nalgebra/base/edition.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
use num::{One, Zero};
use std::cmp;
#[cfg(any(feature = "std", feature = "alloc"))]
use std::iter::ExactSizeIterator;
use std::ptr;
use crate::base::allocator::{Allocator, Reallocator};
use crate::base::constraint::{DimEq, SameNumberOfColumns, SameNumberOfRows, ShapeConstraint};
#[cfg(any(feature = "std", feature = "alloc"))]
use crate::base::dimension::Dyn;
use crate::base::dimension::{Const, Dim, DimAdd, DimDiff, DimMin, DimMinimum, DimSub, DimSum, U1};
use crate::base::storage::{RawStorage, RawStorageMut, ReshapableStorage};
use crate::base::{DefaultAllocator, Matrix, OMatrix, RowVector, Scalar, Vector};
use crate::{Storage, UninitMatrix};
use std::mem::MaybeUninit;
/// # Triangular matrix extraction
impl<T: Scalar + Zero, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
/// Extracts the upper triangular part of this matrix (including the diagonal).
#[inline]
#[must_use]
pub fn upper_triangle(&self) -> OMatrix<T, R, C>
where
DefaultAllocator: Allocator<R, C>,
{
let mut res = self.clone_owned();
res.fill_lower_triangle(T::zero(), 1);
res
}
/// Extracts the lower triangular part of this matrix (including the diagonal).
#[inline]
#[must_use]
pub fn lower_triangle(&self) -> OMatrix<T, R, C>
where
DefaultAllocator: Allocator<R, C>,
{
let mut res = self.clone_owned();
res.fill_upper_triangle(T::zero(), 1);
res
}
}
/// # Rows and columns extraction
impl<T: Scalar, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
/// Creates a new matrix by extracting the given set of rows from `self`.
#[cfg(any(feature = "std", feature = "alloc"))]
#[must_use]
pub fn select_rows<'a, I>(&self, irows: I) -> OMatrix<T, Dyn, C>
where
I: IntoIterator<Item = &'a usize>,
I::IntoIter: ExactSizeIterator + Clone,
DefaultAllocator: Allocator<Dyn, C>,
{
let irows = irows.into_iter();
let ncols = self.shape_generic().1;
let mut res = Matrix::uninit(Dyn(irows.len()), ncols);
// First, check that all the indices from irows are valid.
// This will allow us to use unchecked access in the inner loop.
for i in irows.clone() {
assert!(*i < self.nrows(), "Row index out of bounds.")
}
for j in 0..ncols.value() {
// TODO: use unchecked column indexing
let mut res = res.column_mut(j);
let src = self.column(j);
for (destination, source) in irows.clone().enumerate() {
// Safety: all indices are in range.
unsafe {
*res.vget_unchecked_mut(destination) =
MaybeUninit::new(src.vget_unchecked(*source).clone());
}
}
}
// Safety: res is now fully initialized.
unsafe { res.assume_init() }
}
/// Creates a new matrix by extracting the given set of columns from `self`.
#[cfg(any(feature = "std", feature = "alloc"))]
#[must_use]
pub fn select_columns<'a, I>(&self, icols: I) -> OMatrix<T, R, Dyn>
where
I: IntoIterator<Item = &'a usize>,
I::IntoIter: ExactSizeIterator,
DefaultAllocator: Allocator<R, Dyn>,
{
let icols = icols.into_iter();
let nrows = self.shape_generic().0;
let mut res = Matrix::uninit(nrows, Dyn(icols.len()));
for (destination, source) in icols.enumerate() {
// NOTE: this is basically a copy_frow but wrapping the values insnide of MaybeUninit.
res.column_mut(destination)
.zip_apply(&self.column(*source), |out, e| *out = MaybeUninit::new(e));
}
// Safety: res is now fully initialized.
unsafe { res.assume_init() }
}
}
/// # Set rows, columns, and diagonal
impl<T: Scalar, R: Dim, C: Dim, S: RawStorageMut<T, R, C>> Matrix<T, R, C, S> {
/// Fills the diagonal of this matrix with the content of the given vector.
#[inline]
pub fn set_diagonal<R2: Dim, S2>(&mut self, diag: &Vector<T, R2, S2>)
where
R: DimMin<C>,
S2: RawStorage<T, R2>,
ShapeConstraint: DimEq<DimMinimum<R, C>, R2>,
{
let (nrows, ncols) = self.shape();
let min_nrows_ncols = cmp::min(nrows, ncols);
assert_eq!(diag.len(), min_nrows_ncols, "Mismatched dimensions.");
for i in 0..min_nrows_ncols {
unsafe { *self.get_unchecked_mut((i, i)) = diag.vget_unchecked(i).clone() }
}
}
/// Fills the diagonal of this matrix with the content of the given iterator.
///
/// This will fill as many diagonal elements as the iterator yields, up to the
/// minimum of the number of rows and columns of `self`, and starting with the
/// diagonal element at index (0, 0).
#[inline]
pub fn set_partial_diagonal(&mut self, diag: impl Iterator<Item = T>) {
let (nrows, ncols) = self.shape();
let min_nrows_ncols = cmp::min(nrows, ncols);
for (i, val) in diag.enumerate().take(min_nrows_ncols) {
unsafe { *self.get_unchecked_mut((i, i)) = val }
}
}
/// Fills the selected row of this matrix with the content of the given vector.
