncols);
        assert_eq!(diag.len(), min_nrows_ncols, "Mismatched dimensions.");

        for i in 0..min_nrows_ncols {
            unsafe { *self.get_unchecked_mut((i, i)) = diag.vget_unchecked(i).clone() }
        }
    }

    /// Fills the diagonal of this matrix with the content of the given iterator.
    ///
    /// This will fill as many diagonal elements as the iterator yields, up to the
    /// minimum of the number of rows and columns of `self`, and starting with the
    /// diagonal element at index (0, 0).
    #[inline]
    pub fn set_partial_diagonal(&mut self, diag: impl Iterator<Item = T>) {
        let (nrows, ncols) = self.shape();
        let min_nrows_ncols = cmp::min(nrows, ncols);

        for (i, val) in diag.enumerate().take(min_nrows_ncols) {
            unsafe { *self.get_unchecked_mut((i, i)) = val }
        }
    }

    /// Fills the selected row of this matrix with the content of the given vector.
    #[inline]
    pub fn set_row<C2: Dim, S2>(&mut self, i: usize, row: &RowVector<T, C2, S2>)
    where
        S2: RawStorage<T, U1, C2>,
        ShapeConstraint: SameNumberOfColumns<C, C2>,
    {
        self.row_mut(i).copy_from(row);
    }

    /// Fills the selected column of this matrix with the content of the given vector.
    #[inline]
    pub fn set_column<R2: Dim, S2>(&mut self, i: usize, column: &Vector<T, R2, S2>)
    where
        S2: RawStorage<T, R2, U1>,
        ShapeConstraint: SameNumberOfRows<R, R2>,
    {
        self.column_mut(i).copy_from(column);
    }
}

/// # In-place filling
impl<T, R: Dim, C: Dim, S: RawStorageMut<T, R, C>> Matrix<T, R, C, S> {
    /// Sets all the elements of this matrix to the value returned by the closure.
    #[inline]
    pub fn fill_with(&mut self, val: impl Fn() -> T) {
        for e in self.iter_mut() {
            *e = val()
        }
    }

    /// Sets all the elements of this matrix to `val`.
    #[inline]
    pub fn fill(&mut self, val: T)
    where
        T: Scalar,
    {
        for e in self.iter_mut() {
            *e = val.clone()
        }
    }

    /// Fills `self` with the identity matrix.
    #[inline]
    pub fn fill_with_identity(&mut self)
    where
        T: Scalar + Zero + One,
    {
        self.fill(T::zero());
        self.fill_diagonal(T::one());
    }

    /// Sets all the diagonal elements of this matrix to `val`.
    #[inline]
    pub fn fill_diagonal(&mut self, val: T)
    where
        T: Scalar,
    {
        let (nrows, ncols) = self.shape();
        let n = cmp::min(nrows, ncols);

        for i in 0..n {
            unsafe { *self.get_unchecked_mut((i, i)) = val.clone() }
        }
    }

    /// Sets all the elements of the selected row to `val`.
    #[inline]
    pub fn fill_row(&mut self, i: usize, val: T)
    where
        T: Scalar,
    {
        assert!(i < self.nrows(), "Row index out of bounds.");
        for j in 0..self.ncols() {
            unsafe { *self.get_unchecked_mut((i, j)) = val.clone() }
        }
    }

    /// Sets all the elements of the selected column to `val`.
    #[inline]
    pub fn fill_column(&mut self, j: usize, val: T)
    where
        T: Scalar,
    {
        assert!(j < self.ncols(), "Row index out of bounds.");
        for i in 0..self.nrows() {
            unsafe { *self.get_unchecked_mut((i, j)) = val.clone() }
        }
    }

    /// Sets all the elements of the lower-triangular part of this matrix to `val`.
    ///
    /// The parameter `shift` allows some subdiagonals to be left untouched:
    /// * If `shift = 0` then the diagonal is overwritten as well.
    /// * If `shift = 1` then the diagonal is left untouched.
    /// * If `shift > 1`, then the diagonal and the first `shift - 1` subdiagonals are left
    ///   untouched.
    #[inline]
    pub fn fill_lower_triangle(&mut self, val: T, shift: usize)
    where
        T: Scalar,
    {
        for j in 0..self.ncols() {
            for i in (j + shift)..self.nrows() {
                unsafe { *self.get_unchecked_mut((i, j)) = val.clone() }
            }
        }
    }

    /// Sets all the elements of the lower-triangular part of this matrix to `val`.
    ///
    /// The parameter `shift` allows some superdiagonals to be left untouched:
    /// * If `shift = 0` then the diagonal is overwritten as well.
    /// * If `shift = 1` then the diagonal is left untouched.
    /// * If `shift > 1`, then the diagonal and the first `shift - 1` superdiagonals are left
    ///   untouched.
    #[inline]
    pub fn fill_upper_triangle(&mut self, val: T, shift: usize)
    where
        T: Scalar,
    {
        for j in shift..self.ncols() {
            // TODO: is there a more efficient way to avoid the min ?
            // (necessary for rectangular matrices)
            for i in 0..cmp::min(j + 1 - shift, self.nrows()) {
                unsafe { *self.get_unchecked_mut((i, j)) = val.clone() }
            }
        }
    }
}

impl<T: Scalar, D: Dim, S: RawStorageMut<T, D, D>> Matrix<T, D, D, S> {
    /// Copies the upper-triangle of this matrix to its lower-triangular part.
    ///
    /// This makes the matrix symmetric. Panics if the matrix is not square.
    pub fn fill_lower_triangle_with_upper_triangle(&mut self) {
        assert!(self.is_square(), "The input matrix should be square.");

        let dim = self.nrows();
        for j in 0..dim {
            for i in j + 1..dim {
                unsafe {
                    *self.get_unchecked_mut((i, j)) = self.get_unchecked((j, i)).clone();
                }
            }
        }
    }

