nalgebra/geometry/rotation_specialization.rs
1#[cfg(feature = "arbitrary")]
2use crate::base::storage::Owned;
3#[cfg(feature = "arbitrary")]
4use quickcheck::{Arbitrary, Gen};
5
6use num::Zero;
7
8#[cfg(feature = "rand-no-std")]
9use rand::{
10 distributions::{uniform::SampleUniform, Distribution, OpenClosed01, Standard, Uniform},
11 Rng,
12};
13
14use simba::scalar::RealField;
15use simba::simd::{SimdBool, SimdRealField};
16use std::ops::Neg;
17
18use crate::base::dimension::{U1, U2, U3};
19use crate::base::storage::Storage;
20use crate::base::{
21 Matrix2, Matrix3, SMatrix, SVector, Unit, UnitVector3, Vector, Vector1, Vector2, Vector3,
22};
23
24use crate::geometry::{Rotation2, Rotation3, UnitComplex, UnitQuaternion};
25
26/*
27 *
28 * 2D Rotation matrix.
29 *
30 */
31/// # Construction from a 2D rotation angle
32impl<T: SimdRealField> Rotation2<T> {
33 /// Builds a 2 dimensional rotation matrix from an angle in radian.
34 ///
35 /// # Example
36 ///
37 /// ```
38 /// # #[macro_use] extern crate approx;
39 /// # use std::f32;
40 /// # use nalgebra::{Rotation2, Point2};
41 /// let rot = Rotation2::new(f32::consts::FRAC_PI_2);
42 ///
43 /// assert_relative_eq!(rot * Point2::new(3.0, 4.0), Point2::new(-4.0, 3.0));
44 /// ```
45 pub fn new(angle: T) -> Self {
46 let (sia, coa) = angle.simd_sin_cos();
47 Self::from_matrix_unchecked(Matrix2::new(coa.clone(), -sia.clone(), sia, coa))
48 }
49
50 /// Builds a 2 dimensional rotation matrix from an angle in radian wrapped in a 1-dimensional vector.
51 ///
52 ///
53 /// This is generally used in the context of generic programming. Using
54 /// the `::new(angle)` method instead is more common.
55 #[inline]
56 pub fn from_scaled_axis<SB: Storage<T, U1>>(axisangle: Vector<T, U1, SB>) -> Self {
57 Self::new(axisangle[0].clone())
58 }
59}
60
61/// # Construction from an existing 2D matrix or rotations
62impl<T: SimdRealField> Rotation2<T> {
63 /// Builds a rotation from a basis assumed to be orthonormal.
64 ///
65 /// In order to get a valid rotation matrix, the input must be an
66 /// orthonormal basis, i.e., all vectors are normalized, and the are
67 /// all orthogonal to each other. These invariants are not checked
68 /// by this method.
69 pub fn from_basis_unchecked(basis: &[Vector2<T>; 2]) -> Self {
70 let mat = Matrix2::from_columns(&basis[..]);
71 Self::from_matrix_unchecked(mat)
72 }
73
74 /// Builds a rotation matrix by extracting the rotation part of the given transformation `m`.
75 ///
76 /// This is an iterative method. See `.from_matrix_eps` to provide mover
77 /// convergence parameters and starting solution.
78 /// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
79 pub fn from_matrix(m: &Matrix2<T>) -> Self
80 where
81 T: RealField,
82 {
83 Self::from_matrix_eps(m, T::default_epsilon(), 0, Self::identity())
84 }
85
86 /// Builds a rotation matrix by extracting the rotation part of the given transformation `m`.
87 ///
88 /// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
89 ///
90 /// # Parameters
91 ///
92 /// * `m`: the matrix from which the rotational part is to be extracted.
93 /// * `eps`: the angular errors tolerated between the current rotation and the optimal one.
94 /// * `max_iter`: the maximum number of iterations. Loops indefinitely until convergence if set to `0`.
95 /// * `guess`: an estimate of the solution. Convergence will be significantly faster if an initial solution close
96 /// to the actual solution is provided. Can be set to `Rotation2::identity()` if no other
97 /// guesses come to mind.
98 pub fn from_matrix_eps(m: &Matrix2<T>, eps: T, mut max_iter: usize, guess: Self) -> Self
99 where
100 T: RealField,
101 {
102 if max_iter == 0 {
103 max_iter = usize::MAX;
104 }
105
106 let mut rot = guess.into_inner();
107
108 for _ in 0..max_iter {
109 let axis = rot.column(0).perp(&m.column(0)) + rot.column(1).perp(&m.column(1));
110 let denom = rot.column(0).dot(&m.column(0)) + rot.column(1).dot(&m.column(1));
111
112 let angle = axis / (denom.abs() + T::default_epsilon());
113 if angle.clone().abs() > eps {
114 rot = Self::new(angle) * rot;
115 } else {
116 break;
117 }
118 }
119
120 Self::from_matrix_unchecked(rot)
121 }
122
123 /// The rotation matrix required to align `a` and `b` but with its angle.
124 ///
125 /// This is the rotation `R` such that `(R * a).angle(b) == 0 && (R * a).dot(b).is_positive()`.
126 ///
127 /// # Example
128 /// ```
129 /// # #[macro_use] extern crate approx;
130 /// # use nalgebra::{Vector2, Rotation2};
131 /// let a = Vector2::new(1.0, 2.0);
132 /// let b = Vector2::new(2.0, 1.0);
133 /// let rot = Rotation2::rotation_between(&a, &b);
134 /// assert_relative_eq!(rot * a, b);
135 /// assert_relative_eq!(rot.inverse() * b, a);
136 /// ```
137 #[inline]
138 pub fn rotation_between<SB, SC>(a: &Vector<T, U2, SB>, b: &Vector<T, U2, SC>) -> Self
139 where
140 T: RealField,
141 SB: Storage<T, U2>,
142 SC: Storage<T, U2>,
143 {
144 crate::convert(UnitComplex::rotation_between(a, b).to_rotation_matrix())
145 }
146
147 /// The smallest rotation needed to make `a` and `b` collinear and point toward the same
148 /// direction, raised to the power `s`.
