num_complex/
lib.rs

1// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
11//! Complex numbers.
12//!
13//! ## Compatibility
14//!
15//! The `num-complex` crate is tested for rustc 1.60 and greater.
16
17#![doc(html_root_url = "https://docs.rs/num-complex/0.4")]
18#![no_std]
19
20#[cfg(any(test, feature = "std"))]
21#[cfg_attr(test, macro_use)]
22extern crate std;
23
24use core::fmt;
25#[cfg(test)]
26use core::hash;
27use core::iter::{Product, Sum};
28use core::ops::{Add, Div, Mul, Neg, Rem, Sub};
29use core::str::FromStr;
30#[cfg(feature = "std")]
31use std::error::Error;
32
33use num_traits::{ConstOne, ConstZero, Inv, MulAdd, Num, One, Pow, Signed, Zero};
34
35use num_traits::float::FloatCore;
36#[cfg(any(feature = "std", feature = "libm"))]
37use num_traits::float::{Float, FloatConst};
38
39mod cast;
40mod pow;
41
42#[cfg(any(feature = "std", feature = "libm"))]
43mod complex_float;
44#[cfg(any(feature = "std", feature = "libm"))]
45pub use crate::complex_float::ComplexFloat;
46
47#[cfg(feature = "rand")]
48mod crand;
49#[cfg(feature = "rand")]
50pub use crate::crand::ComplexDistribution;
51
52// FIXME #1284: handle complex NaN & infinity etc. This
53// probably doesn't map to C's _Complex correctly.
54
55/// A complex number in Cartesian form.
56///
57/// ## Representation and Foreign Function Interface Compatibility
58///
59/// `Complex<T>` is memory layout compatible with an array `[T; 2]`.
60///
61/// Note that `Complex<F>` where F is a floating point type is **only** memory
62/// layout compatible with C's complex types, **not** necessarily calling
63/// convention compatible.  This means that for FFI you can only pass
64/// `Complex<F>` behind a pointer, not as a value.
65///
66/// ## Examples
67///
68/// Example of extern function declaration.
69///
70/// ```
71/// use num_complex::Complex;
72/// use std::os::raw::c_int;
73///
74/// extern "C" {
75///     fn zaxpy_(n: *const c_int, alpha: *const Complex<f64>,
76///               x: *const Complex<f64>, incx: *const c_int,
77///               y: *mut Complex<f64>, incy: *const c_int);
78/// }
79/// ```
80#[derive(PartialEq, Eq, Copy, Clone, Hash, Debug, Default)]
81#[repr(C)]
82#[cfg_attr(
83    feature = "rkyv",
84    derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize)
85)]
86#[cfg_attr(feature = "rkyv", archive(as = "Complex<T::Archived>"))]
87#[cfg_attr(feature = "bytecheck", derive(bytecheck::CheckBytes))]
88pub struct Complex<T> {
89    /// Real portion of the complex number
90    pub re: T,
91    /// Imaginary portion of the complex number
92    pub im: T,
93}
94
95/// Alias for a [`Complex<f32>`]
96pub type Complex32 = Complex<f32>;
97
98/// Create a new [`Complex<f32>`] with arguments that can convert [`Into<f32>`].
99///
100/// ```
101/// use num_complex::{c32, Complex32};
102/// assert_eq!(c32(1u8, 2), Complex32::new(1.0, 2.0));
103/// ```
104///
105/// Note: ambiguous integer literals in Rust will [default] to `i32`, which does **not** implement
106/// `Into<f32>`, so a call like `c32(1, 2)` will result in a type error. The example above uses a
107/// suffixed `1u8` to set its type, and then the `2` can be inferred as the same type.
108///
109/// [default]: https://doc.rust-lang.org/reference/expressions/literal-expr.html#integer-literal-expressions
110#[inline]
111pub fn c32<T: Into<f32>>(re: T, im: T) -> Complex32 {
112    Complex::new(re.into(), im.into())
113}
114
115/// Alias for a [`Complex<f64>`]
116pub type Complex64 = Complex<f64>;
117
118/// Create a new [`Complex<f64>`] with arguments that can convert [`Into<f64>`].
119///
120/// ```
121/// use num_complex::{c64, Complex64};
122/// assert_eq!(c64(1, 2), Complex64::new(1.0, 2.0));
123/// ```
124#[inline]
125pub fn c64<T: Into<f64>>(re: T, im: T) -> Complex64 {
126    Complex::new(re.into(), im.into())
127}
128
129impl<T> Complex<T> {
130    /// Create a new `Complex`
131    #[inline]
132    pub const fn new(re: T, im: T) -> Self {
133        Complex { re, im }
134    }
135}
136
137impl<T: Clone + Num> Complex<T> {
138    /// Returns the imaginary unit.