#[inline]
pub fn set_row<C2: Dim, S2>(&mut self, i: usize, row: &RowVector<T, C2, S2>)
where
S2: RawStorage<T, U1, C2>,
ShapeConstraint: SameNumberOfColumns<C, C2>,
{
self.row_mut(i).copy_from(row);
}
/// Fills the selected column of this matrix with the content of the given vector.
#[inline]
pub fn set_column<R2: Dim, S2>(&mut self, i: usize, column: &Vector<T, R2, S2>)
where
S2: RawStorage<T, R2, U1>,
ShapeConstraint: SameNumberOfRows<R, R2>,
{
self.column_mut(i).copy_from(column);
}
}
/// # In-place filling
impl<T, R: Dim, C: Dim, S: RawStorageMut<T, R, C>> Matrix<T, R, C, S> {
/// Sets all the elements of this matrix to the value returned by the closure.
#[inline]
pub fn fill_with(&mut self, val: impl Fn() -> T) {
for e in self.iter_mut() {
*e = val()
}
}
/// Sets all the elements of this matrix to `val`.
#[inline]
pub fn fill(&mut self, val: T)
where
T: Scalar,
{
for e in self.iter_mut() {
*e = val.clone()
}
}
/// Fills `self` with the identity matrix.
#[inline]
pub fn fill_with_identity(&mut self)
where
T: Scalar + Zero + One,
{
self.fill(T::zero());
self.fill_diagonal(T::one());
}
/// Sets all the diagonal elements of this matrix to `val`.
#[inline]
pub fn fill_diagonal(&mut self, val: T)
where
T: Scalar,
{
let (nrows, ncols) = self.shape();
let n = cmp::min(nrows, ncols);
for i in 0..n {
unsafe { *self.get_unchecked_mut((i, i)) = val.clone() }
}
}
/// Sets all the elements of the selected row to `val`.
#[inline]
pub fn fill_row(&mut self, i: usize, val: T)
where
T: Scalar,
{
assert!(i < self.nrows(), "Row index out of bounds.");
for j in 0..self.ncols() {
unsafe { *self.get_unchecked_mut((i, j)) = val.clone() }
}
}
/// Sets all the elements of the selected column to `val`.
#[inline]
pub fn fill_column(&mut self, j: usize, val: T)
where
T: Scalar,
{
assert!(j < self.ncols(), "Row index out of bounds.");
for i in 0..self.nrows() {
unsafe { *self.get_unchecked_mut((i, j)) = val.clone() }
}
}
/// Sets all the elements of the lower-triangular part of this matrix to `val`.
///
/// The parameter `shift` allows some subdiagonals to be left untouched:
/// * If `shift = 0` then the diagonal is overwritten as well.
/// * If `shift = 1` then the diagonal is left untouched.
/// * If `shift > 1`, then the diagonal and the first `shift - 1` subdiagonals are left
/// untouched.
#[inline]
pub fn fill_lower_triangle(&mut self, val: T, shift: usize)
where
T: Scalar,
{
for j in 0..self.ncols() {
for i in (j + shift)..self.nrows() {
unsafe { *self.get_unchecked_mut((i, j)) = val.clone() }
}
}
}
/// Sets all the elements of the lower-triangular part of this matrix to `val`.
///
/// The parameter `shift` allows some superdiagonals to be left untouched:
/// * If `shift = 0` then the diagonal is overwritten as well.
/// * If `shift = 1` then the diagonal is left untouched.
/// * If `shift > 1`, then the diagonal and the first `shift - 1` superdiagonals are left
/// untouched.
#[inline]
pub fn fill_upper_triangle(&mut self, val: T, shift: usize)
where
T: Scalar,
{
for j in shift..self.ncols() {
// TODO: is there a more efficient way to avoid the min ?
// (necessary for rectangular matrices)
for i in 0..cmp::min(j + 1 - shift, self.nrows()) {
unsafe { *self.get_unchecked_mut((i, j)) = val.clone() }
}
}
}
}
impl<T: Scalar, D: Dim, S: RawStorageMut<T, D, D>> Matrix<T, D, D, S> {
/// Copies the upper-triangle of this matrix to its lower-triangular part.
///
/// This makes the matrix symmetric. Panics if the matrix is not square.
pub fn fill_lower_triangle_with_upper_triangle(&mut self) {
assert!(self.is_square(), "The input matrix should be square.");
let dim = self.nrows();
for j in 0..dim {
for i in j + 1..dim {
unsafe {
*self.get_unchecked_mut((i, j)) = self.get_unchecked((j, i)).clone();
}
}
}
}
/// Copies the upper-triangle of this matrix to its upper-triangular part.
///
/// This makes the matrix symmetric. Panics if the matrix is not square.
pub fn fill_upper_triangle_with_lower_triangle(&mut self) {
assert!(self.is_square(), "The input matrix should be square.");
for j in 1..self.ncols() {
for i in 0..j {
unsafe {
*self.get_unchecked_mut((i, j)) = self.get_unchecked((j, i)).clone();
}
}
}
}
}
/// # In-place swapping
impl<T: Scalar, R: Dim, C: Dim, S: RawStorageMut<T, R, C>> Matrix<T, R, C, S> {
/// Swaps two rows in-place.
#[inline]
pub fn swap_rows(&mut self, irow1: usize, irow2: usize) {
assert!(irow1 < self.nrows() && irow2 < self.nrows());
if irow1 != irow2 {
// TODO: optimize that.
for i in 0..self.ncols() {
unsafe { self.swap_unchecked((irow1, i), (irow2, i)) }
}
}
// Otherwise do nothing.
}
/// Swaps two columns in-place.