149 ///
150 /// # Example
151 /// ```
152 /// # #[macro_use] extern crate approx;
153 /// # use nalgebra::{Vector2, Rotation2};
154 /// let a = Vector2::new(1.0, 2.0);
155 /// let b = Vector2::new(2.0, 1.0);
156 /// let rot2 = Rotation2::scaled_rotation_between(&a, &b, 0.2);
157 /// let rot5 = Rotation2::scaled_rotation_between(&a, &b, 0.5);
158 /// assert_relative_eq!(rot2 * rot2 * rot2 * rot2 * rot2 * a, b, epsilon = 1.0e-6);
159 /// assert_relative_eq!(rot5 * rot5 * a, b, epsilon = 1.0e-6);
160 /// ```
161 #[inline]
162 pub fn scaled_rotation_between<SB, SC>(
163 a: &Vector<T, U2, SB>,
164 b: &Vector<T, U2, SC>,
165 s: T,
166 ) -> Self
167 where
168 T: RealField,
169 SB: Storage<T, U2>,
170 SC: Storage<T, U2>,
171 {
172 crate::convert(UnitComplex::scaled_rotation_between(a, b, s).to_rotation_matrix())
173 }
174
175 /// The rotation matrix needed to make `self` and `other` coincide.
176 ///
177 /// The result is such that: `self.rotation_to(other) * self == other`.
178 ///
179 /// # Example
180 /// ```
181 /// # #[macro_use] extern crate approx;
182 /// # use nalgebra::Rotation2;
183 /// let rot1 = Rotation2::new(0.1);
184 /// let rot2 = Rotation2::new(1.7);
185 /// let rot_to = rot1.rotation_to(&rot2);
186 ///
187 /// assert_relative_eq!(rot_to * rot1, rot2);
188 /// assert_relative_eq!(rot_to.inverse() * rot2, rot1);
189 /// ```
190 #[inline]
191 #[must_use]
192 pub fn rotation_to(&self, other: &Self) -> Self {
193 other * self.inverse()
194 }
195
196 /// Ensure this rotation is an orthonormal rotation matrix. This is useful when repeated
197 /// computations might cause the matrix from progressively not being orthonormal anymore.
198 #[inline]
199 pub fn renormalize(&mut self)
200 where
201 T: RealField,
202 {
203 let mut c = UnitComplex::from(self.clone());
204 let _ = c.renormalize();
205
206 *self = Self::from_matrix_eps(self.matrix(), T::default_epsilon(), 0, c.into())
207 }
208
209 /// Raise the rotation to a given floating power, i.e., returns the rotation with the angle
210 /// of `self` multiplied by `n`.
211 ///
212 /// # Example
213 /// ```
214 /// # #[macro_use] extern crate approx;
215 /// # use nalgebra::Rotation2;
216 /// let rot = Rotation2::new(0.78);
217 /// let pow = rot.powf(2.0);
218 /// assert_relative_eq!(pow.angle(), 2.0 * 0.78);
219 /// ```
220 #[inline]
221 #[must_use]
222 pub fn powf(&self, n: T) -> Self {
223 Self::new(self.angle() * n)
224 }
225}
226
227/// # 2D angle extraction
228impl<T: SimdRealField> Rotation2<T> {
229 /// The rotation angle.
230 ///
231 /// # Example
232 /// ```
233 /// # #[macro_use] extern crate approx;
234 /// # use nalgebra::Rotation2;
235 /// let rot = Rotation2::new(1.78);
236 /// assert_relative_eq!(rot.angle(), 1.78);
237 /// ```
238 #[inline]
239 #[must_use]
240 pub fn angle(&self) -> T {
241 self.matrix()[(1, 0)]
242 .clone()
243 .simd_atan2(self.matrix()[(0, 0)].clone())
244 }
245
246 /// The rotation angle needed to make `self` and `other` coincide.
247 ///
248 /// # Example
249 /// ```
250 /// # #[macro_use] extern crate approx;
251 /// # use nalgebra::Rotation2;
252 /// let rot1 = Rotation2::new(0.1);
253 /// let rot2 = Rotation2::new(1.7);
254 /// assert_relative_eq!(rot1.angle_to(&rot2), 1.6);
255 /// ```
256 #[inline]
257 #[must_use]
258 pub fn angle_to(&self, other: &Self) -> T {
259 self.rotation_to(other).angle()
260 }
261
262 /// The rotation angle returned as a 1-dimensional vector.
263 ///
264 /// This is generally used in the context of generic programming. Using
265 /// the `.angle()` method instead is more common.
266 #[inline]
267 #[must_use]
268 pub fn scaled_axis(&self) -> SVector<T, 1> {
269 Vector1::new(self.angle())
270 }
271}
272
273#[cfg(feature = "rand-no-std")]
274impl<T: SimdRealField> Distribution<Rotation2<T>> for Standard
275where
276 T::Element: SimdRealField,
277 T: SampleUniform,
278{
279 /// Generate a uniformly distributed random rotation.
280 #[inline]
281 fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Rotation2<T> {
282 let twopi = Uniform::new(T::zero(), T::simd_two_pi());
283 Rotation2::new(rng.sample(twopi))
284 }
285}
286
287#[cfg(feature = "arbitrary")]
288impl<T: SimdRealField + Arbitrary> Arbitrary for Rotation2<T>
289where
290 T::Element: SimdRealField,
291 Owned<T, U2, U2>: Send,
292{
293 #[inline]
294 fn arbitrary(g: &mut Gen) -> Self {
295 Self::new(T::arbitrary(g))
296 }
297}
298
299/*
300 *
301 * 3D Rotation matrix.
302 *
303 */
304/// # Construction from a 3D axis and/or angles
305impl<T: SimdRealField> Rotation3<T>
306where
307 T::Element: SimdRealField,
308{
309 /// Builds a 3 dimensional rotation matrix from an axis and an angle.
310 ///
311 /// # Arguments
312 /// * `axisangle` - A vector representing the rotation. Its magnitude is the amount of rotation
313 /// in radian. Its direction is the axis of rotation.
314 ///
315 /// # Example
316 /// ```
317 /// # #[macro_use] extern crate approx;
318 /// # use std::f32;
319 /// # use nalgebra::{Rotation3, Point3, Vector3};
320 /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
321 /// // Point and vector being transformed in the tests.