    /// Copies the upper-triangle of this matrix to its upper-triangular part.
    ///
    /// This makes the matrix symmetric. Panics if the matrix is not square.
    pub fn fill_upper_triangle_with_lower_triangle(&mut self) {
        assert!(self.is_square(), "The input matrix should be square.");

        for j in 1..self.ncols() {
            for i in 0..j {
                unsafe {
                    *self.get_unchecked_mut((i, j)) = self.get_unchecked((j, i)).clone();
                }
            }
        }
    }
}

/// # In-place swapping
impl<T: Scalar, R: Dim, C: Dim, S: RawStorageMut<T, R, C>> Matrix<T, R, C, S> {
    /// Swaps two rows in-place.
    #[inline]
    pub fn swap_rows(&mut self, irow1: usize, irow2: usize) {
        assert!(irow1 < self.nrows() && irow2 < self.nrows());

        if irow1 != irow2 {
            // TODO: optimize that.
            for i in 0..self.ncols() {
                unsafe { self.swap_unchecked((irow1, i), (irow2, i)) }
            }
        }
        // Otherwise do nothing.
    }

    /// Swaps two columns in-place.
    #[inline]
    pub fn swap_columns(&mut self, icol1: usize, icol2: usize) {
        assert!(icol1 < self.ncols() && icol2 < self.ncols());

        if icol1 != icol2 {
            // TODO: optimize that.
            for i in 0..self.nrows() {
                unsafe { self.swap_unchecked((i, icol1), (i, icol2)) }
            }
        }
        // Otherwise do nothing.
    }
}

/*
 *
 * TODO: specialize all the following for slices.
 *
 */
/// # Rows and columns removal
impl<T: Scalar, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
    /*
     *
     * Column removal.
     *
     */
    /// Removes the `i`-th column from this matrix.
    #[inline]
    pub fn remove_column(self, i: usize) -> OMatrix<T, R, DimDiff<C, U1>>
    where
        C: DimSub<U1>,
        DefaultAllocator: Reallocator<T, R, C, R, DimDiff<C, U1>>,
    {
        self.remove_fixed_columns::<1>(i)
    }

    /// Removes all columns in `indices`   
    #[cfg(any(feature = "std", feature = "alloc"))]
    pub fn remove_columns_at(self, indices: &[usize]) -> OMatrix<T, R, Dyn>
    where
        C: DimSub<Dyn, Output = Dyn>,
        DefaultAllocator: Reallocator<T, R, C, R, Dyn>,
    {
        let mut m = self.into_owned();
        let (nrows, ncols) = m.shape_generic();
        let mut offset: usize = 0;
        let mut target: usize = 0;
        while offset + target < ncols.value() {
            if indices.contains(&(target + offset)) {
                // Safety: the resulting pointer is within range.
                let col_ptr = unsafe { m.data.ptr_mut().add((target + offset) * nrows.value()) };
                // Drop every element in the column we are about to overwrite.
                // We use the a similar technique as in `Vec::truncate`.
                let s = ptr::slice_from_raw_parts_mut(col_ptr, nrows.value());
                // Safety: we drop the column in-place, which is OK because we will overwrite these
                //         entries later in the loop, or discard them with the `reallocate_copy`
                //         afterwards.
                unsafe { ptr::drop_in_place(s) };

                offset += 1;
            } else {
                unsafe {
                    let ptr_source = m.data.ptr().add((target + offset) * nrows.value());
                    let ptr_target = m.data.ptr_mut().add(target * nrows.value());

                    // Copy the data, overwriting what we dropped.
                    ptr::copy(ptr_source, ptr_target, nrows.value());
                    target += 1;
                }
            }
        }

        // Safety: The new size is smaller than the old size, so
        //         DefaultAllocator::reallocate_copy will initialize
        //         every element of the new matrix which can then
        //         be assumed to be initialized.
        unsafe {
            let new_data = DefaultAllocator::reallocate_copy(
                nrows,
                ncols.sub(Dyn::from_usize(offset)),
                m.data,
            );

            Matrix::from_data(new_data).assume_init()
        }
    }

    /// Removes all rows in `indices`   
    #[cfg(any(feature = "std", feature = "alloc"))]
    pub fn remove_rows_at(self, indices: &[usize]) -> OMatrix<T, Dyn, C>
    where
        R: DimSub<Dyn, Output = Dyn>,
        DefaultAllocator: Reallocator<T, R, C, Dyn, C>,
    {
        let mut m = self.into_owned();
        let (nrows, ncols) = m.shape_generic();
        let mut offset: usize = 0;
        let mut target: usize = 0;
        while offset + target < nrows.value() * ncols.value() {
            if indices.contains(&((target + offset) % nrows.value())) {
                // Safety: the resulting pointer is within range.
                unsafe {
                    let elt_ptr = m.data.ptr_mut().add(target + offset);
                    // Safety: we drop the component in-place, which is OK because we will overwrite these
                    //         entries later in the loop, or discard them with the `reallocate_copy`
                    //         afterwards.
                    ptr::drop_in_place(elt_ptr)
                };
                offset += 1;
            } else {
                unsafe {
                    let ptr_source = m.data.ptr().add(target + offset);
                    let ptr_target = m.data.ptr_mut().add(target);

