nalgebra/base/unit.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
use std::fmt;
use std::ops::Deref;
#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use crate::allocator::Allocator;
use crate::base::DefaultAllocator;
use crate::storage::RawStorage;
use crate::{Dim, Matrix, OMatrix, RealField, Scalar, SimdComplexField, SimdRealField};
#[cfg(feature = "rkyv-serialize")]
use rkyv::bytecheck;
/// A wrapper that ensures the underlying algebraic entity has a unit norm.
///
/// **It is likely that the only piece of documentation that you need in this page are:**
/// - **[The construction with normalization](#construction-with-normalization)**
/// - **[Data extraction and construction without normalization](#data-extraction-and-construction-without-normalization)**
/// - **[Interpolation between two unit vectors](#interpolation-between-two-unit-vectors)**
///
/// All the other impl blocks you will see in this page are about [`UnitComplex`](crate::UnitComplex)
/// and [`UnitQuaternion`](crate::UnitQuaternion); both built on top of `Unit`. If you are interested
/// in their documentation, read their dedicated pages directly.
#[repr(transparent)]
#[derive(Clone, Hash, Copy)]
#[cfg_attr(
feature = "rkyv-serialize-no-std",
derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize),
archive(
as = "Unit<T::Archived>",
bound(archive = "
T: rkyv::Archive,
")
)
)]
#[cfg_attr(feature = "rkyv-serialize", derive(bytecheck::CheckBytes))]
pub struct Unit<T> {
pub(crate) value: T,
}
impl<T: fmt::Debug> fmt::Debug for Unit<T> {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
self.value.fmt(formatter)
}
}
#[cfg(feature = "bytemuck")]
unsafe impl<T> bytemuck::Zeroable for Unit<T> where T: bytemuck::Zeroable {}
#[cfg(feature = "bytemuck")]
unsafe impl<T> bytemuck::Pod for Unit<T> where T: bytemuck::Pod {}
#[cfg(feature = "serde-serialize-no-std")]
impl<T: Serialize> Serialize for Unit<T> {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
self.value.serialize(serializer)
}
}
#[cfg(feature = "serde-serialize-no-std")]
impl<'de, T: Deserialize<'de>> Deserialize<'de> for Unit<T> {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
T::deserialize(deserializer).map(|x| Unit { value: x })
}
}
impl<T, R, C, S> PartialEq for Unit<Matrix<T, R, C, S>>
where
T: Scalar + PartialEq,
R: Dim,
C: Dim,
S: RawStorage<T, R, C>,
{
#[inline]
fn eq(&self, rhs: &Self) -> bool {
self.value.eq(&rhs.value)
}
}
impl<T, R, C, S> Eq for Unit<Matrix<T, R, C, S>>
where
T: Scalar + Eq,
R: Dim,
C: Dim,
S: RawStorage<T, R, C>,
{
}
/// Trait implemented by entities scan be be normalized and put in an `Unit` struct.
pub trait Normed {
/// The type of the norm.
type Norm: SimdRealField;
/// Computes the norm.
fn norm(&self) -> Self::Norm;
/// Computes the squared norm.
fn norm_squared(&self) -> Self::Norm;
/// Multiply `self` by n.
fn scale_mut(&mut self, n: Self::Norm);
/// Divides `self` by n.
fn unscale_mut(&mut self, n: Self::Norm);
}
/// # Construction with normalization
impl<T: Normed> Unit<T> {
/// Normalize the given vector and return it wrapped on a `Unit` structure.
#[inline]
pub fn new_normalize(value: T) -> Self {
Self::new_and_get(value).0
}
/// Attempts to normalize the given vector and return it wrapped on a `Unit` structure.
///
/// Returns `None` if the norm was smaller or equal to `min_norm`.
#[inline]
pub fn try_new(value: T, min_norm: T::Norm) -> Option<Self>
where
T::Norm: RealField,
{
Self::try_new_and_get(value, min_norm).map(|res| res.0)
}
/// Normalize the given vector and return it wrapped on a `Unit` structure and its norm.