#[inline]
pub fn swap_columns(&mut self, icol1: usize, icol2: usize) {
assert!(icol1 < self.ncols() && icol2 < self.ncols());
if icol1 != icol2 {
// TODO: optimize that.
for i in 0..self.nrows() {
unsafe { self.swap_unchecked((i, icol1), (i, icol2)) }
}
}
// Otherwise do nothing.
}
}
/*
*
* TODO: specialize all the following for slices.
*
*/
/// # Rows and columns removal
impl<T: Scalar, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
/*
*
* Column removal.
*
*/
/// Removes the `i`-th column from this matrix.
#[inline]
pub fn remove_column(self, i: usize) -> OMatrix<T, R, DimDiff<C, U1>>
where
C: DimSub<U1>,
DefaultAllocator: Reallocator<T, R, C, R, DimDiff<C, U1>>,
{
self.remove_fixed_columns::<1>(i)
}
/// Removes all columns in `indices`
#[cfg(any(feature = "std", feature = "alloc"))]
pub fn remove_columns_at(self, indices: &[usize]) -> OMatrix<T, R, Dyn>
where
C: DimSub<Dyn, Output = Dyn>,
DefaultAllocator: Reallocator<T, R, C, R, Dyn>,
{
let mut m = self.into_owned();
let (nrows, ncols) = m.shape_generic();
let mut offset: usize = 0;
let mut target: usize = 0;
while offset + target < ncols.value() {
if indices.contains(&(target + offset)) {
// Safety: the resulting pointer is within range.
let col_ptr = unsafe { m.data.ptr_mut().add((target + offset) * nrows.value()) };
// Drop every element in the column we are about to overwrite.
// We use the a similar technique as in `Vec::truncate`.
let s = ptr::slice_from_raw_parts_mut(col_ptr, nrows.value());
// Safety: we drop the column in-place, which is OK because we will overwrite these
// entries later in the loop, or discard them with the `reallocate_copy`
// afterwards.
unsafe { ptr::drop_in_place(s) };
offset += 1;
} else {
unsafe {
let ptr_source = m.data.ptr().add((target + offset) * nrows.value());
let ptr_target = m.data.ptr_mut().add(target * nrows.value());
// Copy the data, overwriting what we dropped.
ptr::copy(ptr_source, ptr_target, nrows.value());
target += 1;
}
}
}
// Safety: The new size is smaller than the old size, so
// DefaultAllocator::reallocate_copy will initialize
// every element of the new matrix which can then
// be assumed to be initialized.
unsafe {
let new_data = DefaultAllocator::reallocate_copy(
nrows,
ncols.sub(Dyn::from_usize(offset)),
m.data,
);
Matrix::from_data(new_data).assume_init()
}
}
/// Removes all rows in `indices`
#[cfg(any(feature = "std", feature = "alloc"))]
pub fn remove_rows_at(self, indices: &[usize]) -> OMatrix<T, Dyn, C>
where
R: DimSub<Dyn, Output = Dyn>,
DefaultAllocator: Reallocator<T, R, C, Dyn, C>,
{
let mut m = self.into_owned();
let (nrows, ncols) = m.shape_generic();
let mut offset: usize = 0;
let mut target: usize = 0;
while offset + target < nrows.value() * ncols.value() {
if indices.contains(&((target + offset) % nrows.value())) {
// Safety: the resulting pointer is within range.
unsafe {
let elt_ptr = m.data.ptr_mut().add(target + offset);
// Safety: we drop the component in-place, which is OK because we will overwrite these
// entries later in the loop, or discard them with the `reallocate_copy`
// afterwards.
ptr::drop_in_place(elt_ptr)
};
offset += 1;
} else {
unsafe {
let ptr_source = m.data.ptr().add(target + offset);
let ptr_target = m.data.ptr_mut().add(target);
// Copy the data, overwriting what we dropped in the previous iterations.
ptr::copy(ptr_source, ptr_target, 1);
target += 1;
}
}
}
// Safety: The new size is smaller than the old size, so
// DefaultAllocator::reallocate_copy will initialize
// every element of the new matrix which can then
// be assumed to be initialized.
unsafe {
let new_data = DefaultAllocator::reallocate_copy(
nrows.sub(Dyn::from_usize(offset / ncols.value())),
ncols,
m.data,
);
Matrix::from_data(new_data).assume_init()
}
}
/// Removes `D::dim()` consecutive columns from this matrix, starting with the `i`-th
/// (included).
#[inline]
pub fn remove_fixed_columns<const D: usize>(
self,
i: usize,
) -> OMatrix<T, R, DimDiff<C, Const<D>>>
where
C: DimSub<Const<D>>,
DefaultAllocator: Reallocator<T, R, C, R, DimDiff<C, Const<D>>>,
{
self.remove_columns_generic(i, Const::<D>)
}
/// Removes `n` consecutive columns from this matrix, starting with the `i`-th (included).
#[inline]
#[cfg(any(feature = "std", feature = "alloc"))]
pub fn remove_columns(self, i: usize, n: usize) -> OMatrix<T, R, Dyn>
where
C: DimSub<Dyn, Output = Dyn>,
DefaultAllocator: Reallocator<T, R, C, R, Dyn>,
{
self.remove_columns_generic(i, Dyn(n))
}
/// Removes `nremove.value()` columns from this matrix, starting with the `i`-th (included).
///
/// This is the generic implementation of `.remove_columns(...)` and
/// `.remove_fixed_columns(...)` which have nicer API interfaces.
