1#[cfg(feature = "serde-serialize-no-std")]
2use serde::{Deserialize, Serialize};
3
4use crate::allocator::{Allocator, Reallocator};
5use crate::base::{DefaultAllocator, Matrix, OMatrix, Scalar};
6use crate::constraint::{SameNumberOfRows, ShapeConstraint};
7use crate::dimension::{Dim, DimMin, DimMinimum};
8use crate::storage::{Storage, StorageMut};
9use simba::scalar::{ComplexField, Field};
10use std::mem;
11
12use crate::linalg::PermutationSequence;
13
14#[cfg_attr(feature = "serde-serialize-no-std", derive(Serialize, Deserialize))]
16#[cfg_attr(
17 feature = "serde-serialize-no-std",
18 serde(bound(serialize = "DefaultAllocator: Allocator<R, C> +
19 Allocator<DimMinimum<R, C>>,
20 OMatrix<T, R, C>: Serialize,
21 PermutationSequence<DimMinimum<R, C>>: Serialize"))
22)]
23#[cfg_attr(
24 feature = "serde-serialize-no-std",
25 serde(bound(deserialize = "DefaultAllocator: Allocator<R, C> +
26 Allocator<DimMinimum<R, C>>,
27 OMatrix<T, R, C>: Deserialize<'de>,
28 PermutationSequence<DimMinimum<R, C>>: Deserialize<'de>"))
29)]
30#[cfg_attr(feature = "defmt", derive(defmt::Format))]
31#[derive(Clone, Debug)]
32pub struct LU<T: ComplexField, R: DimMin<C>, C: Dim>
33where
34 DefaultAllocator: Allocator<R, C> + Allocator<DimMinimum<R, C>>,
35{
36 lu: OMatrix<T, R, C>,
37 p: PermutationSequence<DimMinimum<R, C>>,
38}
39
40impl<T: ComplexField, R: DimMin<C>, C: Dim> Copy for LU<T, R, C>
41where
42 DefaultAllocator: Allocator<R, C> + Allocator<DimMinimum<R, C>>,
43 OMatrix<T, R, C>: Copy,
44 PermutationSequence<DimMinimum<R, C>>: Copy,
45{
46}
47
48pub fn try_invert_to<T: ComplexField, D: Dim, S>(
52 mut matrix: OMatrix<T, D, D>,
53 out: &mut Matrix<T, D, D, S>,
54) -> bool
55where
56 S: StorageMut<T, D, D>,
57 DefaultAllocator: Allocator<D, D>,
58{
59 assert!(
60 matrix.is_square(),
61 "LU inversion: unable to invert a rectangular matrix."
62 );
63 let dim = matrix.nrows();
64
65 out.fill_with_identity();
66
67 for i in 0..dim {
68 let piv = matrix.view_range(i.., i).icamax() + i;
69 let diag = matrix[(piv, i)].clone();
70
71 if diag.is_zero() {
72 return false;
73 }
74
75 if piv != i {
76 out.swap_rows(i, piv);
77 matrix.columns_range_mut(..i).swap_rows(i, piv);
78 gauss_step_swap(&mut matrix, diag, i, piv);
79 } else {
80 gauss_step(&mut matrix, diag, i);
81 }
82 }
83
84 let _ = matrix.solve_lower_triangular_with_diag_mut(out, T::one());
85 matrix.solve_upper_triangular_mut(out)
86}
87
88impl<T: ComplexField, R: DimMin<C>, C: Dim> LU<T, R, C>
89where
90 DefaultAllocator: Allocator<R, C> + Allocator<DimMinimum<R, C>>,
91{
92 pub fn new(mut matrix: OMatrix<T, R, C>) -> Self {
94 let (nrows, ncols) = matrix.shape_generic();
95 let min_nrows_ncols = nrows.min(ncols);
96
97 let mut p = PermutationSequence::identity_generic(min_nrows_ncols);
98
99 if min_nrows_ncols.value() == 0 {
100 return LU { lu: matrix, p };
101 }
102
103 for i in 0..min_nrows_ncols.value() {
104 let piv = matrix.view_range(i.., i).icamax() + i;
105 let diag = matrix[(piv, i)].clone();
106
107 if diag.is_zero() {
108 continue;
110 }
111
112 if piv != i {
113 p.append_permutation(i, piv);