322 /// let pt = Point3::new(4.0, 5.0, 6.0);
323 /// let vec = Vector3::new(4.0, 5.0, 6.0);
324 /// let rot = Rotation3::new(axisangle);
325 ///
326 /// assert_relative_eq!(rot * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
327 /// assert_relative_eq!(rot * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
328 ///
329 /// // A zero vector yields an identity.
330 /// assert_eq!(Rotation3::new(Vector3::<f32>::zeros()), Rotation3::identity());
331 /// ```
332 pub fn new<SB: Storage<T, U3>>(axisangle: Vector<T, U3, SB>) -> Self {
333 let axisangle = axisangle.into_owned();
334 let (axis, angle) = Unit::new_and_get(axisangle);
335 Self::from_axis_angle(&axis, angle)
336 }
337
338 /// Builds a 3D rotation matrix from an axis scaled by the rotation angle.
339 ///
340 /// This is the same as `Self::new(axisangle)`.
341 ///
342 /// # Example
343 /// ```
344 /// # #[macro_use] extern crate approx;
345 /// # use std::f32;
346 /// # use nalgebra::{Rotation3, Point3, Vector3};
347 /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
348 /// // Point and vector being transformed in the tests.
349 /// let pt = Point3::new(4.0, 5.0, 6.0);
350 /// let vec = Vector3::new(4.0, 5.0, 6.0);
351 /// let rot = Rotation3::new(axisangle);
352 ///
353 /// assert_relative_eq!(rot * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
354 /// assert_relative_eq!(rot * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
355 ///
356 /// // A zero vector yields an identity.
357 /// assert_eq!(Rotation3::from_scaled_axis(Vector3::<f32>::zeros()), Rotation3::identity());
358 /// ```
359 pub fn from_scaled_axis<SB: Storage<T, U3>>(axisangle: Vector<T, U3, SB>) -> Self {
360 Self::new(axisangle)
361 }
362
363 /// Builds a 3D rotation matrix from an axis and a rotation angle.
364 ///
365 /// # Example
366 /// ```
367 /// # #[macro_use] extern crate approx;
368 /// # use std::f32;
369 /// # use nalgebra::{Rotation3, Point3, Vector3};
370 /// let axis = Vector3::y_axis();
371 /// let angle = f32::consts::FRAC_PI_2;
372 /// // Point and vector being transformed in the tests.
373 /// let pt = Point3::new(4.0, 5.0, 6.0);
374 /// let vec = Vector3::new(4.0, 5.0, 6.0);
375 /// let rot = Rotation3::from_axis_angle(&axis, angle);
376 ///
377 /// assert_eq!(rot.axis().unwrap(), axis);
378 /// assert_eq!(rot.angle(), angle);
379 /// assert_relative_eq!(rot * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
380 /// assert_relative_eq!(rot * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
381 ///
382 /// // A zero vector yields an identity.
383 /// assert_eq!(Rotation3::from_scaled_axis(Vector3::<f32>::zeros()), Rotation3::identity());
384 /// ```
385 pub fn from_axis_angle<SB>(axis: &Unit<Vector<T, U3, SB>>, angle: T) -> Self
386 where
387 SB: Storage<T, U3>,
388 {
389 angle.clone().simd_ne(T::zero()).if_else(
390 || {
391 let ux = axis.as_ref()[0].clone();
392 let uy = axis.as_ref()[1].clone();
393 let uz = axis.as_ref()[2].clone();
394 let sqx = ux.clone() * ux.clone();
395 let sqy = uy.clone() * uy.clone();
396 let sqz = uz.clone() * uz.clone();
397 let (sin, cos) = angle.simd_sin_cos();
398 let one_m_cos = T::one() - cos.clone();
399
400 Self::from_matrix_unchecked(SMatrix::<T, 3, 3>::new(
401 sqx.clone() + (T::one() - sqx) * cos.clone(),
402 ux.clone() * uy.clone() * one_m_cos.clone() - uz.clone() * sin.clone(),
403 ux.clone() * uz.clone() * one_m_cos.clone() + uy.clone() * sin.clone(),
404 ux.clone() * uy.clone() * one_m_cos.clone() + uz.clone() * sin.clone(),
405 sqy.clone() + (T::one() - sqy) * cos.clone(),
406 uy.clone() * uz.clone() * one_m_cos.clone() - ux.clone() * sin.clone(),
407 ux.clone() * uz.clone() * one_m_cos.clone() - uy.clone() * sin.clone(),
408 uy * uz * one_m_cos + ux * sin,
409 sqz.clone() + (T::one() - sqz) * cos,
410 ))
411 },
412 Self::identity,
413 )
414 }
415
416 /// Creates a new rotation from Euler angles.
417 ///
418 /// The primitive rotations are applied in order: 1 roll − 2 pitch − 3 yaw.
419 ///
420 /// # Example
421 /// ```
422 /// # #[macro_use] extern crate approx;
423 /// # use nalgebra::Rotation3;
424 /// let rot = Rotation3::from_euler_angles(0.1, 0.2, 0.3);
425 /// let euler = rot.euler_angles();
426 /// assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6);
427 /// assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6);
428 /// assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
429 /// ```
430 pub fn from_euler_angles(roll: T, pitch: T, yaw: T) -> Self {
431 let (sr, cr) = roll.simd_sin_cos();
432 let (sp, cp) = pitch.simd_sin_cos();
433 let (sy, cy) = yaw.simd_sin_cos();
434
435 Self::from_matrix_unchecked(SMatrix::<T, 3, 3>::new(
436 cy.clone() * cp.clone(),
437 cy.clone() * sp.clone() * sr.clone() - sy.clone() * cr.clone(),
438 cy.clone() * sp.clone() * cr.clone() + sy.clone() * sr.clone(),
439 sy.clone() * cp.clone(),
440 sy.clone() * sp.clone() * sr.clone() + cy.clone() * cr.clone(),
441 sy * sp.clone() * cr.clone() - cy * sr.clone(),
442 -sp,
443 cp.clone() * sr,
444 cp * cr,
445 ))
446 }
447}
448
449/// # Construction from a 3D eye position and target point
450impl<T: SimdRealField> Rotation3<T>
451where
452 T::Element: SimdRealField,
453{
454 /// Creates a rotation that corresponds to the local frame of an observer standing at the
455 /// origin and looking toward `dir`.
456 ///
457 /// It maps the `z` axis to the direction `dir`.