                    // Copy the data, overwriting what we dropped in the previous iterations.
                    ptr::copy(ptr_source, ptr_target, 1);
                    target += 1;
                }
            }
        }

        // Safety: The new size is smaller than the old size, so
        //         DefaultAllocator::reallocate_copy will initialize
        //         every element of the new matrix which can then
        //         be assumed to be initialized.
        unsafe {
            let new_data = DefaultAllocator::reallocate_copy(
                nrows.sub(Dyn::from_usize(offset / ncols.value())),
                ncols,
                m.data,
            );

            Matrix::from_data(new_data).assume_init()
        }
    }

    /// Removes `D::dim()` consecutive columns from this matrix, starting with the `i`-th
    /// (included).
    #[inline]
    pub fn remove_fixed_columns<const D: usize>(
        self,
        i: usize,
    ) -> OMatrix<T, R, DimDiff<C, Const<D>>>
    where
        C: DimSub<Const<D>>,
        DefaultAllocator: Reallocator<T, R, C, R, DimDiff<C, Const<D>>>,
    {
        self.remove_columns_generic(i, Const::<D>)
    }

    /// Removes `n` consecutive columns from this matrix, starting with the `i`-th (included).
    #[inline]
    #[cfg(any(feature = "std", feature = "alloc"))]
    pub fn remove_columns(self, i: usize, n: usize) -> OMatrix<T, R, Dyn>
    where
        C: DimSub<Dyn, Output = Dyn>,
        DefaultAllocator: Reallocator<T, R, C, R, Dyn>,
    {
        self.remove_columns_generic(i, Dyn(n))
    }

    /// Removes `nremove.value()` columns from this matrix, starting with the `i`-th (included).
    ///
    /// This is the generic implementation of `.remove_columns(...)` and
    /// `.remove_fixed_columns(...)` which have nicer API interfaces.
    #[inline]
    pub fn remove_columns_generic<D>(self, i: usize, nremove: D) -> OMatrix<T, R, DimDiff<C, D>>
    where
        D: Dim,
        C: DimSub<D>,
        DefaultAllocator: Reallocator<T, R, C, R, DimDiff<C, D>>,
    {
        let mut m = self.into_owned();
        let (nrows, ncols) = m.shape_generic();
        assert!(
            i + nremove.value() <= ncols.value(),
            "Column index out of range."
        );

        let need_column_shifts = nremove.value() != 0 && i + nremove.value() < ncols.value();
        if need_column_shifts {
            // The first `deleted_i * nrows` are left untouched.
            let copied_value_start = i + nremove.value();

            unsafe {
                let ptr_in = m.data.ptr().add(copied_value_start * nrows.value());
                let ptr_out = m.data.ptr_mut().add(i * nrows.value());

                // Drop all the elements of the columns we are about to overwrite.
                // We use the a similar technique as in `Vec::truncate`.
                let s = ptr::slice_from_raw_parts_mut(ptr_out, nremove.value() * nrows.value());
                // Safety: we drop the column in-place, which is OK because we will overwrite these
                //         entries with `ptr::copy` afterward.
                ptr::drop_in_place(s);

                ptr::copy(
                    ptr_in,
                    ptr_out,
                    (ncols.value() - copied_value_start) * nrows.value(),
                );
            }
        } else {
            // All the columns to remove are at the end of the buffer. Drop them.
            unsafe {
                let ptr = m.data.ptr_mut().add(i * nrows.value());
                let s = ptr::slice_from_raw_parts_mut(ptr, nremove.value() * nrows.value());
                ptr::drop_in_place(s)
            };
        }

        // Safety: The new size is smaller than the old size, so
        //         DefaultAllocator::reallocate_copy will initialize
        //         every element of the new matrix which can then
        //         be assumed to be initialized.
        unsafe {
            let new_data = DefaultAllocator::reallocate_copy(nrows, ncols.sub(nremove), m.data);
            Matrix::from_data(new_data).assume_init()
        }
    }

    /*
     *
     * Row removal.
     *
     */
    /// Removes the `i`-th row from this matrix.
    #[inline]
    pub fn remove_row(self, i: usize) -> OMatrix<T, DimDiff<R, U1>, C>
    where
        R: DimSub<U1>,
        DefaultAllocator: Reallocator<T, R, C, DimDiff<R, U1>, C>,
    {
        self.remove_fixed_rows::<1>(i)
    }

    /// Removes `D::dim()` consecutive rows from this matrix, starting with the `i`-th (included).
    #[inline]
    pub fn remove_fixed_rows<const D: usize>(self, i: usize) -> OMatrix<T, DimDiff<R, Const<D>>, C>
    where
        R: DimSub<Const<D>>,
        DefaultAllocator: Reallocator<T, R, C, DimDiff<R, Const<D>>, C>,
    {
        self.remove_rows_generic(i, Const::<D>)
    }