114 matrix.columns_range_mut(..i).swap_rows(i, piv);
115 gauss_step_swap(&mut matrix, diag, i, piv);
116 } else {
117 gauss_step(&mut matrix, diag, i);
118 }
119 }
120
121 LU { lu: matrix, p }
122 }
123
124 #[doc(hidden)]
125 pub const fn lu_internal(&self) -> &OMatrix<T, R, C> {
126 &self.lu
127 }
128
129 #[inline]
131 #[must_use]
132 pub fn l(&self) -> OMatrix<T, R, DimMinimum<R, C>>
133 where
134 DefaultAllocator: Allocator<R, DimMinimum<R, C>>,
135 {
136 let (nrows, ncols) = self.lu.shape_generic();
137 let mut m = self.lu.columns_generic(0, nrows.min(ncols)).into_owned();
138 m.fill_upper_triangle(T::zero(), 1);
139 m.fill_diagonal(T::one());
140 m
141 }
142
143 fn l_unpack_with_p(
145 self,
146 ) -> (
147 OMatrix<T, R, DimMinimum<R, C>>,
148 PermutationSequence<DimMinimum<R, C>>,
149 )
150 where
151 DefaultAllocator: Reallocator<T, R, C, R, DimMinimum<R, C>>,
152 {
153 let (nrows, ncols) = self.lu.shape_generic();
154 let mut m = self.lu.resize_generic(nrows, nrows.min(ncols), T::zero());
155 m.fill_upper_triangle(T::zero(), 1);
156 m.fill_diagonal(T::one());
157 (m, self.p)
158 }
159
160 #[inline]
162 pub fn l_unpack(self) -> OMatrix<T, R, DimMinimum<R, C>>
163 where
164 DefaultAllocator: Reallocator<T, R, C, R, DimMinimum<R, C>>,
165 {
166 let (nrows, ncols) = self.lu.shape_generic();
167 let mut m = self.lu.resize_generic(nrows, nrows.min(ncols), T::zero());
168 m.fill_upper_triangle(T::zero(), 1);
169 m.fill_diagonal(T::one());
170 m
171 }
172
173 #[inline]
175 #[must_use]
176 pub fn u(&self) -> OMatrix<T, DimMinimum<R, C>, C>
177 where
178 DefaultAllocator: Allocator<DimMinimum<R, C>, C>,
179 {
180 let (nrows, ncols) = self.lu.shape_generic();
181 self.lu.rows_generic(0, nrows.min(ncols)).upper_triangle()
182 }
183
184 #[inline]
186 #[must_use]
187 pub const fn p(&self) -> &PermutationSequence<DimMinimum<R, C>> {
188 &self.p
189 }
190
191 #[inline]
193 pub fn unpack(
194 self,
195 ) -> (
196 PermutationSequence<DimMinimum<R, C>>,
197 OMatrix<T, R, DimMinimum<R, C>>,
198 OMatrix<T, DimMinimum<R, C>, C>,
199 )
200 where
201 DefaultAllocator: Allocator<R, DimMinimum<R, C>>
202 + Allocator<DimMinimum<R, C>, C>
203 + Reallocator<T, R, C, R, DimMinimum<R, C>>,
204 {
205 let u = self.u();
207 let (l, p) = self.l_unpack_with_p();
208
209 (p, l, u)
210 }
211}
212
213impl<T: ComplexField, D: DimMin<D, Output = D>> LU<T, D, D>
214where
215 DefaultAllocator: Allocator<D, D> + Allocator<D>,
216{
217 #[must_use = "Did you mean to use solve_mut()?"]
221 pub fn solve<R2: Dim, C2: Dim, S2>(
222 &self,
223 b: &Matrix<T, R2, C2, S2>,
224 ) -> Option<OMatrix<T, R2, C2>>
225 where
226 S2: Storage<T, R2, C2>,
227 ShapeConstraint: SameNumberOfRows<R2, D>,
228 DefaultAllocator: Allocator<R2, C2>,
229 {
230 let mut res = b.clone_owned();
231 if self.solve_mut(&mut res) {
232 Some(res)
233 } else {
234 None
235 }
236 }
237
238 pub fn solve_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<T, R2, C2, S2>) -> bool
243 where
244 S2: StorageMut<T, R2, C2>,
245 ShapeConstraint: SameNumberOfRows<R2, D>,
246 {
247 assert_eq!(
248 self.lu.nrows(),
249 b.nrows(),
250 "LU solve matrix dimension mismatch."
