nalgebra/linalg/
balancing.rsuse simba::scalar::RealField;
use std::ops::{DivAssign, MulAssign};
use crate::allocator::Allocator;
use crate::base::dimension::Dim;
use crate::base::{Const, DefaultAllocator, OMatrix, OVector};
pub fn balance_parlett_reinsch<T: RealField, D: Dim>(matrix: &mut OMatrix<T, D, D>) -> OVector<T, D>
where
DefaultAllocator: Allocator<D, D> + Allocator<D>,
{
assert!(matrix.is_square(), "Unable to balance a non-square matrix.");
let dim = matrix.shape_generic().0;
let radix: T = crate::convert(2.0f64);
let mut d = OVector::from_element_generic(dim, Const::<1>, T::one());
let mut converged = false;
while !converged {
converged = true;
for i in 0..dim.value() {
let mut n_col = matrix.column(i).norm_squared();
let mut n_row = matrix.row(i).norm_squared();
let mut f = T::one();
let s = n_col.clone() + n_row.clone();
n_col = n_col.sqrt();
n_row = n_row.sqrt();
if n_col.clone().is_zero() || n_row.clone().is_zero() {
continue;
}
while n_col.clone() < n_row.clone() / radix.clone() {
n_col *= radix.clone();
n_row /= radix.clone();
f *= radix.clone();
}
while n_col.clone() >= n_row.clone() * radix.clone() {
n_col /= radix.clone();
n_row *= radix.clone();
f /= radix.clone();
}
let eps: T = crate::convert(0.95);
#[allow(clippy::suspicious_operation_groupings)]
if n_col.clone() * n_col + n_row.clone() * n_row < eps * s {
converged = false;
d[i] *= f.clone();
matrix.column_mut(i).mul_assign(f.clone());
matrix.row_mut(i).div_assign(f.clone());
}
}
}
d
}
pub fn unbalance<T: RealField, D: Dim>(m: &mut OMatrix<T, D, D>, d: &OVector<T, D>)
where
DefaultAllocator: Allocator<D, D> + Allocator<D>,
{
assert!(m.is_square(), "Unable to unbalance a non-square matrix.");
assert_eq!(m.nrows(), d.len(), "Unbalancing: mismatched dimensions.");
for j in 0..d.len() {
let mut col = m.column_mut(j);
let denom = T::one() / d[j].clone();
for i in 0..d.len() {
col[i] *= d[i].clone() * denom.clone();
}
}
}