#[inline]
pub fn remove_columns_generic<D>(self, i: usize, nremove: D) -> OMatrix<T, R, DimDiff<C, D>>
where
D: Dim,
C: DimSub<D>,
DefaultAllocator: Reallocator<T, R, C, R, DimDiff<C, D>>,
{
let mut m = self.into_owned();
let (nrows, ncols) = m.shape_generic();
assert!(
i + nremove.value() <= ncols.value(),
"Column index out of range."
);
let need_column_shifts = nremove.value() != 0 && i + nremove.value() < ncols.value();
if need_column_shifts {
// The first `deleted_i * nrows` are left untouched.
let copied_value_start = i + nremove.value();
unsafe {
let ptr_in = m.data.ptr().add(copied_value_start * nrows.value());
let ptr_out = m.data.ptr_mut().add(i * nrows.value());
// Drop all the elements of the columns we are about to overwrite.
// We use the a similar technique as in `Vec::truncate`.
let s = ptr::slice_from_raw_parts_mut(ptr_out, nremove.value() * nrows.value());
// Safety: we drop the column in-place, which is OK because we will overwrite these
// entries with `ptr::copy` afterward.
ptr::drop_in_place(s);
ptr::copy(
ptr_in,
ptr_out,
(ncols.value() - copied_value_start) * nrows.value(),
);
}
} else {
// All the columns to remove are at the end of the buffer. Drop them.
unsafe {
let ptr = m.data.ptr_mut().add(i * nrows.value());
let s = ptr::slice_from_raw_parts_mut(ptr, nremove.value() * nrows.value());
ptr::drop_in_place(s)
};
}
// Safety: The new size is smaller than the old size, so
// DefaultAllocator::reallocate_copy will initialize
// every element of the new matrix which can then
// be assumed to be initialized.
unsafe {
let new_data = DefaultAllocator::reallocate_copy(nrows, ncols.sub(nremove), m.data);
Matrix::from_data(new_data).assume_init()
}
}
/*
*
* Row removal.
*
*/
/// Removes the `i`-th row from this matrix.
#[inline]
pub fn remove_row(self, i: usize) -> OMatrix<T, DimDiff<R, U1>, C>
where
R: DimSub<U1>,
DefaultAllocator: Reallocator<T, R, C, DimDiff<R, U1>, C>,
{
self.remove_fixed_rows::<1>(i)
}
/// Removes `D::dim()` consecutive rows from this matrix, starting with the `i`-th (included).
#[inline]
pub fn remove_fixed_rows<const D: usize>(self, i: usize) -> OMatrix<T, DimDiff<R, Const<D>>, C>
where
R: DimSub<Const<D>>,
DefaultAllocator: Reallocator<T, R, C, DimDiff<R, Const<D>>, C>,
{
self.remove_rows_generic(i, Const::<D>)
}
/// Removes `n` consecutive rows from this matrix, starting with the `i`-th (included).
#[inline]
#[cfg(any(feature = "std", feature = "alloc"))]
pub fn remove_rows(self, i: usize, n: usize) -> OMatrix<T, Dyn, C>
where
R: DimSub<Dyn, Output = Dyn>,
DefaultAllocator: Reallocator<T, R, C, Dyn, C>,
{
self.remove_rows_generic(i, Dyn(n))
}
/// Removes `nremove.value()` rows from this matrix, starting with the `i`-th (included).
///
/// This is the generic implementation of `.remove_rows(...)` and `.remove_fixed_rows(...)`
/// which have nicer API interfaces.
#[inline]
pub fn remove_rows_generic<D>(self, i: usize, nremove: D) -> OMatrix<T, DimDiff<R, D>, C>
where
D: Dim,
R: DimSub<D>,
DefaultAllocator: Reallocator<T, R, C, DimDiff<R, D>, C>,
{
let mut m = self.into_owned();
let (nrows, ncols) = m.shape_generic();
assert!(
i + nremove.value() <= nrows.value(),
"Row index out of range."
);
if nremove.value() != 0 {
unsafe {
compress_rows(
m.as_mut_slice(),
nrows.value(),
ncols.value(),
i,
nremove.value(),
);
}
}
// Safety: The new size is smaller than the old size, so
// DefaultAllocator::reallocate_copy will initialize
// every element of the new matrix which can then
// be assumed to be initialized.
unsafe {
let new_data = DefaultAllocator::reallocate_copy(nrows.sub(nremove), ncols, m.data);
Matrix::from_data(new_data).assume_init()
}
}
}
/// # Rows and columns insertion
impl<T: Scalar, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
/*
*
* Columns insertion.
*
*/
/// Inserts a column filled with `val` at the `i-th` position.
#[inline]
pub fn insert_column(self, i: usize, val: T) -> OMatrix<T, R, DimSum<C, U1>>
where
C: DimAdd<U1>,
DefaultAllocator: Reallocator<T, R, C, R, DimSum<C, U1>>,
{
self.insert_fixed_columns::<1>(i, val)
}
/// Inserts `D` columns filled with `val` starting at the `i-th` position.
#[inline]
pub fn insert_fixed_columns<const D: usize>(
self,
i: usize,
val: T,
) -> OMatrix<T, R, DimSum<C, Const<D>>>
where
C: DimAdd<Const<D>>,
DefaultAllocator: Reallocator<T, R, C, R, DimSum<C, Const<D>>>,
{
let mut res = unsafe { self.insert_columns_generic_uninitialized(i, Const::<D>) };
res.fixed_columns_mut::<D>(i)
.fill_with(|| MaybeUninit::new(val.clone()));
// Safety: the result is now fully initialized. The added columns have
// been initialized by the `fill_with` above, and the rest have
// been initialized by `insert_columns_generic_uninitialized`.
unsafe { res.assume_init() }
}
/// Inserts `n` columns filled with `val` starting at the `i-th` position.