#[inline]
pub fn new_and_get(mut value: T) -> (Self, T::Norm) {
let n = value.norm();
value.unscale_mut(n.clone());
(Unit { value }, n)
}
/// Normalize the given vector and return it wrapped on a `Unit` structure and its norm.
///
/// Returns `None` if the norm was smaller or equal to `min_norm`.
#[inline]
pub fn try_new_and_get(mut value: T, min_norm: T::Norm) -> Option<(Self, T::Norm)>
where
T::Norm: RealField,
{
let sq_norm = value.norm_squared();
if sq_norm > min_norm.clone() * min_norm {
let n = sq_norm.simd_sqrt();
value.unscale_mut(n.clone());
Some((Unit { value }, n))
} else {
None
}
}
/// Normalizes this vector again. This is useful when repeated computations
/// might cause a drift in the norm because of float inaccuracies.
///
/// Returns the norm before re-normalization. See `.renormalize_fast` for a faster alternative
/// that may be slightly less accurate if `self` drifted significantly from having a unit length.
#[inline]
pub fn renormalize(&mut self) -> T::Norm {
let n = self.norm();
self.value.unscale_mut(n.clone());
n
}
/// Normalizes this vector again using a first-order Taylor approximation.
/// This is useful when repeated computations might cause a drift in the norm
/// because of float inaccuracies.
#[inline]
pub fn renormalize_fast(&mut self) {
let sq_norm = self.value.norm_squared();
let three: T::Norm = crate::convert(3.0);
let half: T::Norm = crate::convert(0.5);
self.value.scale_mut(half * (three - sq_norm));
}
}
/// # Data extraction and construction without normalization
impl<T> Unit<T> {
/// Wraps the given value, assuming it is already normalized.
#[inline]
pub const fn new_unchecked(value: T) -> Self {
Unit { value }
}
/// Wraps the given reference, assuming it is already normalized.
#[inline]
pub fn from_ref_unchecked(value: &T) -> &Self {
unsafe { &*(value as *const T as *const Self) }
}
/// Retrieves the underlying value.
#[inline]
pub fn into_inner(self) -> T {
self.value
}
/// Retrieves the underlying value.
/// Deprecated: use [`Unit::into_inner`] instead.
#[deprecated(note = "use `.into_inner()` instead")]
#[inline]
pub fn unwrap(self) -> T {
self.value
}
/// Returns a mutable reference to the underlying value. This is `_unchecked` because modifying
/// the underlying value in such a way that it no longer has unit length may lead to unexpected
/// results.
#[inline]
pub fn as_mut_unchecked(&mut self) -> &mut T {
&mut self.value
}
}
impl<T> AsRef<T> for Unit<T> {
#[inline]
fn as_ref(&self) -> &T {
&self.value
}
}
/*
/*
*
* Conversions.
*
*/
impl<T: NormedSpace> SubsetOf<T> for Unit<T>
where T::RealField: RelativeEq
{
#[inline]
fn to_superset(&self) -> T {
self.clone().into_inner()
}
#[inline]
fn is_in_subset(value: &T) -> bool {
relative_eq!(value.norm_squared(), crate::one())
}
#[inline]
fn from_superset_unchecked(value: &T) -> Self {
Unit::new_normalize(value.clone()) // We still need to re-normalize because the condition is inexact.
}
}
// impl<T: RelativeEq> RelativeEq for Unit<T> {
// type Epsilon = T::Epsilon;
//
// #[inline]
// fn default_epsilon() -> Self::Epsilon {
// T::default_epsilon()
// }
//
// #[inline]
// fn default_max_relative() -> Self::Epsilon {
// T::default_max_relative()
// }
//
// #[inline]
// fn default_max_ulps() -> u32 {
// T::default_max_ulps()
// }
//
// #[inline]
// fn relative_eq(&self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon) -> bool {
// self.value.relative_eq(&other.value, epsilon, max_relative)
// }
//
// #[inline]
// fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
// self.value.ulps_eq(&other.value, epsilon, max_ulps)
// }
// }
*/
// TODO:re-enable this impl when specialization is possible.