    /// Removes `n` consecutive rows from this matrix, starting with the `i`-th (included).
    #[inline]
    #[cfg(any(feature = "std", feature = "alloc"))]
    pub fn remove_rows(self, i: usize, n: usize) -> OMatrix<T, Dyn, C>
    where
        R: DimSub<Dyn, Output = Dyn>,
        DefaultAllocator: Reallocator<T, R, C, Dyn, C>,
    {
        self.remove_rows_generic(i, Dyn(n))
    }

    /// Removes `nremove.value()` rows from this matrix, starting with the `i`-th (included).
    ///
    /// This is the generic implementation of `.remove_rows(...)` and `.remove_fixed_rows(...)`
    /// which have nicer API interfaces.
    #[inline]
    pub fn remove_rows_generic<D>(self, i: usize, nremove: D) -> OMatrix<T, DimDiff<R, D>, C>
    where
        D: Dim,
        R: DimSub<D>,
        DefaultAllocator: Reallocator<T, R, C, DimDiff<R, D>, C>,
    {
        let mut m = self.into_owned();
        let (nrows, ncols) = m.shape_generic();
        assert!(
            i + nremove.value() <= nrows.value(),
            "Row index out of range."
        );

        if nremove.value() != 0 {
            unsafe {
                compress_rows(
                    m.as_mut_slice(),
                    nrows.value(),
                    ncols.value(),
                    i,
                    nremove.value(),
                );
            }
        }

        // Safety: The new size is smaller than the old size, so
        //         DefaultAllocator::reallocate_copy will initialize
        //         every element of the new matrix which can then
        //         be assumed to be initialized.
        unsafe {
            let new_data = DefaultAllocator::reallocate_copy(nrows.sub(nremove), ncols, m.data);
            Matrix::from_data(new_data).assume_init()
        }
    }
}

/// # Rows and columns insertion
impl<T: Scalar, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
    /*
     *
     * Columns insertion.
     *
     */
    /// Inserts a column filled with `val` at the `i-th` position.
    #[inline]
    pub fn insert_column(self, i: usize, val: T) -> OMatrix<T, R, DimSum<C, U1>>
    where
        C: DimAdd<U1>,
        DefaultAllocator: Reallocator<T, R, C, R, DimSum<C, U1>>,
    {
        self.insert_fixed_columns::<1>(i, val)
    }

    /// Inserts `D` columns filled with `val` starting at the `i-th` position.
    #[inline]
    pub fn insert_fixed_columns<const D: usize>(
        self,
        i: usize,
        val: T,
    ) -> OMatrix<T, R, DimSum<C, Const<D>>>
    where
        C: DimAdd<Const<D>>,
        DefaultAllocator: Reallocator<T, R, C, R, DimSum<C, Const<D>>>,
    {
        let mut res = unsafe { self.insert_columns_generic_uninitialized(i, Const::<D>) };
        res.fixed_columns_mut::<D>(i)
            .fill_with(|| MaybeUninit::new(val.clone()));

        // Safety: the result is now fully initialized. The added columns have
        //         been initialized by the `fill_with` above, and the rest have
        //         been initialized by `insert_columns_generic_uninitialized`.
        unsafe { res.assume_init() }
    }

    /// Inserts `n` columns filled with `val` starting at the `i-th` position.
    #[inline]
    #[cfg(any(feature = "std", feature = "alloc"))]
    pub fn insert_columns(self, i: usize, n: usize, val: T) -> OMatrix<T, R, Dyn>
    where
        C: DimAdd<Dyn, Output = Dyn>,
        DefaultAllocator: Reallocator<T, R, C, R, Dyn>,
    {
        let mut res = unsafe { self.insert_columns_generic_uninitialized(i, Dyn(n)) };
        res.columns_mut(i, n)
            .fill_with(|| MaybeUninit::new(val.clone()));

        // Safety: the result is now fully initialized. The added columns have
        //         been initialized by the `fill_with` above, and the rest have
        //         been initialized by `insert_columns_generic_uninitialized`.
        unsafe { res.assume_init() }
    }

    /// Inserts `ninsert.value()` columns starting at the `i-th` place of this matrix.
    ///
    /// # Safety
    /// The output matrix has all its elements initialized except for the the components of the
    /// added columns.
    #[inline]
    pub unsafe fn insert_columns_generic_uninitialized<D>(
        self,
        i: usize,
        ninsert: D,
    ) -> UninitMatrix<T, R, DimSum<C, D>>
    where
        D: Dim,
        C: DimAdd<D>,
        DefaultAllocator: Reallocator<T, R, C, R, DimSum<C, D>>,
    {
        let m = self.into_owned();
        let (nrows, ncols) = m.shape_generic();
        let mut res = Matrix::from_data(DefaultAllocator::reallocate_copy(
            nrows,
            ncols.add(ninsert),
            m.data,
        ));

        assert!(i <= ncols.value(), "Column insertion index out of range.");

        if ninsert.value() != 0 && i != ncols.value() {
            let ptr_in = res.data.ptr().add(i * nrows.value());
            let ptr_out = res
                .data
                .ptr_mut()
                .add((i + ninsert.value()) * nrows.value());

            ptr::copy(ptr_in, ptr_out, (ncols.value() - i) * nrows.value())
        }

        res
    }

    /*
     *
     * Rows insertion.
     *
     */
    /// Inserts a row filled with `val` at the `i-th` position.
    #[inline]
    pub fn insert_row(self, i: usize, val: T) -> OMatrix<T, DimSum<R, U1>, C>
    where
        R: DimAdd<U1>,
        DefaultAllocator: Reallocator<T, R, C, DimSum<R, U1>, C>,
    {
        self.insert_fixed_rows::<1>(i, val)
    }