458 ///
459 /// # Arguments
460 /// * dir - The look direction, that is, direction the matrix `z` axis will be aligned with.
461 /// * up - The vertical direction. The only requirement of this parameter is to not be
462 /// collinear to `dir`. Non-collinearity is not checked.
463 ///
464 /// # Example
465 /// ```
466 /// # #[macro_use] extern crate approx;
467 /// # use std::f32;
468 /// # use nalgebra::{Rotation3, Vector3};
469 /// let dir = Vector3::new(1.0, 2.0, 3.0);
470 /// let up = Vector3::y();
471 ///
472 /// let rot = Rotation3::face_towards(&dir, &up);
473 /// assert_relative_eq!(rot * Vector3::z(), dir.normalize());
474 /// ```
475 #[inline]
476 pub fn face_towards<SB, SC>(dir: &Vector<T, U3, SB>, up: &Vector<T, U3, SC>) -> Self
477 where
478 SB: Storage<T, U3>,
479 SC: Storage<T, U3>,
480 {
481 // Gram–Schmidt process
482 let zaxis = dir.normalize();
483 let xaxis = up.cross(&zaxis).normalize();
484 let yaxis = zaxis.cross(&xaxis);
485
486 Self::from_matrix_unchecked(SMatrix::<T, 3, 3>::new(
487 xaxis.x.clone(),
488 yaxis.x.clone(),
489 zaxis.x.clone(),
490 xaxis.y.clone(),
491 yaxis.y.clone(),
492 zaxis.y.clone(),
493 xaxis.z.clone(),
494 yaxis.z.clone(),
495 zaxis.z.clone(),
496 ))
497 }
498
499 /// Deprecated: Use [`Rotation3::face_towards`] instead.
500 #[deprecated(note = "renamed to `face_towards`")]
501 pub fn new_observer_frames<SB, SC>(dir: &Vector<T, U3, SB>, up: &Vector<T, U3, SC>) -> Self
502 where
503 SB: Storage<T, U3>,
504 SC: Storage<T, U3>,
505 {
506 Self::face_towards(dir, up)
507 }
508
509 /// Builds a right-handed look-at view matrix without translation.
510 ///
511 /// It maps the view direction `dir` to the **negative** `z` axis.
512 /// This conforms to the common notion of right handed look-at matrix from the computer
513 /// graphics community.
514 ///
515 /// # Arguments
516 /// * dir - The direction toward which the camera looks.
517 /// * up - A vector approximately aligned with required the vertical axis. The only
518 /// requirement of this parameter is to not be collinear to `dir`.
519 ///
520 /// # Example
521 /// ```
522 /// # #[macro_use] extern crate approx;
523 /// # use std::f32;
524 /// # use nalgebra::{Rotation3, Vector3};
525 /// let dir = Vector3::new(1.0, 2.0, 3.0);
526 /// let up = Vector3::y();
527 ///
528 /// let rot = Rotation3::look_at_rh(&dir, &up);
529 /// assert_relative_eq!(rot * dir.normalize(), -Vector3::z());
530 /// ```
531 #[inline]
532 pub fn look_at_rh<SB, SC>(dir: &Vector<T, U3, SB>, up: &Vector<T, U3, SC>) -> Self
533 where
534 SB: Storage<T, U3>,
535 SC: Storage<T, U3>,
536 {
537 Self::face_towards(&dir.neg(), up).inverse()
538 }
539
540 /// Builds a left-handed look-at view matrix without translation.
541 ///
542 /// It maps the view direction `dir` to the **positive** `z` axis.
543 /// This conforms to the common notion of left handed look-at matrix from the computer
544 /// graphics community.
545 ///
546 /// # Arguments
547 /// * dir - The direction toward which the camera looks.
548 /// * up - A vector approximately aligned with required the vertical axis. The only
549 /// requirement of this parameter is to not be collinear to `dir`.
550 ///
551 /// # Example
552 /// ```
553 /// # #[macro_use] extern crate approx;
554 /// # use std::f32;
555 /// # use nalgebra::{Rotation3, Vector3};
556 /// let dir = Vector3::new(1.0, 2.0, 3.0);
557 /// let up = Vector3::y();
558 ///
559 /// let rot = Rotation3::look_at_lh(&dir, &up);
560 /// assert_relative_eq!(rot * dir.normalize(), Vector3::z());
561 /// ```
562 #[inline]
563 pub fn look_at_lh<SB, SC>(dir: &Vector<T, U3, SB>, up: &Vector<T, U3, SC>) -> Self
564 where
565 SB: Storage<T, U3>,
566 SC: Storage<T, U3>,
567 {
568 Self::face_towards(dir, up).inverse()
569 }
570}
571
572/// # Construction from an existing 3D matrix or rotations
573impl<T: SimdRealField> Rotation3<T>
574where
575 T::Element: SimdRealField,
576{
577 /// The rotation matrix required to align `a` and `b` but with its angle.
578 ///
579 /// This is the rotation `R` such that `(R * a).angle(b) == 0 && (R * a).dot(b).is_positive()`.
580 ///
581 /// # Example
582 /// ```
583 /// # #[macro_use] extern crate approx;
584 /// # use nalgebra::{Vector3, Rotation3};
585 /// let a = Vector3::new(1.0, 2.0, 3.0);
586 /// let b = Vector3::new(3.0, 1.0, 2.0);
587 /// let rot = Rotation3::rotation_between(&a, &b).unwrap();
588 /// assert_relative_eq!(rot * a, b, epsilon = 1.0e-6);
589 /// assert_relative_eq!(rot.inverse() * b, a, epsilon = 1.0e-6);
590 /// ```
591 #[inline]
592 pub fn rotation_between<SB, SC>(a: &Vector<T, U3, SB>, b: &Vector<T, U3, SC>) -> Option<Self>
593 where
594 T: RealField,
595 SB: Storage<T, U3>,
596 SC: Storage<T, U3>,
597 {
598 Self::scaled_rotation_between(a, b, T::one())
599 }
600
601 /// The smallest rotation needed to make `a` and `b` collinear and point toward the same
602 /// direction, raised to the power `s`.
