nalgebra/geometry/transform.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use std::any::Any;
use std::fmt::{self, Debug};
use std::hash;
use std::marker::PhantomData;
#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use simba::scalar::RealField;
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimNameAdd, DimNameSum, U1};
use crate::base::storage::Owned;
use crate::base::{Const, DefaultAllocator, DimName, OMatrix, SVector};
use crate::geometry::Point;
/// Trait implemented by phantom types identifying the projective transformation type.
///
/// NOTE: this trait is not intended to be implemented outside of the `nalgebra` crate.
pub trait TCategory: Any + Debug + Copy + PartialEq + Send {
/// Indicates whether a `Transform` with the category `Self` has a bottom-row different from
/// `0 0 .. 1`.
#[inline]
fn has_normalizer() -> bool {
true
}
/// Checks that the given matrix is a valid homogeneous representation of an element of the
/// category `Self`.
fn check_homogeneous_invariants<T: RealField, D: DimName>(mat: &OMatrix<T, D, D>) -> bool
where
T::Epsilon: Clone,
DefaultAllocator: Allocator<D, D>;
}
/// Traits that gives the `Transform` category that is compatible with the result of the
/// multiplication of transformations with categories `Self` and `Other`.
pub trait TCategoryMul<Other: TCategory>: TCategory {
/// The transform category that results from the multiplication of a `Transform<Self>` to a
/// `Transform<Other>`. This is usually equal to `Self` or `Other`, whichever is the most
/// general category.
type Representative: TCategory;
}
/// Indicates that `Self` is a more general `Transform` category than `Other`.
pub trait SuperTCategoryOf<Other: TCategory>: TCategory {}
/// Indicates that `Self` is a more specific `Transform` category than `Other`.
///
/// Automatically implemented based on `SuperTCategoryOf`.
pub trait SubTCategoryOf<Other: TCategory>: TCategory {}
impl<T1, T2> SubTCategoryOf<T2> for T1
where
T1: TCategory,
T2: SuperTCategoryOf<T1>,
{
}
/// Tag representing the most general (not necessarily inversible) `Transform` type.
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
pub enum TGeneral {}
/// Tag representing the most general inversible `Transform` type.
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
pub enum TProjective {}
/// Tag representing an affine `Transform`. Its bottom-row is equal to `(0, 0 ... 0, 1)`.
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
pub enum TAffine {}
impl TCategory for TGeneral {
#[inline]
fn check_homogeneous_invariants<T: RealField, D: DimName>(_: &OMatrix<T, D, D>) -> bool
where
T::Epsilon: Clone,
DefaultAllocator: Allocator<D, D>,
{
true
}
}
impl TCategory for TProjective {
#[inline]
fn check_homogeneous_invariants<T: RealField, D: DimName>(mat: &OMatrix<T, D, D>) -> bool
where
T::Epsilon: Clone,
DefaultAllocator: Allocator<D, D>,
{
mat.is_invertible()
}
}
impl TCategory for TAffine {
#[inline]
fn has_normalizer() -> bool {
false
}
#[inline]
fn check_homogeneous_invariants<T: RealField, D: DimName>(mat: &OMatrix<T, D, D>) -> bool
where
T::Epsilon: Clone,
DefaultAllocator: Allocator<D, D>,
{
let last = D::dim() - 1;
mat.is_invertible()
&& mat[(last, last)] == T::one()
&& (0..last).all(|i| mat[(last, i)].is_zero())
}
}
macro_rules! category_mul_impl(
($($a: ident * $b: ident => $c: ty);* $(;)*) => {$(
impl TCategoryMul<$a> for $b {
type Representative = $c;
}
)*}
);
// We require stability upon multiplication.
impl<T: TCategory> TCategoryMul<T> for T {
type Representative = T;
}
category_mul_impl!(
// TGeneral * TGeneral => TGeneral;
TGeneral * TProjective => TGeneral;
TGeneral * TAffine => TGeneral;
TProjective * TGeneral => TGeneral;
// TProjective * TProjective => TProjective;
TProjective * TAffine => TProjective;
TAffine * TGeneral => TGeneral;
TAffine * TProjective => TProjective;
// TAffine * TAffine => TAffine;
);
macro_rules! super_tcategory_impl(
($($a: ident >= $b: ident);* $(;)*) => {$(
impl SuperTCategoryOf<$b> for $a { }
)*}
);
impl<T: TCategory> SuperTCategoryOf<T> for T {}
super_tcategory_impl!(
TGeneral >= TProjective;
TGeneral >= TAffine;
TProjective >= TAffine;
);
/// A transformation matrix in homogeneous coordinates.