139    ///
140    /// See also [`Complex::I`].
141    #[inline]
142    pub fn i() -> Self {
143        Self::new(T::zero(), T::one())
144    }
145
146    /// Returns the square of the norm (since `T` doesn't necessarily
147    /// have a sqrt function), i.e. `re^2 + im^2`.
148    #[inline]
149    pub fn norm_sqr(&self) -> T {
150        self.re.clone() * self.re.clone() + self.im.clone() * self.im.clone()
151    }
152
153    /// Multiplies `self` by the scalar `t`.
154    #[inline]
155    pub fn scale(&self, t: T) -> Self {
156        Self::new(self.re.clone() * t.clone(), self.im.clone() * t)
157    }
158
159    /// Divides `self` by the scalar `t`.
160    #[inline]
161    pub fn unscale(&self, t: T) -> Self {
162        Self::new(self.re.clone() / t.clone(), self.im.clone() / t)
163    }
164
165    /// Raises `self` to an unsigned integer power.
166    #[inline]
167    pub fn powu(&self, exp: u32) -> Self {
168        Pow::pow(self, exp)
169    }
170}
171
172impl<T: Clone + Num + Neg<Output = T>> Complex<T> {
173    /// Returns the complex conjugate. i.e. `re - i im`
174    #[inline]
175    pub fn conj(&self) -> Self {
176        Self::new(self.re.clone(), -self.im.clone())
177    }
178
179    /// Returns `1/self`
180    #[inline]
181    pub fn inv(&self) -> Self {
182        let norm_sqr = self.norm_sqr();
183        Self::new(
184            self.re.clone() / norm_sqr.clone(),
185            -self.im.clone() / norm_sqr,
186        )
187    }
188
189    /// Raises `self` to a signed integer power.
190    #[inline]
191    pub fn powi(&self, exp: i32) -> Self {
192        Pow::pow(self, exp)
193    }
194}
195
196impl<T: Clone + Signed> Complex<T> {
197    /// Returns the L1 norm `|re| + |im|` -- the [Manhattan distance] from the origin.
198    ///
199    /// [Manhattan distance]: https://en.wikipedia.org/wiki/Taxicab_geometry
200    #[inline]
201    pub fn l1_norm(&self) -> T {
202        self.re.abs() + self.im.abs()
203    }
204}
205
206#[cfg(any(feature = "std", feature = "libm"))]
207impl<T: Float> Complex<T> {
208    /// Create a new Complex with a given phase: `exp(i * phase)`.
209    /// See [cis (mathematics)](https://en.wikipedia.org/wiki/Cis_(mathematics)).
210    #[inline]
211    pub fn cis(phase: T) -> Self {
212        Self::new(phase.cos(), phase.sin())
213    }
214
215    /// Calculate |self|
216    #[inline]
217    pub fn norm(self) -> T {
218        self.re.hypot(self.im)
219    }
220    /// Calculate the principal Arg of self.
221    #[inline]
222    pub fn arg(self) -> T {
223        self.im.atan2(self.re)
224    }
225    /// Convert to polar form (r, theta), such that
226    /// `self = r * exp(i * theta)`
227    #[inline]
228    pub fn to_polar(self) -> (T, T) {
229        (self.norm(), self.arg())
230    }
231    /// Convert a polar representation into a complex number.
232    #[inline]
233    pub fn from_polar(r: T, theta: T) -> Self {
234        Self::new(r * theta.cos(), r * theta.sin())
235    }
236
237    /// Computes `e^(self)`, where `e` is the base of the natural logarithm.
238    #[inline]
239    pub fn exp(self) -> Self {
240        // formula: e^(a + bi) = e^a (cos(b) + i*sin(b)) = from_polar(e^a, b)
241
242        let Complex { re, mut im } = self;
243        // Treat the corner cases +∞, -∞, and NaN
244        if re.is_infinite() {
245            if re < T::zero() {
246                if !im.is_finite() {
247                    return Self::new(T::zero(), T::zero());
248                }
249            } else if im == T::zero() || !im.is_finite() {
250                if im.is_infinite() {
251                    im = T::nan();
252                }
253                return Self::new(re, im);
254            }
255        } else if re.is_nan() && im == T::zero() {
256            return self;
257        }
258
259        Self::from_polar(re.exp(), im)
260    }
261
262    /// Computes the principal value of natural logarithm of `self`.
263    ///
264    /// This function has one branch cut:
265    ///
266    /// * `(-∞, 0]`, continuous from above.