#[inline]
#[cfg(any(feature = "std", feature = "alloc"))]
pub fn insert_columns(self, i: usize, n: usize, val: T) -> OMatrix<T, R, Dyn>
where
C: DimAdd<Dyn, Output = Dyn>,
DefaultAllocator: Reallocator<T, R, C, R, Dyn>,
{
let mut res = unsafe { self.insert_columns_generic_uninitialized(i, Dyn(n)) };
res.columns_mut(i, n)
.fill_with(|| MaybeUninit::new(val.clone()));
// Safety: the result is now fully initialized. The added columns have
// been initialized by the `fill_with` above, and the rest have
// been initialized by `insert_columns_generic_uninitialized`.
unsafe { res.assume_init() }
}
/// Inserts `ninsert.value()` columns starting at the `i-th` place of this matrix.
///
/// # Safety
/// The output matrix has all its elements initialized except for the the components of the
/// added columns.
#[inline]
pub unsafe fn insert_columns_generic_uninitialized<D>(
self,
i: usize,
ninsert: D,
) -> UninitMatrix<T, R, DimSum<C, D>>
where
D: Dim,
C: DimAdd<D>,
DefaultAllocator: Reallocator<T, R, C, R, DimSum<C, D>>,
{
let m = self.into_owned();
let (nrows, ncols) = m.shape_generic();
let mut res = Matrix::from_data(DefaultAllocator::reallocate_copy(
nrows,
ncols.add(ninsert),
m.data,
));
assert!(i <= ncols.value(), "Column insertion index out of range.");
if ninsert.value() != 0 && i != ncols.value() {
let ptr_in = res.data.ptr().add(i * nrows.value());
let ptr_out = res
.data
.ptr_mut()
.add((i + ninsert.value()) * nrows.value());
ptr::copy(ptr_in, ptr_out, (ncols.value() - i) * nrows.value())
}
res
}
/*
*
* Rows insertion.
*
*/
/// Inserts a row filled with `val` at the `i-th` position.
#[inline]
pub fn insert_row(self, i: usize, val: T) -> OMatrix<T, DimSum<R, U1>, C>
where
R: DimAdd<U1>,
DefaultAllocator: Reallocator<T, R, C, DimSum<R, U1>, C>,
{
self.insert_fixed_rows::<1>(i, val)
}
/// Inserts `D::dim()` rows filled with `val` starting at the `i-th` position.
#[inline]
pub fn insert_fixed_rows<const D: usize>(
self,
i: usize,
val: T,
) -> OMatrix<T, DimSum<R, Const<D>>, C>
where
R: DimAdd<Const<D>>,
DefaultAllocator: Reallocator<T, R, C, DimSum<R, Const<D>>, C>,
{
let mut res = unsafe { self.insert_rows_generic_uninitialized(i, Const::<D>) };
res.fixed_rows_mut::<D>(i)
.fill_with(|| MaybeUninit::new(val.clone()));
// Safety: the result is now fully initialized. The added rows have
// been initialized by the `fill_with` above, and the rest have
// been initialized by `insert_rows_generic_uninitialized`.
unsafe { res.assume_init() }
}
/// Inserts `n` rows filled with `val` starting at the `i-th` position.
#[inline]
#[cfg(any(feature = "std", feature = "alloc"))]
pub fn insert_rows(self, i: usize, n: usize, val: T) -> OMatrix<T, Dyn, C>
where
R: DimAdd<Dyn, Output = Dyn>,
DefaultAllocator: Reallocator<T, R, C, Dyn, C>,
{
let mut res = unsafe { self.insert_rows_generic_uninitialized(i, Dyn(n)) };
res.rows_mut(i, n)
.fill_with(|| MaybeUninit::new(val.clone()));
// Safety: the result is now fully initialized. The added rows have
// been initialized by the `fill_with` above, and the rest have
// been initialized by `insert_rows_generic_uninitialized`.
unsafe { res.assume_init() }
}
/// Inserts `ninsert.value()` rows at the `i-th` place of this matrix.
///
/// # Safety
/// The added rows values are not initialized.
/// This is the generic implementation of `.insert_rows(...)` and
/// `.insert_fixed_rows(...)` which have nicer API interfaces.
#[inline]
pub unsafe fn insert_rows_generic_uninitialized<D>(
self,
i: usize,
ninsert: D,
) -> UninitMatrix<T, DimSum<R, D>, C>
where
D: Dim,
R: DimAdd<D>,
DefaultAllocator: Reallocator<T, R, C, DimSum<R, D>, C>,
{
let m = self.into_owned();
let (nrows, ncols) = m.shape_generic();
let mut res = Matrix::from_data(DefaultAllocator::reallocate_copy(
nrows.add(ninsert),
ncols,
m.data,
));
assert!(i <= nrows.value(), "Row insertion index out of range.");
if ninsert.value() != 0 {
extend_rows(
res.as_mut_slice(),
nrows.value(),
ncols.value(),
i,
ninsert.value(),
);
}
res
}
}
/// # Resizing and reshaping
impl<T: Scalar, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
/// Resizes this matrix so that it contains `new_nrows` rows and `new_ncols` columns.
///
/// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
/// rows and/or columns than `self`, then the extra rows or columns are filled with `val`.