///
/// It is stored as a matrix with dimensions `(D + 1, D + 1)`, e.g., it stores a 4x4 matrix for a
/// 3D transformation.
#[repr(C)]
pub struct Transform<T: RealField, C: TCategory, const D: usize>
where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
{
matrix: OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
_phantom: PhantomData<C>,
}
impl<T: RealField + Debug, C: TCategory, const D: usize> Debug for Transform<T, C, D>
where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
{
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
self.matrix.fmt(formatter)
}
}
impl<T: RealField + hash::Hash, C: TCategory, const D: usize> hash::Hash for Transform<T, C, D>
where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Owned<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>: hash::Hash,
{
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.matrix.hash(state);
}
}
impl<T: RealField + Copy, C: TCategory, const D: usize> Copy for Transform<T, C, D>
where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Owned<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>: Copy,
{
}
impl<T: RealField, C: TCategory, const D: usize> Clone for Transform<T, C, D>
where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
{
#[inline]
fn clone(&self) -> Self {
Transform::from_matrix_unchecked(self.matrix.clone())
}
}
#[cfg(feature = "bytemuck")]
unsafe impl<T, C: TCategory, const D: usize> bytemuck::Zeroable for Transform<T, C, D>
where
T: RealField + bytemuck::Zeroable,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>: bytemuck::Zeroable,
{
}
#[cfg(feature = "bytemuck")]
unsafe impl<T, C: TCategory, const D: usize> bytemuck::Pod for Transform<T, C, D>
where
T: RealField + bytemuck::Pod,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>: bytemuck::Pod,
Owned<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>: Copy,
{
}
#[cfg(feature = "serde-serialize-no-std")]
impl<T: RealField, C: TCategory, const D: usize> Serialize for Transform<T, C, D>
where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Owned<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>: Serialize,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
self.matrix.serialize(serializer)
}
}
#[cfg(feature = "serde-serialize-no-std")]
impl<'a, T: RealField, C: TCategory, const D: usize> Deserialize<'a> for Transform<T, C, D>
where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Owned<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>: Deserialize<'a>,
{
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
where
Des: Deserializer<'a>,
{
let matrix = OMatrix::<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>::deserialize(
deserializer,
)?;
Ok(Transform::from_matrix_unchecked(matrix))
}
}
impl<T: RealField + Eq, C: TCategory, const D: usize> Eq for Transform<T, C, D>
where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
{
}
impl<T: RealField, C: TCategory, const D: usize> PartialEq for Transform<T, C, D>
where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
{
#[inline]
fn eq(&self, right: &Self) -> bool {
self.matrix == right.matrix
}
}
impl<T: RealField, C: TCategory, const D: usize> Transform<T, C, D>
where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
{
/// Creates a new transformation from the given homogeneous matrix. The transformation category
/// of `Self` is not checked to be verified by the given matrix.
#[inline]
pub fn from_matrix_unchecked(
matrix: OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
) -> Self {
Transform {
matrix,
_phantom: PhantomData,
}
}
/// Retrieves the underlying matrix.
///
/// # Examples
/// ```
/// # use nalgebra::{Matrix3, Transform2};
///
/// let m = Matrix3::new(1.0, 2.0, 0.0,
/// 3.0, 4.0, 0.0,
/// 0.0, 0.0, 1.0);
/// let t = Transform2::from_matrix_unchecked(m);
/// assert_eq!(t.into_inner(), m);
/// ```
#[inline]
pub fn into_inner(self) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> {
self.matrix
}
/// Retrieves the underlying matrix.
/// Deprecated: Use [`Transform::into_inner`] instead.
#[deprecated(note = "use `.into_inner()` instead")]
#[inline]
pub fn unwrap(self) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> {
self.matrix
}
/// A reference to the underlying matrix.
///
/// # Examples
/// ```
/// # use nalgebra::{Matrix3, Transform2};
///
/// let m = Matrix3::new(1.0, 2.0, 0.0,
/// 3.0, 4.0, 0.0,
/// 0.0, 0.0, 1.0);
/// let t = Transform2::from_matrix_unchecked(m);
/// assert_eq!(*t.matrix(), m);
/// ```
#[inline]
#[must_use]
pub fn matrix(&self) -> &OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> {
&self.matrix
}
/// A mutable reference to the underlying matrix.
///
/// It is `_unchecked` because direct modifications of this matrix may break invariants
/// identified by this transformation category.