603 ///
604 /// # Example
605 /// ```
606 /// # #[macro_use] extern crate approx;
607 /// # use nalgebra::{Vector3, Rotation3};
608 /// let a = Vector3::new(1.0, 2.0, 3.0);
609 /// let b = Vector3::new(3.0, 1.0, 2.0);
610 /// let rot2 = Rotation3::scaled_rotation_between(&a, &b, 0.2).unwrap();
611 /// let rot5 = Rotation3::scaled_rotation_between(&a, &b, 0.5).unwrap();
612 /// assert_relative_eq!(rot2 * rot2 * rot2 * rot2 * rot2 * a, b, epsilon = 1.0e-6);
613 /// assert_relative_eq!(rot5 * rot5 * a, b, epsilon = 1.0e-6);
614 /// ```
615 #[inline]
616 pub fn scaled_rotation_between<SB, SC>(
617 a: &Vector<T, U3, SB>,
618 b: &Vector<T, U3, SC>,
619 n: T,
620 ) -> Option<Self>
621 where
622 T: RealField,
623 SB: Storage<T, U3>,
624 SC: Storage<T, U3>,
625 {
626 // TODO: code duplication with Rotation.
627 if let (Some(na), Some(nb)) = (a.try_normalize(T::zero()), b.try_normalize(T::zero())) {
628 let c = na.cross(&nb);
629
630 if let Some(axis) = Unit::try_new(c, T::default_epsilon()) {
631 return Some(Self::from_axis_angle(&axis, na.dot(&nb).acos() * n));
632 }
633
634 // Zero or PI.
635 if na.dot(&nb) < T::zero() {
636 // PI
637 //
638 // The rotation axis is undefined but the angle not zero. This is not a
639 // simple rotation.
640 return None;
641 }
642 }
643
644 Some(Self::identity())
645 }
646
647 /// The rotation matrix needed to make `self` and `other` coincide.
648 ///
649 /// The result is such that: `self.rotation_to(other) * self == other`.
650 ///
651 /// # Example
652 /// ```
653 /// # #[macro_use] extern crate approx;
654 /// # use nalgebra::{Rotation3, Vector3};
655 /// let rot1 = Rotation3::from_axis_angle(&Vector3::y_axis(), 1.0);
656 /// let rot2 = Rotation3::from_axis_angle(&Vector3::x_axis(), 0.1);
657 /// let rot_to = rot1.rotation_to(&rot2);
658 /// assert_relative_eq!(rot_to * rot1, rot2, epsilon = 1.0e-6);
659 /// ```
660 #[inline]
661 #[must_use]
662 pub fn rotation_to(&self, other: &Self) -> Self {
663 other * self.inverse()
664 }
665
666 /// Raise the rotation to a given floating power, i.e., returns the rotation with the same
667 /// axis as `self` and an angle equal to `self.angle()` multiplied by `n`.
668 ///
669 /// # Example
670 /// ```
671 /// # #[macro_use] extern crate approx;
672 /// # use nalgebra::{Rotation3, Vector3, Unit};
673 /// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
674 /// let angle = 1.2;
675 /// let rot = Rotation3::from_axis_angle(&axis, angle);
676 /// let pow = rot.powf(2.0);
677 /// assert_relative_eq!(pow.axis().unwrap(), axis, epsilon = 1.0e-6);
678 /// assert_eq!(pow.angle(), 2.4);
679 /// ```
680 #[inline]
681 #[must_use]
682 pub fn powf(&self, n: T) -> Self
683 where
684 T: RealField,
685 {
686 if let Some(axis) = self.axis() {
687 Self::from_axis_angle(&axis, self.angle() * n)
688 } else if self.matrix()[(0, 0)] < T::zero() {
689 let minus_id = SMatrix::<T, 3, 3>::from_diagonal_element(-T::one());
690 Self::from_matrix_unchecked(minus_id)
691 } else {
692 Self::identity()
693 }
694 }
695
696 /// Builds a rotation from a basis assumed to be orthonormal.
697 ///
698 /// In order to get a valid rotation matrix, the input must be an
699 /// orthonormal basis, i.e., all vectors are normalized, and the are
700 /// all orthogonal to each other. These invariants are not checked
701 /// by this method.
702 pub fn from_basis_unchecked(basis: &[Vector3<T>; 3]) -> Self {
703 let mat = Matrix3::from_columns(&basis[..]);
704 Self::from_matrix_unchecked(mat)
705 }
706
707 /// Builds a rotation matrix by extracting the rotation part of the given transformation `m`.
708 ///
709 /// This is an iterative method. See `.from_matrix_eps` to provide mover
710 /// convergence parameters and starting solution.
711 /// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
712 pub fn from_matrix(m: &Matrix3<T>) -> Self
713 where
714 T: RealField,
715 {
716 Self::from_matrix_eps(m, T::default_epsilon(), 0, Self::identity())
717 }
718
719 /// Builds a rotation matrix by extracting the rotation part of the given transformation `m`.
720 ///
721 /// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
722 ///
723 /// # Parameters
724 ///
725 /// * `m`: the matrix from which the rotational part is to be extracted.
726 /// * `eps`: the angular errors tolerated between the current rotation and the optimal one.
727 /// * `max_iter`: the maximum number of iterations. Loops indefinitely until convergence if set to `0`.
728 /// * `guess`: a guess of the solution. Convergence will be significantly faster if an initial solution close
729 /// to the actual solution is provided. Can be set to `Rotation3::identity()` if no other
730 /// guesses come to mind.