#[cfg(any(feature = "std", feature = "alloc"))]
pub fn resize(self, new_nrows: usize, new_ncols: usize, val: T) -> OMatrix<T, Dyn, Dyn>
where
DefaultAllocator: Reallocator<T, R, C, Dyn, Dyn>,
{
self.resize_generic(Dyn(new_nrows), Dyn(new_ncols), val)
}
/// Resizes this matrix vertically, i.e., so that it contains `new_nrows` rows while keeping the same number of columns.
///
/// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
/// rows than `self`, then the extra rows are filled with `val`.
#[cfg(any(feature = "std", feature = "alloc"))]
pub fn resize_vertically(self, new_nrows: usize, val: T) -> OMatrix<T, Dyn, C>
where
DefaultAllocator: Reallocator<T, R, C, Dyn, C>,
{
let ncols = self.shape_generic().1;
self.resize_generic(Dyn(new_nrows), ncols, val)
}
/// Resizes this matrix horizontally, i.e., so that it contains `new_ncolumns` columns while keeping the same number of columns.
///
/// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
/// columns than `self`, then the extra columns are filled with `val`.
#[cfg(any(feature = "std", feature = "alloc"))]
pub fn resize_horizontally(self, new_ncols: usize, val: T) -> OMatrix<T, R, Dyn>
where
DefaultAllocator: Reallocator<T, R, C, R, Dyn>,
{
let nrows = self.shape_generic().0;
self.resize_generic(nrows, Dyn(new_ncols), val)
}
/// Resizes this matrix so that it contains `R2::value()` rows and `C2::value()` columns.
///
/// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
/// rows and/or columns than `self`, then the extra rows or columns are filled with `val`.
pub fn fixed_resize<const R2: usize, const C2: usize>(
self,
val: T,
) -> OMatrix<T, Const<R2>, Const<C2>>
where
DefaultAllocator: Reallocator<T, R, C, Const<R2>, Const<C2>>,
{
self.resize_generic(Const::<R2>, Const::<C2>, val)
}
/// Resizes `self` such that it has dimensions `new_nrows × new_ncols`.
///
/// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
/// rows and/or columns than `self`, then the extra rows or columns are filled with `val`.
#[inline]
pub fn resize_generic<R2: Dim, C2: Dim>(
self,
new_nrows: R2,
new_ncols: C2,
val: T,
) -> OMatrix<T, R2, C2>
where
DefaultAllocator: Reallocator<T, R, C, R2, C2>,
{
let (nrows, ncols) = self.shape();
let mut data = self.into_owned();
if new_nrows.value() == nrows {
if new_ncols.value() < ncols {
unsafe {
let num_cols_to_delete = ncols - new_ncols.value();
let col_ptr = data.data.ptr_mut().add(new_ncols.value() * nrows);
let s = ptr::slice_from_raw_parts_mut(col_ptr, num_cols_to_delete * nrows);
// Safety: drop the elements of the deleted columns.
// these are the elements that will be truncated
// by the `reallocate_copy` afterward.
ptr::drop_in_place(s)
};
}
let res = unsafe { DefaultAllocator::reallocate_copy(new_nrows, new_ncols, data.data) };
let mut res = Matrix::from_data(res);
if new_ncols.value() > ncols {
res.columns_range_mut(ncols..)
.fill_with(|| MaybeUninit::new(val.clone()));
}
// Safety: the result is now fully initialized by `reallocate_copy` and
// `fill_with` (if the output has more columns than the input).
unsafe { res.assume_init() }
} else {
let mut res;
unsafe {
if new_nrows.value() < nrows {
compress_rows(
data.as_mut_slice(),
nrows,
ncols,
new_nrows.value(),
nrows - new_nrows.value(),
);
res = Matrix::from_data(DefaultAllocator::reallocate_copy(
new_nrows, new_ncols, data.data,
));
} else {
res = Matrix::from_data(DefaultAllocator::reallocate_copy(
new_nrows, new_ncols, data.data,
));
extend_rows(
res.as_mut_slice(),
nrows,
new_ncols.value(),
nrows,
new_nrows.value() - nrows,
);
}
}
if new_ncols.value() > ncols {
res.columns_range_mut(ncols..)
.fill_with(|| MaybeUninit::new(val.clone()));
}
if new_nrows.value() > nrows {
res.view_range_mut(nrows.., ..cmp::min(ncols, new_ncols.value()))
.fill_with(|| MaybeUninit::new(val.clone()));
}
// Safety: the result is now fully initialized by `reallocate_copy` and
// `fill_with` (whenever applicable).
unsafe { res.assume_init() }
}
}
/// Reshapes `self` such that it has dimensions `new_nrows × new_ncols`.
///
/// This will reinterpret `self` as if it is a matrix with `new_nrows` rows and `new_ncols`
/// columns. The arrangements of the component in the output matrix are the same as what
/// would be obtained by `Matrix::from_slice_generic(self.as_slice(), new_nrows, new_ncols)`.
///
/// If `self` is a dynamically-sized matrix, then its components are neither copied nor moved.
/// If `self` is staticyll-sized, then a copy may happen in some situations.
/// This function will panic if the given dimensions are such that the number of elements of
/// the input matrix are not equal to the number of elements of the output matrix.