267    ///
268    /// The branch satisfies `-π ≤ arg(ln(z)) ≤ π`.
269    #[inline]
270    pub fn ln(self) -> Self {
271        // formula: ln(z) = ln|z| + i*arg(z)
272        let (r, theta) = self.to_polar();
273        Self::new(r.ln(), theta)
274    }
275
276    /// Computes the principal value of the square root of `self`.
277    ///
278    /// This function has one branch cut:
279    ///
280    /// * `(-∞, 0)`, continuous from above.
281    ///
282    /// The branch satisfies `-π/2 ≤ arg(sqrt(z)) ≤ π/2`.
283    #[inline]
284    pub fn sqrt(self) -> Self {
285        if self.im.is_zero() {
286            if self.re.is_sign_positive() {
287                // simple positive real √r, and copy `im` for its sign
288                Self::new(self.re.sqrt(), self.im)
289            } else {
290                // √(r e^(iπ)) = √r e^(iπ/2) = i√r
291                // √(r e^(-iπ)) = √r e^(-iπ/2) = -i√r
292                let re = T::zero();
293                let im = (-self.re).sqrt();
294                if self.im.is_sign_positive() {
295                    Self::new(re, im)
296                } else {
297                    Self::new(re, -im)
298                }
299            }
300        } else if self.re.is_zero() {
301            // √(r e^(iπ/2)) = √r e^(iπ/4) = √(r/2) + i√(r/2)
302            // √(r e^(-iπ/2)) = √r e^(-iπ/4) = √(r/2) - i√(r/2)
303            let one = T::one();
304            let two = one + one;
305            let x = (self.im.abs() / two).sqrt();
306            if self.im.is_sign_positive() {
307                Self::new(x, x)
308            } else {
309                Self::new(x, -x)
310            }
311        } else {
312            // formula: sqrt(r e^(it)) = sqrt(r) e^(it/2)
313            let one = T::one();
314            let two = one + one;
315            let (r, theta) = self.to_polar();
316            Self::from_polar(r.sqrt(), theta / two)
317        }
318    }
319
320    /// Computes the principal value of the cube root of `self`.
321    ///
322    /// This function has one branch cut:
323    ///
324    /// * `(-∞, 0)`, continuous from above.
325    ///
326    /// The branch satisfies `-π/3 ≤ arg(cbrt(z)) ≤ π/3`.
327    ///
328    /// Note that this does not match the usual result for the cube root of
329    /// negative real numbers. For example, the real cube root of `-8` is `-2`,
330    /// but the principal complex cube root of `-8` is `1 + i√3`.
331    #[inline]
332    pub fn cbrt(self) -> Self {
333        if self.im.is_zero() {
334            if self.re.is_sign_positive() {
335                // simple positive real ∛r, and copy `im` for its sign
336                Self::new(self.re.cbrt(), self.im)
337            } else {
338                // ∛(r e^(iπ)) = ∛r e^(iπ/3) = ∛r/2 + i∛r√3/2
339                // ∛(r e^(-iπ)) = ∛r e^(-iπ/3) = ∛r/2 - i∛r√3/2
340                let one = T::one();
341                let two = one + one;
342                let three = two + one;
343                let re = (-self.re).cbrt() / two;
344                let im = three.sqrt() * re;
345                if self.im.is_sign_positive() {
346                    Self::new(re, im)
347                } else {
348                    Self::new(re, -im)
349                }
350            }
351        } else if self.re.is_zero() {
352            // ∛(r e^(iπ/2)) = ∛r e^(iπ/6) = ∛r√3/2 + i∛r/2
353            // ∛(r e^(-iπ/2)) = ∛r e^(-iπ/6) = ∛r√3/2 - i∛r/2
354            let one = T::one();
355            let two = one + one;
356            let three = two + one;
357            let im = self.im.abs().cbrt() / two;
358            let re = three.sqrt() * im;
359            if self.im.is_sign_positive() {
360                Self::new(re, im)
361            } else {
362                Self::new(re, -im)
363            }
364        } else {
365            // formula: cbrt(r e^(it)) = cbrt(r) e^(it/3)
366            let one = T::one();
367            let three = one + one + one;
368            let (r, theta) = self.to_polar();
369            Self::from_polar(r.cbrt(), theta / three)
370        }
371    }
372
373    /// Raises `self` to a floating point power.
374    #[inline]
375    pub fn powf(self, exp: T) -> Self {
376        if exp.is_zero() {
377            return Self::one();
378        }
379        // formula: x^y = (ρ e^(i θ))^y = ρ^y e^(i θ y)
380        // = from_polar(ρ^y, θ y)
381        let (r, theta) = self.to_polar();
382        Self::from_polar(r.powf(exp), theta * exp)
383    }
384
385    /// Returns the logarithm of `self` with respect to an arbitrary base.