    /// Inserts `D::dim()` rows filled with `val` starting at the `i-th` position.
    #[inline]
    pub fn insert_fixed_rows<const D: usize>(
        self,
        i: usize,
        val: T,
    ) -> OMatrix<T, DimSum<R, Const<D>>, C>
    where
        R: DimAdd<Const<D>>,
        DefaultAllocator: Reallocator<T, R, C, DimSum<R, Const<D>>, C>,
    {
        let mut res = unsafe { self.insert_rows_generic_uninitialized(i, Const::<D>) };
        res.fixed_rows_mut::<D>(i)
            .fill_with(|| MaybeUninit::new(val.clone()));

        // Safety: the result is now fully initialized. The added rows have
        //         been initialized by the `fill_with` above, and the rest have
        //         been initialized by `insert_rows_generic_uninitialized`.
        unsafe { res.assume_init() }
    }

    /// Inserts `n` rows filled with `val` starting at the `i-th` position.
    #[inline]
    #[cfg(any(feature = "std", feature = "alloc"))]
    pub fn insert_rows(self, i: usize, n: usize, val: T) -> OMatrix<T, Dyn, C>
    where
        R: DimAdd<Dyn, Output = Dyn>,
        DefaultAllocator: Reallocator<T, R, C, Dyn, C>,
    {
        let mut res = unsafe { self.insert_rows_generic_uninitialized(i, Dyn(n)) };
        res.rows_mut(i, n)
            .fill_with(|| MaybeUninit::new(val.clone()));

        // Safety: the result is now fully initialized. The added rows have
        //         been initialized by the `fill_with` above, and the rest have
        //         been initialized by `insert_rows_generic_uninitialized`.
        unsafe { res.assume_init() }
    }

    /// Inserts `ninsert.value()` rows at the `i-th` place of this matrix.
    ///
    /// # Safety
    /// The added rows values are not initialized.
    /// This is the generic implementation of `.insert_rows(...)` and
    /// `.insert_fixed_rows(...)` which have nicer API interfaces.
    #[inline]
    pub unsafe fn insert_rows_generic_uninitialized<D>(
        self,
        i: usize,
        ninsert: D,
    ) -> UninitMatrix<T, DimSum<R, D>, C>
    where
        D: Dim,
        R: DimAdd<D>,
        DefaultAllocator: Reallocator<T, R, C, DimSum<R, D>, C>,
    {
        let m = self.into_owned();
        let (nrows, ncols) = m.shape_generic();
        let mut res = Matrix::from_data(DefaultAllocator::reallocate_copy(
            nrows.add(ninsert),
            ncols,
            m.data,
        ));

        assert!(i <= nrows.value(), "Row insertion index out of range.");

        if ninsert.value() != 0 {
            extend_rows(
                res.as_mut_slice(),
                nrows.value(),
                ncols.value(),
                i,
                ninsert.value(),
            );
        }

        res
    }
}

/// # Resizing and reshaping
impl<T: Scalar, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
    /// Resizes this matrix so that it contains `new_nrows` rows and `new_ncols` columns.
    ///
    /// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
    /// rows and/or columns than `self`, then the extra rows or columns are filled with `val`.
    #[cfg(any(feature = "std", feature = "alloc"))]
    pub fn resize(self, new_nrows: usize, new_ncols: usize, val: T) -> OMatrix<T, Dyn, Dyn>
    where
        DefaultAllocator: Reallocator<T, R, C, Dyn, Dyn>,
    {
        self.resize_generic(Dyn(new_nrows), Dyn(new_ncols), val)
    }

    /// Resizes this matrix vertically, i.e., so that it contains `new_nrows` rows while keeping the same number of columns.
    ///
    /// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
    /// rows than `self`, then the extra rows are filled with `val`.
    #[cfg(any(feature = "std", feature = "alloc"))]
    pub fn resize_vertically(self, new_nrows: usize, val: T) -> OMatrix<T, Dyn, C>
    where
        DefaultAllocator: Reallocator<T, R, C, Dyn, C>,
    {
        let ncols = self.shape_generic().1;
        self.resize_generic(Dyn(new_nrows), ncols, val)
    }

    /// Resizes this matrix horizontally, i.e., so that it contains `new_ncolumns` columns while keeping the same number of columns.
    ///
    /// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
    /// columns than `self`, then the extra columns are filled with `val`.
    #[cfg(any(feature = "std", feature = "alloc"))]
    pub fn resize_horizontally(self, new_ncols: usize, val: T) -> OMatrix<T, R, Dyn>
    where
        DefaultAllocator: Reallocator<T, R, C, R, Dyn>,
    {
        let nrows = self.shape_generic().0;
        self.resize_generic(nrows, Dyn(new_ncols), val)
    }

