1#[cfg(feature = "serde-serialize-no-std")]
2use serde::{Deserialize, Serialize};
3
4use crate::allocator::Allocator;
5use crate::base::{DefaultAllocator, OMatrix, OVector};
6use crate::dimension::{Const, DimDiff, DimSub, U1};
7use simba::scalar::ComplexField;
8
9use crate::Matrix;
10use crate::linalg::householder;
11use std::mem::MaybeUninit;
12
13#[cfg_attr(feature = "serde-serialize-no-std", derive(Serialize, Deserialize))]
15#[cfg_attr(
16 feature = "serde-serialize-no-std",
17 serde(bound(serialize = "DefaultAllocator: Allocator<D, D> +
18 Allocator<DimDiff<D, U1>>,
19 OMatrix<T, D, D>: Serialize,
20 OVector<T, DimDiff<D, U1>>: Serialize"))
21)]
22#[cfg_attr(
23 feature = "serde-serialize-no-std",
24 serde(bound(deserialize = "DefaultAllocator: Allocator<D, D> +
25 Allocator<DimDiff<D, U1>>,
26 OMatrix<T, D, D>: Deserialize<'de>,
27 OVector<T, DimDiff<D, U1>>: Deserialize<'de>"))
28)]
29#[cfg_attr(feature = "defmt", derive(defmt::Format))]
30#[derive(Clone, Debug)]
31pub struct SymmetricTridiagonal<T: ComplexField, D: DimSub<U1>>
32where
33 DefaultAllocator: Allocator<D, D> + Allocator<DimDiff<D, U1>>,
34{
35 tri: OMatrix<T, D, D>,
36 off_diagonal: OVector<T, DimDiff<D, U1>>,
37}
38
39impl<T: ComplexField, D: DimSub<U1>> Copy for SymmetricTridiagonal<T, D>
40where
41 DefaultAllocator: Allocator<D, D> + Allocator<DimDiff<D, U1>>,
42 OMatrix<T, D, D>: Copy,
43 OVector<T, DimDiff<D, U1>>: Copy,
44{
45}
46
47impl<T: ComplexField, D: DimSub<U1>> SymmetricTridiagonal<T, D>
48where
49 DefaultAllocator: Allocator<D, D> + Allocator<DimDiff<D, U1>>,
50{
51 pub fn new(mut m: OMatrix<T, D, D>) -> Self {
55 let dim = m.shape_generic().0;
56
57 assert!(
58 m.is_square(),
59 "Unable to compute the symmetric tridiagonal decomposition of a non-square matrix."
60 );
61 assert!(
62 dim.value() != 0,
63 "Unable to compute the symmetric tridiagonal decomposition of an empty matrix."
64 );
65
66 let mut off_diagonal = Matrix::uninit(dim.sub(Const::<1>), Const::<1>);
67 let mut p = Matrix::zeros_generic(dim.sub(Const::<1>), Const::<1>);
68
69 for i in 0..dim.value() - 1 {
70 let mut m = m.rows_range_mut(i + 1..);
71 let (mut axis, mut m) = m.columns_range_pair_mut(i, i + 1..);
72
73 let (norm, not_zero) = householder::reflection_axis_mut(&mut axis);
74 off_diagonal[i] = MaybeUninit::new(norm);
75
76 if not_zero {
77 let mut p = p.rows_range_mut(i..);
78
79 p.hegemv(crate::convert(2.0), &m, &axis, T::zero());
80
81 let dot = axis.dotc(&p);
82 m.hegerc(-T::one(), &p, &axis, T::one());
83 m.hegerc(-T::one(), &axis, &p, T::one());
84 m.hegerc(dot * crate::convert(2.0), &axis, &axis, T::one());
85 }
86 }
87
88 let off_diagonal = unsafe { off_diagonal.assume_init() };
90 Self {
91 tri: m,
92 off_diagonal,
93 }
94 }
95
96 #[doc(hidden)]
97 pub const fn internal_tri(&self) -> &OMatrix<T, D, D> {
99 &self.tri
100 }
101
102 pub fn unpack(
105 self,
106 ) -> (
107 OMatrix<T, D, D>,
108 OVector<T::RealField, D>,
109 OVector<T::RealField, DimDiff<D, U1>>,
110 )
111 where
112 DefaultAllocator: Allocator<D> + Allocator<DimDiff<D, U1>>,
113 {
114 let diag = self.diagonal();
115 let q = self.q();
116
117 (q, diag, self.off_diagonal.map(T::modulus))
118 }
119
120 pub fn unpack_tridiagonal(
122 self,
123 ) -> (
124 OVector<T::RealField, D>,
125 OVector<T::RealField, DimDiff<D, U1>>,
126 )
127 where
128 DefaultAllocator: Allocator<D> + Allocator<DimDiff<D, U1>>,
129 {
130 (self.diagonal(), self.off_diagonal.map(T::modulus))
131 }
132
133 #[must_use]
135 pub fn diagonal(&self) -> OVector<T::RealField, D>
136 where
137 DefaultAllocator: Allocator<D>,
138 {
139 self.tri.map_diagonal(|e| e.real())
140 }
141
142 #[must_use]
144 pub fn off_diagonal(&self) -> OVector<T::RealField, DimDiff<D, U1>>
145 where
146 DefaultAllocator: Allocator<DimDiff<D, U1>>,
147 {
148 self.off_diagonal.map(T::modulus)
149 }
150
151 #[must_use]
153 pub fn q(&self) -> OMatrix<T, D, D> {
154 householder::assemble_q(&self.tri, self.off_diagonal.as_slice())
155 }
156
157 pub fn recompose(mut self) -> OMatrix<T, D, D> {
159 let q = self.q();
160 self.tri.fill_lower_triangle(T::zero(), 2);
161 self.tri.fill_upper_triangle(T::zero(), 2);
162
163 for i in 0..self.off_diagonal.len() {
164 let val = T::from_real(self.off_diagonal[i].clone().modulus());
165 self.tri[(i + 1, i)] = val.clone();
166 self.tri[(i, i + 1)] = val;
167 }
168
169 &q * self.tri * q.adjoint()
170 }
171}