386    #[inline]
387    pub fn log(self, base: T) -> Self {
388        // formula: log_y(x) = log_y(ρ e^(i θ))
389        // = log_y(ρ) + log_y(e^(i θ)) = log_y(ρ) + ln(e^(i θ)) / ln(y)
390        // = log_y(ρ) + i θ / ln(y)
391        let (r, theta) = self.to_polar();
392        Self::new(r.log(base), theta / base.ln())
393    }
394
395    /// Raises `self` to a complex power.
396    #[inline]
397    pub fn powc(self, exp: Self) -> Self {
398        if exp.is_zero() {
399            return Self::one();
400        }
401        // formula: x^y = exp(y * ln(x))
402        (exp * self.ln()).exp()
403    }
404
405    /// Raises a floating point number to the complex power `self`.
406    #[inline]
407    pub fn expf(self, base: T) -> Self {
408        // formula: x^(a+bi) = x^a x^bi = x^a e^(b ln(x) i)
409        // = from_polar(x^a, b ln(x))
410        Self::from_polar(base.powf(self.re), self.im * base.ln())
411    }
412
413    /// Computes the sine of `self`.
414    #[inline]
415    pub fn sin(self) -> Self {
416        // formula: sin(a + bi) = sin(a)cosh(b) + i*cos(a)sinh(b)
417        Self::new(
418            self.re.sin() * self.im.cosh(),
419            self.re.cos() * self.im.sinh(),
420        )
421    }
422
423    /// Computes the cosine of `self`.
424    #[inline]
425    pub fn cos(self) -> Self {
426        // formula: cos(a + bi) = cos(a)cosh(b) - i*sin(a)sinh(b)
427        Self::new(
428            self.re.cos() * self.im.cosh(),
429            -self.re.sin() * self.im.sinh(),
430        )
431    }
432
433    /// Computes the tangent of `self`.
434    #[inline]
435    pub fn tan(self) -> Self {
436        // formula: tan(a + bi) = (sin(2a) + i*sinh(2b))/(cos(2a) + cosh(2b))
437        let (two_re, two_im) = (self.re + self.re, self.im + self.im);
438        Self::new(two_re.sin(), two_im.sinh()).unscale(two_re.cos() + two_im.cosh())
439    }
440
441    /// Computes the principal value of the inverse sine of `self`.
442    ///
443    /// This function has two branch cuts:
444    ///
445    /// * `(-∞, -1)`, continuous from above.
446    /// * `(1, ∞)`, continuous from below.
447    ///
448    /// The branch satisfies `-π/2 ≤ Re(asin(z)) ≤ π/2`.
449    #[inline]
450    pub fn asin(self) -> Self {
451        // formula: arcsin(z) = -i ln(sqrt(1-z^2) + iz)
452        let i = Self::i();
453        -i * ((Self::one() - self * self).sqrt() + i * self).ln()
454    }
455
456    /// Computes the principal value of the inverse cosine of `self`.
457    ///
458    /// This function has two branch cuts:
459    ///
460    /// * `(-∞, -1)`, continuous from above.
461    /// * `(1, ∞)`, continuous from below.
462    ///
463    /// The branch satisfies `0 ≤ Re(acos(z)) ≤ π`.
464    #[inline]
465    pub fn acos(self) -> Self {
466        // formula: arccos(z) = -i ln(i sqrt(1-z^2) + z)
467        let i = Self::i();
468        -i * (i * (Self::one() - self * self).sqrt() + self).ln()
469    }
470
471    /// Computes the principal value of the inverse tangent of `self`.
472    ///
473    /// This function has two branch cuts:
474    ///
475    /// * `(-∞i, -i]`, continuous from the left.
476    /// * `[i, ∞i)`, continuous from the right.
477    ///
478    /// The branch satisfies `-π/2 ≤ Re(atan(z)) ≤ π/2`.
479    #[inline]
480    pub fn atan(self) -> Self {
481        // formula: arctan(z) = (ln(1+iz) - ln(1-iz))/(2i)
482        let i = Self::i();
483        let one = Self::one();
484        let two = one + one;
485        if self == i {
486            return Self::new(T::zero(), T::infinity());
487        } else if self == -i {
488            return Self::new(T::zero(), -T::infinity());
489        }
490        ((one + i * self).ln() - (one - i * self).ln()) / (two * i)
491    }
492
493    /// Computes the hyperbolic sine of `self`.