    /// Resizes this matrix so that it contains `R2::value()` rows and `C2::value()` columns.
    ///
    /// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
    /// rows and/or columns than `self`, then the extra rows or columns are filled with `val`.
    pub fn fixed_resize<const R2: usize, const C2: usize>(
        self,
        val: T,
    ) -> OMatrix<T, Const<R2>, Const<C2>>
    where
        DefaultAllocator: Reallocator<T, R, C, Const<R2>, Const<C2>>,
    {
        self.resize_generic(Const::<R2>, Const::<C2>, val)
    }

    /// Resizes `self` such that it has dimensions `new_nrows × new_ncols`.
    ///
    /// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
    /// rows and/or columns than `self`, then the extra rows or columns are filled with `val`.
    #[inline]
    pub fn resize_generic<R2: Dim, C2: Dim>(
        self,
        new_nrows: R2,
        new_ncols: C2,
        val: T,
    ) -> OMatrix<T, R2, C2>
    where
        DefaultAllocator: Reallocator<T, R, C, R2, C2>,
    {
        let (nrows, ncols) = self.shape();
        let mut data = self.into_owned();

        if new_nrows.value() == nrows {
            if new_ncols.value() < ncols {
                unsafe {
                    let num_cols_to_delete = ncols - new_ncols.value();
                    let col_ptr = data.data.ptr_mut().add(new_ncols.value() * nrows);
                    let s = ptr::slice_from_raw_parts_mut(col_ptr, num_cols_to_delete * nrows);
                    // Safety: drop the elements of the deleted columns.
                    //         these are the elements that will be truncated
                    //         by the `reallocate_copy` afterward.
                    ptr::drop_in_place(s)
                };
            }

            let res = unsafe { DefaultAllocator::reallocate_copy(new_nrows, new_ncols, data.data) };
            let mut res = Matrix::from_data(res);

            if new_ncols.value() > ncols {
                res.columns_range_mut(ncols..)
                    .fill_with(|| MaybeUninit::new(val.clone()));
            }

            // Safety: the result is now fully initialized by `reallocate_copy` and
            //         `fill_with` (if the output has more columns than the input).
            unsafe { res.assume_init() }
        } else {
            let mut res;

            unsafe {
                if new_nrows.value() < nrows {
                    compress_rows(
                        data.as_mut_slice(),
                        nrows,
                        ncols,
                        new_nrows.value(),
                        nrows - new_nrows.value(),
                    );
                    res = Matrix::from_data(DefaultAllocator::reallocate_copy(
                        new_nrows, new_ncols, data.data,
                    ));
                } else {
                    res = Matrix::from_data(DefaultAllocator::reallocate_copy(
                        new_nrows, new_ncols, data.data,
                    ));
                    extend_rows(
                        res.as_mut_slice(),
                        nrows,
                        new_ncols.value(),
                        nrows,
                        new_nrows.value() - nrows,
                    );
                }
            }

            if new_ncols.value() > ncols {
                res.columns_range_mut(ncols..)
                    .fill_with(|| MaybeUninit::new(val.clone()));
            }

            if new_nrows.value() > nrows {
                res.view_range_mut(nrows.., ..cmp::min(ncols, new_ncols.value()))
                    .fill_with(|| MaybeUninit::new(val.clone()));
            }

            // Safety: the result is now fully initialized by `reallocate_copy` and
            //         `fill_with` (whenever applicable).
            unsafe { res.assume_init() }
        }
    }

    /// Reshapes `self` such that it has dimensions `new_nrows × new_ncols`.
    ///
    /// This will reinterpret `self` as if it is a matrix with `new_nrows` rows and `new_ncols`
    /// columns. The arrangements of the component in the output matrix are the same as what
    /// would be obtained by `Matrix::from_slice_generic(self.as_slice(), new_nrows, new_ncols)`.
    ///
    /// If `self` is a dynamically-sized matrix, then its components are neither copied nor moved.
    /// If `self` is staticyll-sized, then a copy may happen in some situations.
    /// This function will panic if the given dimensions are such that the number of elements of
    /// the input matrix are not equal to the number of elements of the output matrix.
    ///
    /// # Examples
    ///
    /// ```
    /// # use nalgebra::{Matrix3x2, Matrix2x3, DMatrix, Const, Dyn};
    ///
    /// let m1 = Matrix2x3::new(
    ///     1.1, 1.2, 1.3,
    ///     2.1, 2.2, 2.3
    /// );
    /// let m2 = Matrix3x2::new(
    ///     1.1, 2.2,
    ///     2.1, 1.3,
    ///     1.2, 2.3
    /// );
    /// let reshaped = m1.reshape_generic(Const::<3>, Const::<2>);
    /// assert_eq!(reshaped, m2);
    ///
    /// let dm1 = DMatrix::from_row_slice(
    ///     4,
    ///     3,
    ///     &[
    ///         1.0, 0.0, 0.0,
    ///         0.0, 0.0, 1.0,
    ///         0.0, 0.0, 0.0,
    ///         0.0, 1.0, 0.0
    ///     ],
    /// );
    /// let dm2 = DMatrix::from_row_slice(
    ///     6,
    ///     2,
    ///     &[
    ///         1.0, 0.0,
    ///         0.0, 1.0,
    ///         0.0, 0.0,
    ///         0.0, 1.0,
    ///         0.0, 0.0,
    ///         0.0, 0.0,
    ///     ],
    /// );
    /// let reshaped = dm1.reshape_generic(Dyn(6), Dyn(2));
    /// assert_eq!(reshaped, dm2);
    /// ```
    pub fn reshape_generic<R2, C2>(
        self,
        new_nrows: R2,
        new_ncols: C2,
    ) -> Matrix<T, R2, C2, S::Output>
    where
        R2: Dim,
        C2: Dim,
        S: ReshapableStorage<T, R, C, R2, C2>,
    {
        let data = self.data.reshape_generic(new_nrows, new_ncols);
        Matrix::from_data(data)
    }
}