251 );
252 assert!(
253 self.lu.is_square(),
254 "LU solve: unable to solve a non-square system."
255 );
256
257 self.p.permute_rows(b);
258 let _ = self.lu.solve_lower_triangular_with_diag_mut(b, T::one());
259 self.lu.solve_upper_triangular_mut(b)
260 }
261
262 #[must_use]
266 pub fn try_inverse(&self) -> Option<OMatrix<T, D, D>> {
267 assert!(
268 self.lu.is_square(),
269 "LU inverse: unable to compute the inverse of a non-square matrix."
270 );
271
272 let (nrows, ncols) = self.lu.shape_generic();
273 let mut res = OMatrix::identity_generic(nrows, ncols);
274 if self.try_inverse_to(&mut res) {
275 Some(res)
276 } else {
277 None
278 }
279 }
280
281 pub fn try_inverse_to<S2: StorageMut<T, D, D>>(&self, out: &mut Matrix<T, D, D, S2>) -> bool {
286 assert!(
287 self.lu.is_square(),
288 "LU inverse: unable to compute the inverse of a non-square matrix."
289 );
290 assert!(
291 self.lu.shape() == out.shape(),
292 "LU inverse: mismatched output shape."
293 );
294
295 out.fill_with_identity();
296 self.solve_mut(out)
297 }
298
299 #[must_use]
301 pub fn determinant(&self) -> T {
302 let dim = self.lu.nrows();
303 assert!(
304 self.lu.is_square(),
305 "LU determinant: unable to compute the determinant of a non-square matrix."
306 );
307
308 let mut res = T::one();
309 for i in 0..dim {
310 res *= unsafe { self.lu.get_unchecked((i, i)).clone() };
311 }
312
313 res * self.p.determinant()
314 }
315
316 #[must_use]
318 pub fn is_invertible(&self) -> bool {
319 assert!(
320 self.lu.is_square(),
321 "LU: unable to test the invertibility of a non-square matrix."
322 );
323
324 for i in 0..self.lu.nrows() {
325 if self.lu[(i, i)].is_zero() {
326 return false;
327 }
328 }
329
330 true
331 }
332}
333
334#[doc(hidden)]
335pub fn gauss_step<T, R: Dim, C: Dim, S>(matrix: &mut Matrix<T, R, C, S>, diag: T, i: usize)
338where
339 T: Scalar + Field,
340 S: StorageMut<T, R, C>,
341{
342 let mut submat = matrix.view_range_mut(i.., i..);
343
344 let inv_diag = T::one() / diag;
345
346 let (mut coeffs, mut submat) = submat.columns_range_pair_mut(0, 1..);
347
348 let mut coeffs = coeffs.rows_range_mut(1..);
349 coeffs *= inv_diag;
350
351 let (pivot_row, mut down) = submat.rows_range_pair_mut(0, 1..);
352
353 for k in 0..pivot_row.ncols() {
354 down.column_mut(k)
355 .axpy(-pivot_row[k].clone(), &coeffs, T::one());
356 }
357}
358
359#[doc(hidden)]
360pub fn gauss_step_swap<T, R: Dim, C: Dim, S>(
363 matrix: &mut Matrix<T, R, C, S>,
364 diag: T,
365 i: usize,
366 piv: usize,
367) where
368 T: Scalar + Field,
369 S: StorageMut<T, R, C>,
370{
371 let piv = piv - i;
372 let mut submat = matrix.view_range_mut(i.., i..);
373
374 let inv_diag = T::one() / diag;
375
376 let (mut coeffs, mut submat) = submat.columns_range_pair_mut(0, 1..);
377
378 coeffs.swap((0, 0), (piv, 0));
379 let mut coeffs = coeffs.rows_range_mut(1..);
380 coeffs *= inv_diag;
381
382 let (mut pivot_row, mut down) = submat.rows_range_pair_mut(0, 1..);
383
384 for k in 0..pivot_row.ncols() {
385 mem::swap(&mut pivot_row[k], &mut down[(piv - 1, k)]);
386 down.column_mut(k)
387 .axpy(-pivot_row[k].clone(), &coeffs, T::one());
388 }
389}