nalgebra/geometry/
abstract_rotation.rs

1use crate::geometry::{Rotation, UnitComplex, UnitQuaternion};
2use crate::{Const, OVector, Point, SVector, Scalar, SimdRealField, Unit};
3
4use simba::scalar::ClosedMulAssign;
5
6/// Trait implemented by rotations that can be used inside of an `Isometry` or `Similarity`.
7pub trait AbstractRotation<T: Scalar, const D: usize>: PartialEq + ClosedMulAssign + Clone {
8    /// The rotation identity.
9    fn identity() -> Self;
10    /// The rotation inverse.
11    fn inverse(&self) -> Self;
12    /// Change `self` to its inverse.
13    fn inverse_mut(&mut self);
14    /// Apply the rotation to the given vector.
15    fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>;
16    /// Apply the rotation to the given point.
17    fn transform_point(&self, p: &Point<T, D>) -> Point<T, D>;
18    /// Apply the inverse rotation to the given vector.
19    fn inverse_transform_vector(&self, v: &OVector<T, Const<D>>) -> OVector<T, Const<D>>;
20    /// Apply the inverse rotation to the given unit vector.
21    fn inverse_transform_unit_vector(&self, v: &Unit<SVector<T, D>>) -> Unit<SVector<T, D>> {
22        Unit::new_unchecked(self.inverse_transform_vector(&**v))
23    }
24    /// Apply the inverse rotation to the given point.
25    fn inverse_transform_point(&self, p: &Point<T, D>) -> Point<T, D>;
26}
27
28impl<T: SimdRealField, const D: usize> AbstractRotation<T, D> for Rotation<T, D>
29where
30    T::Element: SimdRealField,
31{
32    #[inline]
33    fn identity() -> Self {
34        Self::identity()
35    }
36
37    #[inline]
38    fn inverse(&self) -> Self {
39        self.inverse()
40    }
41
42    #[inline]
43    fn inverse_mut(&mut self) {
44        self.inverse_mut()
45    }
46
47    #[inline]
48    fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
49        self * v
50    }
51
52    #[inline]
53    fn transform_point(&self, p: &Point<T, D>) -> Point<T, D> {
54        self * p
55    }
56
57    #[inline]
58    fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
59        self.inverse_transform_vector(v)
60    }
61
62    #[inline]
63    fn inverse_transform_unit_vector(&self, v: &Unit<SVector<T, D>>) -> Unit<SVector<T, D>> {
64        self.inverse_transform_unit_vector(v)
65    }
66
67    #[inline]
68    fn inverse_transform_point(&self, p: &Point<T, D>) -> Point<T, D> {
69        self.inverse_transform_point(p)
70    }
71}
72
73impl<T: SimdRealField> AbstractRotation<T, 3> for UnitQuaternion<T>
74where
75    T::Element: SimdRealField,
76{
77    #[inline]
78    fn identity() -> Self {
79        Self::identity()
80    }
81
82    #[inline]
83    fn inverse(&self) -> Self {
84        self.inverse()
85    }
86
87    #[inline]
88    fn inverse_mut(&mut self) {
89        self.inverse_mut()
90    }
91
92    #[inline]
93    fn transform_vector(&self, v: &SVector<T, 3>) -> SVector<T, 3> {
94        self * v
95    }
96
97    #[inline]
98    fn transform_point(&self, p: &Point<T, 3>) -> Point<T, 3> {
99        self * p
100    }
101
102    #[inline]
103    fn inverse_transform_vector(&self, v: &SVector<T, 3>) -> SVector<T, 3> {
104        self.inverse_transform_vector(v)
105    }
106
107    #[inline]
108    fn inverse_transform_point(&self, p: &Point<T, 3>) -> Point<T, 3> {
109        self.inverse_transform_point(p)
110    }
111}
112
113impl<T: SimdRealField> AbstractRotation<T, 2> for UnitComplex<T>
114where
115    T::Element: SimdRealField,
116{
117    #[inline]
118    fn identity() -> Self {
119        Self::identity()
120    }
121
122    #[inline]
123    fn inverse(&self) -> Self {
124        self.inverse()
125    }
126
127    #[inline]
128    fn inverse_mut(&mut self) {
129        self.inverse_mut()
130    }
131
132    #[inline]
133    fn transform_vector(&self, v: &SVector<T, 2>) -> SVector<T, 2> {
134        self * v
135    }
136
137    #[inline]
138    fn transform_point(&self, p: &Point<T, 2>) -> Point<T, 2> {
139        self * p
140    }
141
142    #[inline]
143    fn inverse_transform_vector(&self, v: &SVector<T, 2>) -> SVector<T, 2> {
144        self.inverse_transform_vector(v)
145    }
146
147    #[inline]
148    fn inverse_transform_point(&self, p: &Point<T, 2>) -> Point<T, 2> {
149        self.inverse_transform_point(p)
150    }
151}