731 pub fn from_matrix_eps(m: &Matrix3<T>, eps: T, mut max_iter: usize, guess: Self) -> Self
732 where
733 T: RealField,
734 {
735 if max_iter == 0 {
736 max_iter = usize::MAX;
737 }
738
739 // Using sqrt(eps) ensures we perturb with something larger than eps; clamp to eps to handle the case of eps > 1.0
740 let eps_disturbance = eps.clone().sqrt().max(eps.clone() * eps.clone());
741 let mut perturbation_axes = Vector3::x_axis();
742 let mut rot = guess.into_inner();
743
744 for _ in 0..max_iter {
745 let axis = rot.column(0).cross(&m.column(0))
746 + rot.column(1).cross(&m.column(1))
747 + rot.column(2).cross(&m.column(2));
748 let denom = rot.column(0).dot(&m.column(0))
749 + rot.column(1).dot(&m.column(1))
750 + rot.column(2).dot(&m.column(2));
751
752 let axisangle = axis / (denom.abs() + T::default_epsilon());
753
754 if let Some((axis, angle)) = Unit::try_new_and_get(axisangle, eps.clone()) {
755 rot = Rotation3::from_axis_angle(&axis, angle) * rot;
756 } else {
757 // Check if stuck in a maximum w.r.t. the norm (m - rot).norm()
758 let mut perturbed = rot.clone();
759 let norm_squared = (m - &rot).norm_squared();
760 let mut new_norm_squared: T;
761
762 // Perturb until the new norm is significantly different
763 loop {
764 perturbed *=
765 Rotation3::from_axis_angle(&perturbation_axes, eps_disturbance.clone());
766 new_norm_squared = (m - &perturbed).norm_squared();
767 if abs_diff_ne!(
768 norm_squared,
769 new_norm_squared,
770 epsilon = T::default_epsilon()
771 ) {
772 break;
773 }
774 }
775
776 // If new norm is larger, it's a minimum
777 if norm_squared < new_norm_squared {
778 break;
779 }
780
781 // If not, continue from perturbed rotation, but use a different axes for the next perturbation
782 perturbation_axes = UnitVector3::new_unchecked(perturbation_axes.yzx());
783 rot = perturbed;
784 }
785 }
786
787 Self::from_matrix_unchecked(rot)
788 }
789
790 /// Ensure this rotation is an orthonormal rotation matrix. This is useful when repeated
791 /// computations might cause the matrix from progressively not being orthonormal anymore.
792 #[inline]
793 pub fn renormalize(&mut self)
794 where
795 T: RealField,
796 {
797 let mut c = UnitQuaternion::from(self.clone());
798 let _ = c.renormalize();
799
800 *self = Self::from_matrix_eps(self.matrix(), T::default_epsilon(), 0, c.into())
801 }
802}
803
804/// # 3D axis and angle extraction
805impl<T: SimdRealField> Rotation3<T> {
806 /// The rotation angle in [0; pi].
807 ///
808 /// # Example
809 /// ```
810 /// # #[macro_use] extern crate approx;
811 /// # use nalgebra::{Unit, Rotation3, Vector3};
812 /// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
813 /// let rot = Rotation3::from_axis_angle(&axis, 1.78);
814 /// assert_relative_eq!(rot.angle(), 1.78);
815 /// ```
816 #[inline]
817 #[must_use]
818 pub fn angle(&self) -> T {
819 ((self.matrix()[(0, 0)].clone()
820 + self.matrix()[(1, 1)].clone()
821 + self.matrix()[(2, 2)].clone()
822 - T::one())
823 / crate::convert(2.0))
824 .simd_acos()
825 }
826
827 /// The rotation axis. Returns `None` if the rotation angle is zero or PI.
828 ///
829 /// # Example
830 /// ```
831 /// # #[macro_use] extern crate approx;
832 /// # use nalgebra::{Rotation3, Vector3, Unit};
833 /// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
834 /// let angle = 1.2;
835 /// let rot = Rotation3::from_axis_angle(&axis, angle);
836 /// assert_relative_eq!(rot.axis().unwrap(), axis);
837 ///
838 /// // Case with a zero angle.
839 /// let rot = Rotation3::from_axis_angle(&axis, 0.0);
840 /// assert!(rot.axis().is_none());
841 /// ```
842 #[inline]
843 #[must_use]
844 pub fn axis(&self) -> Option<Unit<Vector3<T>>>
845 where
846 T: RealField,
847 {
848 let rotmat = self.matrix();
849 let axis = SVector::<T, 3>::new(
850 rotmat[(2, 1)].clone() - rotmat[(1, 2)].clone(),
851 rotmat[(0, 2)].clone() - rotmat[(2, 0)].clone(),
852 rotmat[(1, 0)].clone() - rotmat[(0, 1)].clone(),
853 );
854
855 Unit::try_new(axis, T::default_epsilon())
856 }
857
858 /// The rotation axis multiplied by the rotation angle.
859 ///
860 /// # Example
861 /// ```
862 /// # #[macro_use] extern crate approx;
863 /// # use nalgebra::{Rotation3, Vector3, Unit};
864 /// let axisangle = Vector3::new(0.1, 0.2, 0.3);
865 /// let rot = Rotation3::new(axisangle);
866 /// assert_relative_eq!(rot.scaled_axis(), axisangle, epsilon = 1.0e-6);
867 /// ```
868 #[inline]
869 #[must_use]
870 pub fn scaled_axis(&self) -> Vector3<T>
871 where
872 T: RealField,
873 {
874 if let Some(axis) = self.axis() {
875 axis.into_inner() * self.angle()
876 } else {
877 Vector::zero()
878 }
879 }
880
881 /// The rotation axis and angle in (0, pi] of this rotation matrix.
882 ///
883 /// Returns `None` if the angle is zero.
884 ///
885 /// # Example
886 /// ```
887 /// # #[macro_use] extern crate approx;
888 /// # use nalgebra::{Rotation3, Vector3, Unit};
889 /// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
890 /// let angle = 1.2;
891 /// let rot = Rotation3::from_axis_angle(&axis, angle);
892 /// let axis_angle = rot.axis_angle().unwrap();
893 /// assert_relative_eq!(axis_angle.0, axis);
894 /// assert_relative_eq!(axis_angle.1, angle);
895 ///
896 /// // Case with a zero angle.
897 /// let rot = Rotation3::from_axis_angle(&axis, 0.0);
898 /// assert!(rot.axis_angle().is_none());
899 /// ```
900 #[inline]
901 #[must_use]
902 pub fn axis_angle(&self) -> Option<(Unit<Vector3<T>>, T)>
903 where
904 T: RealField,
905 {
906 self.axis().map(|axis| (axis, self.angle()))
907 }
908
909 /// The rotation angle needed to make `self` and `other` coincide.