///
/// # Examples
/// ```
/// # use nalgebra::{Matrix3, Transform2};
///
/// let m = Matrix3::new(1.0, 2.0, 0.0,
/// 3.0, 4.0, 0.0,
/// 0.0, 0.0, 1.0);
/// let mut t = Transform2::from_matrix_unchecked(m);
/// t.matrix_mut_unchecked().m12 = 42.0;
/// t.matrix_mut_unchecked().m23 = 90.0;
///
///
/// let expected = Matrix3::new(1.0, 42.0, 0.0,
/// 3.0, 4.0, 90.0,
/// 0.0, 0.0, 1.0);
/// assert_eq!(*t.matrix(), expected);
/// ```
#[inline]
pub fn matrix_mut_unchecked(
&mut self,
) -> &mut OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> {
&mut self.matrix
}
/// Sets the category of this transform.
///
/// This can be done only if the new category is more general than the current one, e.g., a
/// transform with category `TProjective` cannot be converted to a transform with category
/// `TAffine` because not all projective transformations are affine (the other way-round is
/// valid though).
#[inline]
pub fn set_category<CNew: SuperTCategoryOf<C>>(self) -> Transform<T, CNew, D> {
Transform::from_matrix_unchecked(self.matrix)
}
/// Clones this transform into one that owns its data.
#[inline]
#[deprecated(
note = "This method is redundant with automatic `Copy` and the `.clone()` method and will be removed in a future release."
)]
pub fn clone_owned(&self) -> Transform<T, C, D> {
Transform::from_matrix_unchecked(self.matrix.clone_owned())
}
/// Converts this transform into its equivalent homogeneous transformation matrix.
///
/// # Examples
/// ```
/// # use nalgebra::{Matrix3, Transform2};
///
/// let m = Matrix3::new(1.0, 2.0, 0.0,
/// 3.0, 4.0, 0.0,
/// 0.0, 0.0, 1.0);
/// let t = Transform2::from_matrix_unchecked(m);
/// assert_eq!(t.to_homogeneous(), m);
/// ```
#[inline]
#[must_use]
pub fn to_homogeneous(&self) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> {
self.matrix().clone_owned()
}
/// Attempts to invert this transformation. You may use `.inverse` instead of this
/// transformation has a subcategory of `TProjective` (i.e. if it is a `Projective{2,3}` or `Affine{2,3}`).
///
/// # Examples
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Matrix3, Transform2};
///
/// let m = Matrix3::new(2.0, 2.0, -0.3,
/// 3.0, 4.0, 0.1,
/// 0.0, 0.0, 1.0);
/// let t = Transform2::from_matrix_unchecked(m);
/// let inv_t = t.try_inverse().unwrap();
/// assert_relative_eq!(t * inv_t, Transform2::identity());
/// assert_relative_eq!(inv_t * t, Transform2::identity());
///
/// // Non-invertible case.
/// let m = Matrix3::new(0.0, 2.0, 1.0,
/// 3.0, 0.0, 5.0,
/// 0.0, 0.0, 0.0);
/// let t = Transform2::from_matrix_unchecked(m);
/// assert!(t.try_inverse().is_none());
/// ```
#[inline]
#[must_use = "Did you mean to use try_inverse_mut()?"]
pub fn try_inverse(self) -> Option<Transform<T, C, D>> {
self.matrix
.try_inverse()
.map(Transform::from_matrix_unchecked)
}
/// Inverts this transformation. Use `.try_inverse` if this transform has the `TGeneral`
/// category (i.e., a `Transform{2,3}` may not be invertible).
///
/// # Examples
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Matrix3, Projective2};
///
/// let m = Matrix3::new(2.0, 2.0, -0.3,
/// 3.0, 4.0, 0.1,
/// 0.0, 0.0, 1.0);
/// let proj = Projective2::from_matrix_unchecked(m);
/// let inv_t = proj.inverse();
/// assert_relative_eq!(proj * inv_t, Projective2::identity());
/// assert_relative_eq!(inv_t * proj, Projective2::identity());
/// ```
#[inline]
#[must_use = "Did you mean to use inverse_mut()?"]
pub fn inverse(self) -> Transform<T, C, D>
where
C: SubTCategoryOf<TProjective>,
{
// TODO: specialize for TAffine?
Transform::from_matrix_unchecked(self.matrix.try_inverse().unwrap())
}
/// Attempts to invert this transformation in-place. You may use `.inverse_mut` instead of this
/// transformation has a subcategory of `TProjective`.