///
/// # Examples
///
/// ```
/// # use nalgebra::{Matrix3x2, Matrix2x3, DMatrix, Const, Dyn};
///
/// let m1 = Matrix2x3::new(
/// 1.1, 1.2, 1.3,
/// 2.1, 2.2, 2.3
/// );
/// let m2 = Matrix3x2::new(
/// 1.1, 2.2,
/// 2.1, 1.3,
/// 1.2, 2.3
/// );
/// let reshaped = m1.reshape_generic(Const::<3>, Const::<2>);
/// assert_eq!(reshaped, m2);
///
/// let dm1 = DMatrix::from_row_slice(
/// 4,
/// 3,
/// &[
/// 1.0, 0.0, 0.0,
/// 0.0, 0.0, 1.0,
/// 0.0, 0.0, 0.0,
/// 0.0, 1.0, 0.0
/// ],
/// );
/// let dm2 = DMatrix::from_row_slice(
/// 6,
/// 2,
/// &[
/// 1.0, 0.0,
/// 0.0, 1.0,
/// 0.0, 0.0,
/// 0.0, 1.0,
/// 0.0, 0.0,
/// 0.0, 0.0,
/// ],
/// );
/// let reshaped = dm1.reshape_generic(Dyn(6), Dyn(2));
/// assert_eq!(reshaped, dm2);
/// ```
pub fn reshape_generic<R2, C2>(
self,
new_nrows: R2,
new_ncols: C2,
) -> Matrix<T, R2, C2, S::Output>
where
R2: Dim,
C2: Dim,
S: ReshapableStorage<T, R, C, R2, C2>,
{
let data = self.data.reshape_generic(new_nrows, new_ncols);
Matrix::from_data(data)
}
}
/// # In-place resizing
#[cfg(any(feature = "std", feature = "alloc"))]
impl<T: Scalar> OMatrix<T, Dyn, Dyn> {
/// Resizes this matrix in-place.
///
/// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
/// rows and/or columns than `self`, then the extra rows or columns are filled with `val`.
///
/// Defined only for owned fully-dynamic matrices, i.e., `DMatrix`.
pub fn resize_mut(&mut self, new_nrows: usize, new_ncols: usize, val: T)
where
DefaultAllocator: Reallocator<T, Dyn, Dyn, Dyn, Dyn>,
{
// TODO: avoid the clone.
*self = self.clone().resize(new_nrows, new_ncols, val);
}
}
#[cfg(any(feature = "std", feature = "alloc"))]
impl<T: Scalar, C: Dim> OMatrix<T, Dyn, C>
where
DefaultAllocator: Allocator<Dyn, C>,
{
/// Changes the number of rows of this matrix in-place.
///
/// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
/// rows than `self`, then the extra rows are filled with `val`.
///
/// Defined only for owned matrices with a dynamic number of rows (for example, `DVector`).
#[cfg(any(feature = "std", feature = "alloc"))]
pub fn resize_vertically_mut(&mut self, new_nrows: usize, val: T)
where
DefaultAllocator: Reallocator<T, Dyn, C, Dyn, C>,
{
// TODO: avoid the clone.
*self = self.clone().resize_vertically(new_nrows, val);
}
}
#[cfg(any(feature = "std", feature = "alloc"))]
impl<T: Scalar, R: Dim> OMatrix<T, R, Dyn>
where
DefaultAllocator: Allocator<R, Dyn>,
{
/// Changes the number of column of this matrix in-place.
///
/// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
/// columns than `self`, then the extra columns are filled with `val`.
///
/// Defined only for owned matrices with a dynamic number of columns (for example, `DVector`).
#[cfg(any(feature = "std", feature = "alloc"))]
pub fn resize_horizontally_mut(&mut self, new_ncols: usize, val: T)
where
DefaultAllocator: Reallocator<T, R, Dyn, R, Dyn>,
{
// TODO: avoid the clone.
*self = self.clone().resize_horizontally(new_ncols, val);
}
}
// Move the elements of `data` in such a way that the matrix with
// the rows `[i, i + nremove[` deleted is represented in a contiguous
// way in `data` after this method completes.
// Every deleted element are manually dropped by this method.
unsafe fn compress_rows<T: Scalar>(
data: &mut [T],
nrows: usize,
ncols: usize,
i: usize,
nremove: usize,
) {
let new_nrows = nrows - nremove;
if nremove == 0 {
return; // Nothing to remove or drop.
}
if new_nrows == 0 || ncols == 0 {
// The output matrix is empty, drop everything.
ptr::drop_in_place(data);
return;
}
// Safety: because `nremove != 0`, the pointers given to `ptr::copy`
// won’t alias.
let ptr_in = data.as_ptr();
let ptr_out = data.as_mut_ptr();
let mut curr_i = i;
for k in 0..ncols - 1 {
// Safety: we drop the row elements in-place because we will overwrite these
// entries later with the `ptr::copy`.
let s = ptr::slice_from_raw_parts_mut(ptr_out.add(curr_i), nremove);
ptr::drop_in_place(s);
ptr::copy(
ptr_in.add(curr_i + (k + 1) * nremove),
ptr_out.add(curr_i),
new_nrows,
);
curr_i += new_nrows;
}
/*
* Deal with the last column from which less values have to be copied.
*/
// Safety: we drop the row elements in-place because we will overwrite these
// entries later with the `ptr::copy`.
let s = ptr::slice_from_raw_parts_mut(ptr_out.add(curr_i), nremove);
ptr::drop_in_place(s);
let remaining_len = nrows - i - nremove;
ptr::copy(
ptr_in.add(nrows * ncols - remaining_len),
ptr_out.add(curr_i),
remaining_len,
);
}
// Moves entries of a matrix buffer to make place for `ninsert` empty rows starting at the `i-th` row index.