910 ///
911 /// # Example
912 /// ```
913 /// # #[macro_use] extern crate approx;
914 /// # use nalgebra::{Rotation3, Vector3};
915 /// let rot1 = Rotation3::from_axis_angle(&Vector3::y_axis(), 1.0);
916 /// let rot2 = Rotation3::from_axis_angle(&Vector3::x_axis(), 0.1);
917 /// assert_relative_eq!(rot1.angle_to(&rot2), 1.0045657, epsilon = 1.0e-6);
918 /// ```
919 #[inline]
920 #[must_use]
921 pub fn angle_to(&self, other: &Self) -> T
922 where
923 T::Element: SimdRealField,
924 {
925 self.rotation_to(other).angle()
926 }
927
928 /// Creates Euler angles from a rotation.
929 ///
930 /// The angles are produced in the form (roll, pitch, yaw).
931 #[deprecated(note = "This is renamed to use `.euler_angles()`.")]
932 pub fn to_euler_angles(self) -> (T, T, T)
933 where
934 T: RealField,
935 {
936 self.euler_angles()
937 }
938
939 /// Euler angles corresponding to this rotation from a rotation.
940 ///
941 /// The angles are produced in the form (roll, pitch, yaw).
942 ///
943 /// # Example
944 /// ```
945 /// # #[macro_use] extern crate approx;
946 /// # use nalgebra::Rotation3;
947 /// let rot = Rotation3::from_euler_angles(0.1, 0.2, 0.3);
948 /// let euler = rot.euler_angles();
949 /// assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6);
950 /// assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6);
951 /// assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
952 /// ```
953 #[must_use]
954 pub fn euler_angles(&self) -> (T, T, T)
955 where
956 T: RealField,
957 {
958 // Implementation informed by "Computing Euler angles from a rotation matrix", by Gregory G. Slabaugh
959 // https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.371.6578
960 // where roll, pitch, yaw angles are referred to as ψ, θ, ϕ,
961 if self[(2, 0)].clone().abs() < T::one() {
962 let pitch = -self[(2, 0)].clone().asin();
963 let theta_cos = pitch.clone().cos();
964 let roll = (self[(2, 1)].clone() / theta_cos.clone())
965 .atan2(self[(2, 2)].clone() / theta_cos.clone());
966 let yaw =
967 (self[(1, 0)].clone() / theta_cos.clone()).atan2(self[(0, 0)].clone() / theta_cos);
968 (roll, pitch, yaw)
969 } else if self[(2, 0)].clone() <= -T::one() {
970 (
971 self[(0, 1)].clone().atan2(self[(0, 2)].clone()),
972 T::frac_pi_2(),
973 T::zero(),
974 )
975 } else {
976 (
977 -self[(0, 1)].clone().atan2(-self[(0, 2)].clone()),
978 -T::frac_pi_2(),
979 T::zero(),
980 )
981 }
982 }
983
984 /// Represent this rotation as Euler angles.
985 ///
986 /// Returns the angles produced in the order provided by seq parameter, along with the
987 /// observability flag. The Euler axes passed to seq must form an orthonormal basis. If the
988 /// rotation is gimbal locked, then the observability flag is false.
989 ///
990 /// # Panics
991 ///
992 /// Panics if the Euler axes in `seq` are not orthonormal.
993 ///
994 /// # Example 1:
995 /// ```
996 /// use std::f64::consts::PI;
997 /// use approx::assert_relative_eq;
998 /// use nalgebra::{Matrix3, Rotation3, Unit, Vector3};
999 ///
1000 /// // 3-1-2
1001 /// let n = [
1002 /// Unit::new_unchecked(Vector3::new(0.0, 0.0, 1.0)),
1003 /// Unit::new_unchecked(Vector3::new(1.0, 0.0, 0.0)),
1004 /// Unit::new_unchecked(Vector3::new(0.0, 1.0, 0.0)),
1005 /// ];
1006 ///
1007 /// let r1 = Rotation3::from_axis_angle(&n[2], 20.0 * PI / 180.0);
1008 /// let r2 = Rotation3::from_axis_angle(&n[1], 30.0 * PI / 180.0);
1009 /// let r3 = Rotation3::from_axis_angle(&n[0], 45.0 * PI / 180.0);
1010 ///
1011 /// let d = r3 * r2 * r1;
1012 ///
1013 /// let (angles, observable) = d.euler_angles_ordered(n, false);
1014 /// assert!(observable);
1015 /// assert_relative_eq!(angles[0] * 180.0 / PI, 45.0, epsilon = 1e-12);
1016 /// assert_relative_eq!(angles[1] * 180.0 / PI, 30.0, epsilon = 1e-12);
1017 /// assert_relative_eq!(angles[2] * 180.0 / PI, 20.0, epsilon = 1e-12);
1018 /// ```
1019 ///
1020 /// # Example 2:
1021 /// ```
1022 /// use std::f64::consts::PI;
1023 /// use approx::assert_relative_eq;
1024 /// use nalgebra::{Matrix3, Rotation3, Unit, Vector3};
1025 ///
1026 /// let sqrt_2 = 2.0_f64.sqrt();
1027 /// let n = [
1028 /// Unit::new_unchecked(Vector3::new(1.0 / sqrt_2, 1.0 / sqrt_2, 0.0)),
1029 /// Unit::new_unchecked(Vector3::new(1.0 / sqrt_2, -1.0 / sqrt_2, 0.0)),
1030 /// Unit::new_unchecked(Vector3::new(0.0, 0.0, 1.0)),
1031 /// ];
1032 ///
1033 /// let r1 = Rotation3::from_axis_angle(&n[2], 20.0 * PI / 180.0);
1034 /// let r2 = Rotation3::from_axis_angle(&n[1], 30.0 * PI / 180.0);
1035 /// let r3 = Rotation3::from_axis_angle(&n[0], 45.0 * PI / 180.0);
1036 ///
1037 /// let d = r3 * r2 * r1;
1038 ///
1039 /// let (angles, observable) = d.euler_angles_ordered(n, false);
1040 /// assert!(observable);
1041 /// assert_relative_eq!(angles[0] * 180.0 / PI, 45.0, epsilon = 1e-12);
1042 /// assert_relative_eq!(angles[1] * 180.0 / PI, 30.0, epsilon = 1e-12);
1043 /// assert_relative_eq!(angles[2] * 180.0 / PI, 20.0, epsilon = 1e-12);
1044 /// ```
1045 ///
1046 /// Algorithm based on:
1047 /// Malcolm D. Shuster, F. Landis Markley, “General formula for extraction the Euler
1048 /// angles”, Journal of guidance, control, and dynamics, vol. 29.1, pp. 215-221. 2006,
1049 /// and modified to be able to produce extrinsic rotations.