///
/// # Examples
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Matrix3, Transform2};
///
/// let m = Matrix3::new(2.0, 2.0, -0.3,
/// 3.0, 4.0, 0.1,
/// 0.0, 0.0, 1.0);
/// let t = Transform2::from_matrix_unchecked(m);
/// let mut inv_t = t;
/// assert!(inv_t.try_inverse_mut());
/// assert_relative_eq!(t * inv_t, Transform2::identity());
/// assert_relative_eq!(inv_t * t, Transform2::identity());
///
/// // Non-invertible case.
/// let m = Matrix3::new(0.0, 2.0, 1.0,
/// 3.0, 0.0, 5.0,
/// 0.0, 0.0, 0.0);
/// let mut t = Transform2::from_matrix_unchecked(m);
/// assert!(!t.try_inverse_mut());
/// ```
#[inline]
pub fn try_inverse_mut(&mut self) -> bool {
self.matrix.try_inverse_mut()
}
/// Inverts this transformation in-place. Use `.try_inverse_mut` if this transform has the
/// `TGeneral` category (it may not be invertible).
///
/// # Examples
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Matrix3, Projective2};
///
/// let m = Matrix3::new(2.0, 2.0, -0.3,
/// 3.0, 4.0, 0.1,
/// 0.0, 0.0, 1.0);
/// let proj = Projective2::from_matrix_unchecked(m);
/// let mut inv_t = proj;
/// inv_t.inverse_mut();
/// assert_relative_eq!(proj * inv_t, Projective2::identity());
/// assert_relative_eq!(inv_t * proj, Projective2::identity());
/// ```
#[inline]
pub fn inverse_mut(&mut self)
where
C: SubTCategoryOf<TProjective>,
{
let _ = self.matrix.try_inverse_mut();
}
}
impl<T, C, const D: usize> Transform<T, C, D>
where
T: RealField,
C: TCategory,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
+ Allocator<DimNameSum<Const<D>, U1>>, // + Allocator<D, D>
// + Allocator<D>
{
/// Transform the given point by this transformation.
///
/// This is the same as the multiplication `self * pt`.
#[inline]
#[must_use]
pub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D> {
self * pt
}
/// Transform the given vector by this transformation, ignoring the
/// translational component of the transformation.
///
/// This is the same as the multiplication `self * v`.
#[inline]
#[must_use]
pub fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
self * v
}
}
impl<T: RealField, C: TCategory, const D: usize> Transform<T, C, D>
where
Const<D>: DimNameAdd<U1>,
C: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
+ Allocator<DimNameSum<Const<D>, U1>>, // + Allocator<D, D>
// + Allocator<D>
{
/// Transform the given point by the inverse of this transformation.
/// This may be cheaper than inverting the transformation and transforming
/// the point.
#[inline]
#[must_use]
pub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D> {
self.clone().inverse() * pt
}
/// Transform the given vector by the inverse of this transformation.
/// This may be cheaper than inverting the transformation and transforming
/// the vector.
#[inline]
#[must_use]
pub fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
self.clone().inverse() * v
}
}
impl<T: RealField, const D: usize> Transform<T, TGeneral, D>
where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
{
/// A mutable reference to underlying matrix. Use `.matrix_mut_unchecked` instead if this
/// transformation category is not `TGeneral`.
#[inline]
pub fn matrix_mut(
&mut self,
) -> &mut OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> {
self.matrix_mut_unchecked()
}
}
impl<T: RealField, C: TCategory, const D: usize> AbsDiffEq for Transform<T, C, D>
where
Const<D>: DimNameAdd<U1>,
T::Epsilon: Clone,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
{
type Epsilon = T::Epsilon;
#[inline]
fn default_epsilon() -> Self::Epsilon {
T::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.matrix.abs_diff_eq(&other.matrix, epsilon)
}
}
impl<T: RealField, C: TCategory, const D: usize> RelativeEq for Transform<T, C, D>
where
Const<D>: DimNameAdd<U1>,
T::Epsilon: Clone,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
{
#[inline]
fn default_max_relative() -> Self::Epsilon {
T::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.matrix
.relative_eq(&other.matrix, epsilon, max_relative)
}
}
impl<T: RealField, C: TCategory, const D: usize> UlpsEq for Transform<T, C, D>
where
Const<D>: DimNameAdd<U1>,
T::Epsilon: Clone,
DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
{
#[inline]
fn default_max_ulps() -> u32 {
T::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.matrix.ulps_eq(&other.matrix, epsilon, max_ulps)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::base::Matrix4;
#[test]
fn checks_homogeneous_invariants_of_square_identity_matrix() {
assert!(TAffine::check_homogeneous_invariants(
&Matrix4::<f32>::identity()
));
}
}