// The `data` buffer is assumed to contained at least `(nrows + ninsert) * ncols` elements.
unsafe fn extend_rows<T>(data: &mut [T], nrows: usize, ncols: usize, i: usize, ninsert: usize) {
let new_nrows = nrows + ninsert;
if new_nrows == 0 || ncols == 0 {
return; // Nothing to do as the output matrix is empty.
}
let ptr_in = data.as_ptr();
let ptr_out = data.as_mut_ptr();
let remaining_len = nrows - i;
let mut curr_i = new_nrows * ncols - remaining_len;
// Deal with the last column from which less values have to be copied.
ptr::copy(
ptr_in.add(nrows * ncols - remaining_len),
ptr_out.add(curr_i),
remaining_len,
);
for k in (0..ncols - 1).rev() {
curr_i -= new_nrows;
ptr::copy(ptr_in.add(k * nrows + i), ptr_out.add(curr_i), nrows);
}
}
/// Extend the number of columns of the `Matrix` with elements from
/// a given iterator.
#[cfg(any(feature = "std", feature = "alloc"))]
impl<T, R, S> Extend<T> for Matrix<T, R, Dyn, S>
where
T: Scalar,
R: Dim,
S: Extend<T>,
{
/// Extend the number of columns of the `Matrix` with elements
/// from the given iterator.
///
/// # Example
/// ```
/// # use nalgebra::{DMatrix, Dyn, Matrix, OMatrix, Matrix3};
///
/// let data = vec![0, 1, 2, // column 1
/// 3, 4, 5]; // column 2
///
/// let mut matrix = DMatrix::from_vec(3, 2, data);
///
/// matrix.extend(vec![6, 7, 8]); // column 3
///
/// assert!(matrix.eq(&Matrix3::new(0, 3, 6,
/// 1, 4, 7,
/// 2, 5, 8)));
/// ```
///
/// # Panics
/// This function panics if the number of elements yielded by the
/// given iterator is not a multiple of the number of rows of the
/// `Matrix`.
///
/// ```should_panic
/// # use nalgebra::{DMatrix, Dyn, OMatrix};
/// let data = vec![0, 1, 2, // column 1
/// 3, 4, 5]; // column 2
///
/// let mut matrix = DMatrix::from_vec(3, 2, data);
///
/// // The following panics because the vec length is not a multiple of 3.
/// matrix.extend(vec![6, 7, 8, 9]);
/// ```
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
self.data.extend(iter);
}
}
/// Extend the number of rows of the `Vector` with elements from
/// a given iterator.
#[cfg(any(feature = "std", feature = "alloc"))]
impl<T, S> Extend<T> for Matrix<T, Dyn, U1, S>
where
T: Scalar,
S: Extend<T>,
{
/// Extend the number of rows of a `Vector` with elements
/// from the given iterator.
///
/// # Example
/// ```
/// # use nalgebra::DVector;
/// let mut vector = DVector::from_vec(vec![0, 1, 2]);
/// vector.extend(vec![3, 4, 5]);
/// assert!(vector.eq(&DVector::from_vec(vec![0, 1, 2, 3, 4, 5])));
/// ```
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
self.data.extend(iter);
}
}
#[cfg(any(feature = "std", feature = "alloc"))]
impl<T, R, S, RV, SV> Extend<Vector<T, RV, SV>> for Matrix<T, R, Dyn, S>
where
T: Scalar,
R: Dim,
S: Extend<Vector<T, RV, SV>>,
RV: Dim,
SV: RawStorage<T, RV>,
ShapeConstraint: SameNumberOfRows<R, RV>,
{
/// Extends the number of columns of a `Matrix` with `Vector`s
/// from a given iterator.
///
/// # Example
/// ```
/// # use nalgebra::{DMatrix, Vector3, Matrix3x4};
///
/// let data = vec![0, 1, 2, // column 1
/// 3, 4, 5]; // column 2
///
/// let mut matrix = DMatrix::from_vec(3, 2, data);
///
/// matrix.extend(
/// vec![Vector3::new(6, 7, 8), // column 3
/// Vector3::new(9, 10, 11)]); // column 4
///
/// assert!(matrix.eq(&Matrix3x4::new(0, 3, 6, 9,
/// 1, 4, 7, 10,
/// 2, 5, 8, 11)));
/// ```
///
/// # Panics
/// This function panics if the dimension of each `Vector` yielded
/// by the given iterator is not equal to the number of rows of
/// this `Matrix`.
///
/// ```should_panic
/// # use nalgebra::{DMatrix, Vector2, Matrix3x4};
/// let mut matrix =
/// DMatrix::from_vec(3, 2,
/// vec![0, 1, 2, // column 1
/// 3, 4, 5]); // column 2
///
/// // The following panics because this matrix can only be extended with 3-dimensional vectors.
/// matrix.extend(
/// vec![Vector2::new(6, 7)]); // too few dimensions!
/// ```
///
/// ```should_panic
/// # use nalgebra::{DMatrix, Vector4, Matrix3x4};
/// let mut matrix =
/// DMatrix::from_vec(3, 2,
/// vec![0, 1, 2, // column 1
/// 3, 4, 5]); // column 2
///
/// // The following panics because this matrix can only be extended with 3-dimensional vectors.
/// matrix.extend(
/// vec![Vector4::new(6, 7, 8, 9)]); // too few dimensions!
/// ```
fn extend<I: IntoIterator<Item = Vector<T, RV, SV>>>(&mut self, iter: I) {
self.data.extend(iter);
}
}