1050 #[must_use]
1051 pub fn euler_angles_ordered(
1052 &self,
1053 mut seq: [Unit<Vector3<T>>; 3],
1054 extrinsic: bool,
1055 ) -> ([T; 3], bool)
1056 where
1057 T: RealField + Copy,
1058 {
1059 let mut angles = [T::zero(); 3];
1060 let eps = T::from_subset(&1e-7);
1061 let two = T::from_subset(&2.0);
1062
1063 if extrinsic {
1064 seq.reverse();
1065 }
1066
1067 let [n1, n2, n3] = &seq;
1068 assert_relative_eq!(n1.dot(n2), T::zero(), epsilon = eps);
1069 assert_relative_eq!(n3.dot(n1), T::zero(), epsilon = eps);
1070
1071 let n1_c_n2 = n1.cross(n2);
1072 let s1 = n1_c_n2.dot(n3);
1073 let c1 = n1.dot(n3);
1074 let lambda = s1.atan2(c1);
1075
1076 let mut c = Matrix3::zeros();
1077 c.column_mut(0).copy_from(n2);
1078 c.column_mut(1).copy_from(&n1_c_n2);
1079 c.column_mut(2).copy_from(n1);
1080 c.transpose_mut();
1081
1082 let r1l = Matrix3::new(
1083 T::one(),
1084 T::zero(),
1085 T::zero(),
1086 T::zero(),
1087 c1,
1088 s1,
1089 T::zero(),
1090 -s1,
1091 c1,
1092 );
1093 let o_t = c * self.matrix() * (c.transpose() * r1l);
1094 angles[1] = o_t.m33.acos();
1095
1096 let safe1 = angles[1].abs() >= eps;
1097 let safe2 = (angles[1] - T::pi()).abs() >= eps;
1098 let observable = safe1 && safe2;
1099 angles[1] += lambda;
1100
1101 if observable {
1102 angles[0] = o_t.m13.atan2(-o_t.m23);
1103 angles[2] = o_t.m31.atan2(o_t.m32);
1104 } else {
1105 // gimbal lock detected
1106 if extrinsic {
1107 // angle1 is initialized to zero
1108 if !safe1 {
1109 angles[2] = (o_t.m12 - o_t.m21).atan2(o_t.m11 + o_t.m22);
1110 } else {
1111 angles[2] = -(o_t.m12 + o_t.m21).atan2(o_t.m11 - o_t.m22);
1112 };
1113 } else {
1114 // angle3 is initialized to zero
1115 if !safe1 {
1116 angles[0] = (o_t.m12 - o_t.m21).atan2(o_t.m11 + o_t.m22);
1117 } else {
1118 angles[0] = (o_t.m12 + o_t.m21).atan2(o_t.m11 - o_t.m22);
1119 };
1120 };
1121 };
1122
1123 let adjust = if seq[0] == seq[2] {
1124 // lambda = 0, so ensure angle2 -> [0, pi]
1125 angles[1] < T::zero() || angles[1] > T::pi()
1126 } else {
1127 // lambda = + or - pi/2, so ensure angle2 -> [-pi/2, pi/2]
1128 angles[1] < -T::frac_pi_2() || angles[1] > T::frac_pi_2()
1129 };
1130
1131 // dont adjust gimbal locked rotation
1132 if adjust && observable {
1133 angles[0] += T::pi();
1134 angles[1] = two * lambda - angles[1];
1135 angles[2] -= T::pi();
1136 }
1137
1138 // ensure all angles are within [-pi, pi]
1139 for angle in angles.as_mut_slice().iter_mut() {
1140 if *angle < -T::pi() {
1141 *angle += T::two_pi();
1142 } else if *angle > T::pi() {
1143 *angle -= T::two_pi();
1144 }
1145 }
1146
1147 if extrinsic {
1148 angles.reverse();
1149 }
1150
1151 (angles, observable)
1152 }
1153}
1154
1155#[cfg(feature = "rand-no-std")]
1156impl<T: SimdRealField> Distribution<Rotation3<T>> for Standard
1157where
1158 T::Element: SimdRealField,
1159 OpenClosed01: Distribution<T>,
1160 T: SampleUniform,
1161{
1162 /// Generate a uniformly distributed random rotation.
1163 #[inline]
1164 fn sample<'a, R: Rng + ?Sized>(&self, rng: &mut R) -> Rotation3<T> {
1165 // James Arvo.
1166 // Fast random rotation matrices.
1167 // In D. Kirk, editor, Graphics Gems III, pages 117-120. Academic, New York, 1992.
1168
1169 // Compute a random rotation around Z
1170 let twopi = Uniform::new(T::zero(), T::simd_two_pi());
1171 let theta = rng.sample(&twopi);
1172 let (ts, tc) = theta.simd_sin_cos();
1173 let a = SMatrix::<T, 3, 3>::new(
1174 tc.clone(),
1175 ts.clone(),
1176 T::zero(),
1177 -ts,
1178 tc,
1179 T::zero(),
1180 T::zero(),
1181 T::zero(),
1182 T::one(),
1183 );
1184
1185 // Compute a random rotation *of* Z
1186 let phi = rng.sample(&twopi);
1187 let z = rng.sample(OpenClosed01);
1188 let (ps, pc) = phi.simd_sin_cos();
1189 let sqrt_z = z.clone().simd_sqrt();
1190 let v = Vector3::new(pc * sqrt_z.clone(), ps * sqrt_z, (T::one() - z).simd_sqrt());
1191 let mut b = v.clone() * v.transpose();
1192 b += b.clone();
1193 b -= SMatrix::<T, 3, 3>::identity();
1194
1195 Rotation3::from_matrix_unchecked(b * a)
1196 }
1197}
1198
1199#[cfg(feature = "arbitrary")]
1200impl<T: SimdRealField + Arbitrary> Arbitrary for Rotation3<T>
1201where
1202 T::Element: SimdRealField,
1203 Owned<T, U3, U3>: Send,
1204 Owned<T, U3>: Send,
1205{
1206 #[inline]
1207 fn arbitrary(g: &mut Gen) -> Self {
1208 Self::new(SVector::arbitrary(g))
1209 }
1210}