/// # In-place resizing
#[cfg(any(feature = "std", feature = "alloc"))]
impl<T: Scalar> OMatrix<T, Dyn, Dyn> {
    /// Resizes this matrix in-place.
    ///
    /// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
    /// rows and/or columns than `self`, then the extra rows or columns are filled with `val`.
    ///
    /// Defined only for owned fully-dynamic matrices, i.e., `DMatrix`.
    pub fn resize_mut(&mut self, new_nrows: usize, new_ncols: usize, val: T)
    where
        DefaultAllocator: Reallocator<T, Dyn, Dyn, Dyn, Dyn>,
    {
        // TODO: avoid the clone.
        *self = self.clone().resize(new_nrows, new_ncols, val);
    }
}

#[cfg(any(feature = "std", feature = "alloc"))]
impl<T: Scalar, C: Dim> OMatrix<T, Dyn, C>
where
    DefaultAllocator: Allocator<Dyn, C>,
{
    /// Changes the number of rows of this matrix in-place.
    ///
    /// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
    /// rows than `self`, then the extra rows are filled with `val`.
    ///
    /// Defined only for owned matrices with a dynamic number of rows (for example, `DVector`).
    #[cfg(any(feature = "std", feature = "alloc"))]
    pub fn resize_vertically_mut(&mut self, new_nrows: usize, val: T)
    where
        DefaultAllocator: Reallocator<T, Dyn, C, Dyn, C>,
    {
        // TODO: avoid the clone.
        *self = self.clone().resize_vertically(new_nrows, val);
    }
}

#[cfg(any(feature = "std", feature = "alloc"))]
impl<T: Scalar, R: Dim> OMatrix<T, R, Dyn>
where
    DefaultAllocator: Allocator<R, Dyn>,
{
    /// Changes the number of column of this matrix in-place.
    ///
    /// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
    /// columns than `self`, then the extra columns are filled with `val`.
    ///
    /// Defined only for owned matrices with a dynamic number of columns (for example, `DVector`).
    #[cfg(any(feature = "std", feature = "alloc"))]
    pub fn resize_horizontally_mut(&mut self, new_ncols: usize, val: T)
    where
        DefaultAllocator: Reallocator<T, R, Dyn, R, Dyn>,
    {
        // TODO: avoid the clone.
        *self = self.clone().resize_horizontally(new_ncols, val);
    }
}

// Move the elements of `data` in such a way that the matrix with
// the rows `[i, i + nremove[` deleted is represented in a contiguous
// way in `data` after this method completes.
// Every deleted element are manually dropped by this method.
unsafe fn compress_rows<T: Scalar>(
    data: &mut [T],
    nrows: usize,
    ncols: usize,
    i: usize,
    nremove: usize,
) {
    let new_nrows = nrows - nremove;

    if nremove == 0 {
        return; // Nothing to remove or drop.
    }

    if new_nrows == 0 || ncols == 0 {
        // The output matrix is empty, drop everything.
        ptr::drop_in_place(data);
        return;
    }

    // Safety: because `nremove != 0`, the pointers given to `ptr::copy`
    //         won’t alias.
    let ptr_in = data.as_ptr();
    let ptr_out = data.as_mut_ptr();

    let mut curr_i = i;

    for k in 0..ncols - 1 {
        // Safety: we drop the row elements in-place because we will overwrite these
        //         entries later with the `ptr::copy`.
        let s = ptr::slice_from_raw_parts_mut(ptr_out.add(curr_i), nremove);
        ptr::drop_in_place(s);
        ptr::copy(
            ptr_in.add(curr_i + (k + 1) * nremove),
            ptr_out.add(curr_i),
            new_nrows,
        );

        curr_i += new_nrows;
    }

    /*
     * Deal with the last column from which less values have to be copied.
     */
    // Safety: we drop the row elements in-place because we will overwrite these
    //         entries later with the `ptr::copy`.
    let s = ptr::slice_from_raw_parts_mut(ptr_out.add(curr_i), nremove);
    ptr::drop_in_place(s);
    let remaining_len = nrows - i - nremove;
    ptr::copy(
        ptr_in.add(nrows * ncols - remaining_len),
        ptr_out.add(curr_i),
        remaining_len,
    );
}

// Moves entries of a matrix buffer to make place for `ninsert` empty rows starting at the `i-th` row index.
// The `data` buffer is assumed to contained at least `(nrows + ninsert) * ncols` elements.
unsafe fn extend_rows<T>(data: &mut [T], nrows: usize, ncols: usize, i: usize, ninsert: usize) {
    let new_nrows = nrows + ninsert;

    if new_nrows == 0 || ncols == 0 {
        return; // Nothing to do as the output matrix is empty.
    }

    let ptr_in = data.as_ptr();
    let ptr_out = data.as_mut_ptr();

    let remaining_len = nrows - i;
    let mut curr_i = new_nrows * ncols - remaining_len;