// Currently, it is disabled so that we can have a nice output for the `UnitQuaternion` display.
/*
impl<T: fmt::Display> fmt::Display for Unit<T> {
// XXX: will not always work correctly due to rounding errors.
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.value.fmt(f)
}
}
*/
impl<T> Deref for Unit<T> {
type Target = T;
#[inline]
fn deref(&self) -> &T {
unsafe { &*(self as *const Self as *const T) }
}
}
// NOTE: we can't use a generic implementation for `Unit<T>` because
// num_complex::Complex does not implement `From[Complex<...>...]` (and can't
// because of the orphan rules).
impl<T: Scalar + simba::simd::PrimitiveSimdValue, R: Dim, C: Dim>
From<[Unit<OMatrix<T::Element, R, C>>; 2]> for Unit<OMatrix<T, R, C>>
where
T: From<[<T as simba::simd::SimdValue>::Element; 2]>,
T::Element: Scalar,
DefaultAllocator: Allocator<R, C>,
{
#[inline]
fn from(arr: [Unit<OMatrix<T::Element, R, C>>; 2]) -> Self {
Self::new_unchecked(OMatrix::from([
arr[0].clone().into_inner(),
arr[1].clone().into_inner(),
]))
}
}
impl<T: Scalar + simba::simd::PrimitiveSimdValue, R: Dim, C: Dim>
From<[Unit<OMatrix<T::Element, R, C>>; 4]> for Unit<OMatrix<T, R, C>>
where
T: From<[<T as simba::simd::SimdValue>::Element; 4]>,
T::Element: Scalar,
DefaultAllocator: Allocator<R, C>,
{
#[inline]
fn from(arr: [Unit<OMatrix<T::Element, R, C>>; 4]) -> Self {
Self::new_unchecked(OMatrix::from([
arr[0].clone().into_inner(),
arr[1].clone().into_inner(),
arr[2].clone().into_inner(),
arr[3].clone().into_inner(),
]))
}
}
impl<T: Scalar + simba::simd::PrimitiveSimdValue, R: Dim, C: Dim>
From<[Unit<OMatrix<T::Element, R, C>>; 8]> for Unit<OMatrix<T, R, C>>
where
T: From<[<T as simba::simd::SimdValue>::Element; 8]>,
T::Element: Scalar,
DefaultAllocator: Allocator<R, C>,
{
#[inline]
fn from(arr: [Unit<OMatrix<T::Element, R, C>>; 8]) -> Self {
Self::new_unchecked(OMatrix::from([
arr[0].clone().into_inner(),
arr[1].clone().into_inner(),
arr[2].clone().into_inner(),
arr[3].clone().into_inner(),
arr[4].clone().into_inner(),
arr[5].clone().into_inner(),
arr[6].clone().into_inner(),
arr[7].clone().into_inner(),
]))
}
}
impl<T: Scalar + simba::simd::PrimitiveSimdValue, R: Dim, C: Dim>
From<[Unit<OMatrix<T::Element, R, C>>; 16]> for Unit<OMatrix<T, R, C>>
where
T: From<[<T as simba::simd::SimdValue>::Element; 16]>,
T::Element: Scalar,
DefaultAllocator: Allocator<R, C>,
{
#[inline]
fn from(arr: [Unit<OMatrix<T::Element, R, C>>; 16]) -> Self {
Self::new_unchecked(OMatrix::from([
arr[0].clone().into_inner(),
arr[1].clone().into_inner(),
arr[2].clone().into_inner(),
arr[3].clone().into_inner(),
arr[4].clone().into_inner(),
arr[5].clone().into_inner(),
arr[6].clone().into_inner(),
arr[7].clone().into_inner(),
arr[8].clone().into_inner(),
arr[9].clone().into_inner(),
arr[10].clone().into_inner(),
arr[11].clone().into_inner(),
arr[12].clone().into_inner(),
arr[13].clone().into_inner(),
arr[14].clone().into_inner(),
arr[15].clone().into_inner(),
]))
}
}