nalgebra/geometry/
dual_quaternion_conversion.rsuse simba::scalar::{RealField, SubsetOf, SupersetOf};
use simba::simd::SimdRealField;
use crate::base::{Matrix4, Vector4};
use crate::geometry::{
DualQuaternion, Isometry3, Similarity3, SuperTCategoryOf, TAffine, Transform, Translation3,
UnitDualQuaternion, UnitQuaternion,
};
impl<T1, T2> SubsetOf<DualQuaternion<T2>> for DualQuaternion<T1>
where
T1: SimdRealField,
T2: SimdRealField + SupersetOf<T1>,
{
#[inline]
fn to_superset(&self) -> DualQuaternion<T2> {
DualQuaternion::from_real_and_dual(self.real.to_superset(), self.dual.to_superset())
}
#[inline]
fn is_in_subset(dq: &DualQuaternion<T2>) -> bool {
crate::is_convertible::<_, Vector4<T1>>(&dq.real.coords)
&& crate::is_convertible::<_, Vector4<T1>>(&dq.dual.coords)
}
#[inline]
fn from_superset_unchecked(dq: &DualQuaternion<T2>) -> Self {
DualQuaternion::from_real_and_dual(
dq.real.to_subset_unchecked(),
dq.dual.to_subset_unchecked(),
)
}
}
impl<T1, T2> SubsetOf<UnitDualQuaternion<T2>> for UnitDualQuaternion<T1>
where
T1: SimdRealField,
T2: SimdRealField + SupersetOf<T1>,
{
#[inline]
fn to_superset(&self) -> UnitDualQuaternion<T2> {
UnitDualQuaternion::new_unchecked(self.as_ref().to_superset())
}
#[inline]
fn is_in_subset(dq: &UnitDualQuaternion<T2>) -> bool {
crate::is_convertible::<_, DualQuaternion<T1>>(dq.as_ref())
}
#[inline]
fn from_superset_unchecked(dq: &UnitDualQuaternion<T2>) -> Self {
Self::new_unchecked(crate::convert_ref_unchecked(dq.as_ref()))
}
}
impl<T1, T2> SubsetOf<Isometry3<T2>> for UnitDualQuaternion<T1>
where
T1: RealField,
T2: RealField + SupersetOf<T1>,
{
#[inline]
fn to_superset(&self) -> Isometry3<T2> {
let dq: UnitDualQuaternion<T2> = self.to_superset();
let iso = dq.to_isometry();
crate::convert_unchecked(iso)
}
#[inline]
fn is_in_subset(iso: &Isometry3<T2>) -> bool {
crate::is_convertible::<_, UnitQuaternion<T1>>(&iso.rotation)
&& crate::is_convertible::<_, Translation3<T1>>(&iso.translation)
}
#[inline]
fn from_superset_unchecked(iso: &Isometry3<T2>) -> Self {
let dq = UnitDualQuaternion::<T2>::from_isometry(iso);
crate::convert_unchecked(dq)
}
}
impl<T1, T2> SubsetOf<Similarity3<T2>> for UnitDualQuaternion<T1>
where
T1: RealField,
T2: RealField + SupersetOf<T1>,
{
#[inline]
fn to_superset(&self) -> Similarity3<T2> {
Similarity3::from_isometry(crate::convert_ref(self), T2::one())
}
#[inline]
fn is_in_subset(sim: &Similarity3<T2>) -> bool {
sim.scaling() == T2::one()
}
#[inline]
fn from_superset_unchecked(sim: &Similarity3<T2>) -> Self {
crate::convert_ref_unchecked(&sim.isometry)
}
}
impl<T1, T2, C> SubsetOf<Transform<T2, C, 3>> for UnitDualQuaternion<T1>
where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
{
#[inline]
fn to_superset(&self) -> Transform<T2, C, 3> {
Transform::from_matrix_unchecked(self.clone().to_homogeneous().to_superset())
}
#[inline]
fn is_in_subset(t: &Transform<T2, C, 3>) -> bool {
<Self as SubsetOf<_>>::is_in_subset(t.matrix())
}
#[inline]
fn from_superset_unchecked(t: &Transform<T2, C, 3>) -> Self {
Self::from_superset_unchecked(t.matrix())
}
}
impl<T1: RealField, T2: RealField + SupersetOf<T1>> SubsetOf<Matrix4<T2>>
for UnitDualQuaternion<T1>
{
#[inline]
fn to_superset(&self) -> Matrix4<T2> {
self.clone().to_homogeneous().to_superset()
}
#[inline]
fn is_in_subset(m: &Matrix4<T2>) -> bool {
crate::is_convertible::<_, Isometry3<T1>>(m)
}
#[inline]
fn from_superset_unchecked(m: &Matrix4<T2>) -> Self {
let iso: Isometry3<T1> = crate::convert_ref_unchecked(m);
Self::from_isometry(&iso)
}
}
impl<T: SimdRealField + RealField> From<UnitDualQuaternion<T>> for Matrix4<T>
where
T::Element: SimdRealField,
{
#[inline]
fn from(dq: UnitDualQuaternion<T>) -> Self {
dq.to_homogeneous()
}
}
impl<T: SimdRealField> From<UnitDualQuaternion<T>> for Isometry3<T>
where
T::Element: SimdRealField,
{
#[inline]
fn from(dq: UnitDualQuaternion<T>) -> Self {
dq.to_isometry()
}
}
impl<T: SimdRealField> From<Isometry3<T>> for UnitDualQuaternion<T>
where
T::Element: SimdRealField,
{
#[inline]
fn from(iso: Isometry3<T>) -> Self {
Self::from_isometry(&iso)
}
}