    // Deal with the last column from which less values have to be copied.
    ptr::copy(
        ptr_in.add(nrows * ncols - remaining_len),
        ptr_out.add(curr_i),
        remaining_len,
    );

    for k in (0..ncols - 1).rev() {
        curr_i -= new_nrows;

        ptr::copy(ptr_in.add(k * nrows + i), ptr_out.add(curr_i), nrows);
    }
}

/// Extend the number of columns of the `Matrix` with elements from
/// a given iterator.
#[cfg(any(feature = "std", feature = "alloc"))]
impl<T, R, S> Extend<T> for Matrix<T, R, Dyn, S>
where
    T: Scalar,
    R: Dim,
    S: Extend<T>,
{
    /// Extend the number of columns of the `Matrix` with elements
    /// from the given iterator.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{DMatrix, Dyn, Matrix, OMatrix, Matrix3};
    ///
    /// let data = vec![0, 1, 2,      // column 1
    ///                 3, 4, 5];     // column 2
    ///
    /// let mut matrix = DMatrix::from_vec(3, 2, data);
    ///
    /// matrix.extend(vec![6, 7, 8]); // column 3
    ///
    /// assert!(matrix.eq(&Matrix3::new(0, 3, 6,
    ///                                 1, 4, 7,
    ///                                 2, 5, 8)));
    /// ```
    ///
    /// # Panics
    /// This function panics if the number of elements yielded by the
    /// given iterator is not a multiple of the number of rows of the
    /// `Matrix`.
    ///
    /// ```should_panic
    /// # use nalgebra::{DMatrix, Dyn, OMatrix};
    /// let data = vec![0, 1, 2,  // column 1
    ///                 3, 4, 5]; // column 2
    ///
    /// let mut matrix = DMatrix::from_vec(3, 2, data);
    ///
    /// // The following panics because the vec length is not a multiple of 3.
    /// matrix.extend(vec![6, 7, 8, 9]);
    /// ```
    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
        self.data.extend(iter);
    }
}

/// Extend the number of rows of the `Vector` with elements from
/// a given iterator.
#[cfg(any(feature = "std", feature = "alloc"))]
impl<T, S> Extend<T> for Matrix<T, Dyn, U1, S>
where
    T: Scalar,
    S: Extend<T>,
{
    /// Extend the number of rows of a `Vector` with elements
    /// from the given iterator.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::DVector;
    /// let mut vector = DVector::from_vec(vec![0, 1, 2]);
    /// vector.extend(vec![3, 4, 5]);
    /// assert!(vector.eq(&DVector::from_vec(vec![0, 1, 2, 3, 4, 5])));
    /// ```
    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
        self.data.extend(iter);
    }
}

#[cfg(any(feature = "std", feature = "alloc"))]
impl<T, R, S, RV, SV> Extend<Vector<T, RV, SV>> for Matrix<T, R, Dyn, S>
where
    T: Scalar,
    R: Dim,
    S: Extend<Vector<T, RV, SV>>,
    RV: Dim,
    SV: RawStorage<T, RV>,
    ShapeConstraint: SameNumberOfRows<R, RV>,
{
    /// Extends the number of columns of a `Matrix` with `Vector`s
    /// from a given iterator.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{DMatrix, Vector3, Matrix3x4};
    ///
    /// let data = vec![0, 1, 2,          // column 1
    ///                 3, 4, 5];         // column 2
    ///
    /// let mut matrix = DMatrix::from_vec(3, 2, data);
    ///
    /// matrix.extend(
    ///   vec![Vector3::new(6,  7,  8),   // column 3
    ///        Vector3::new(9, 10, 11)]); // column 4
    ///
    /// assert!(matrix.eq(&Matrix3x4::new(0, 3, 6,  9,
    ///                                   1, 4, 7, 10,
    ///                                   2, 5, 8, 11)));
    /// ```
    ///
    /// # Panics
    /// This function panics if the dimension of each `Vector` yielded
    /// by the given iterator is not equal to the number of rows of
    /// this `Matrix`.
    ///
    /// ```should_panic
    /// # use nalgebra::{DMatrix, Vector2, Matrix3x4};
    /// let mut matrix =
    ///   DMatrix::from_vec(3, 2,
    ///                     vec![0, 1, 2,   // column 1
    ///                          3, 4, 5]); // column 2
    ///
    /// // The following panics because this matrix can only be extended with 3-dimensional vectors.
    /// matrix.extend(
    ///   vec![Vector2::new(6,  7)]); // too few dimensions!
    /// ```
    ///
    /// ```should_panic
    /// # use nalgebra::{DMatrix, Vector4, Matrix3x4};
    /// let mut matrix =
    ///   DMatrix::from_vec(3, 2,
    ///                     vec![0, 1, 2,   // column 1
    ///                          3, 4, 5]); // column 2
    ///
    /// // The following panics because this matrix can only be extended with 3-dimensional vectors.
    /// matrix.extend(
    ///   vec![Vector4::new(6, 7, 8, 9)]); // too few dimensions!
    /// ```
    fn extend<I: IntoIterator<Item = Vector<T, RV, SV>>>(&mut self, iter: I) {
        self.data.extend(iter);
    }
}