494    #[inline]
495    pub fn sinh(self) -> Self {
496        // formula: sinh(a + bi) = sinh(a)cos(b) + i*cosh(a)sin(b)
497        Self::new(
498            self.re.sinh() * self.im.cos(),
499            self.re.cosh() * self.im.sin(),
500        )
501    }
502
503    /// Computes the hyperbolic cosine of `self`.
504    #[inline]
505    pub fn cosh(self) -> Self {
506        // formula: cosh(a + bi) = cosh(a)cos(b) + i*sinh(a)sin(b)
507        Self::new(
508            self.re.cosh() * self.im.cos(),
509            self.re.sinh() * self.im.sin(),
510        )
511    }
512
513    /// Computes the hyperbolic tangent of `self`.
514    #[inline]
515    pub fn tanh(self) -> Self {
516        // formula: tanh(a + bi) = (sinh(2a) + i*sin(2b))/(cosh(2a) + cos(2b))
517        let (two_re, two_im) = (self.re + self.re, self.im + self.im);
518        Self::new(two_re.sinh(), two_im.sin()).unscale(two_re.cosh() + two_im.cos())
519    }
520
521    /// Computes the principal value of inverse hyperbolic sine of `self`.
522    ///
523    /// This function has two branch cuts:
524    ///
525    /// * `(-∞i, -i)`, continuous from the left.
526    /// * `(i, ∞i)`, continuous from the right.
527    ///
528    /// The branch satisfies `-π/2 ≤ Im(asinh(z)) ≤ π/2`.
529    #[inline]
530    pub fn asinh(self) -> Self {
531        // formula: arcsinh(z) = ln(z + sqrt(1+z^2))
532        let one = Self::one();
533        (self + (one + self * self).sqrt()).ln()
534    }
535
536    /// Computes the principal value of inverse hyperbolic cosine of `self`.
537    ///
538    /// This function has one branch cut:
539    ///
540    /// * `(-∞, 1)`, continuous from above.
541    ///
542    /// The branch satisfies `-π ≤ Im(acosh(z)) ≤ π` and `0 ≤ Re(acosh(z)) < ∞`.
543    #[inline]
544    pub fn acosh(self) -> Self {
545        // formula: arccosh(z) = 2 ln(sqrt((z+1)/2) + sqrt((z-1)/2))
546        let one = Self::one();
547        let two = one + one;
548        two * (((self + one) / two).sqrt() + ((self - one) / two).sqrt()).ln()
549    }
550
551    /// Computes the principal value of inverse hyperbolic tangent of `self`.
552    ///
553    /// This function has two branch cuts:
554    ///
555    /// * `(-∞, -1]`, continuous from above.
556    /// * `[1, ∞)`, continuous from below.
557    ///
558    /// The branch satisfies `-π/2 ≤ Im(atanh(z)) ≤ π/2`.
559    #[inline]
560    pub fn atanh(self) -> Self {
561        // formula: arctanh(z) = (ln(1+z) - ln(1-z))/2
562        let one = Self::one();
563        let two = one + one;
564        if self == one {
565            return Self::new(T::infinity(), T::zero());
566        } else if self == -one {
567            return Self::new(-T::infinity(), T::zero());
568        }
569        ((one + self).ln() - (one - self).ln()) / two
570    }
571
572    /// Returns `1/self` using floating-point operations.
573    ///
574    /// This may be more accurate than the generic `self.inv()` in cases
575    /// where `self.norm_sqr()` would overflow to ∞ or underflow to 0.
576    ///
577    /// # Examples
578    ///
579    /// ```
580    /// use num_complex::Complex64;
581    /// let c = Complex64::new(1e300, 1e300);
582    ///
583    /// // The generic `inv()` will overflow.
584    /// assert!(!c.inv().is_normal());
585    ///
586    /// // But we can do better for `Float` types.
587    /// let inv = c.finv();
588    /// assert!(inv.is_normal());
589    /// println!("{:e}", inv);
590    ///
591    /// let expected = Complex64::new(5e-301, -5e-301);
592    /// assert!((inv - expected).norm() < 1e-315);
593    /// ```
594    #[inline]
595    pub fn finv(self) -> Complex<T> {
596        let norm = self.norm();
597        self.conj() / norm / norm
598    }
599
600    /// Returns `self/other` using floating-point operations.
601    ///
602    /// This may be more accurate than the generic `Div` implementation in cases
603    /// where `other.norm_sqr()` would overflow to ∞ or underflow to 0.
604    ///
605    /// # Examples
606    ///
607    /// ```
608    /// use num_complex::Complex64;
609    /// let a = Complex64::new(2.0, 3.0);
610    /// let b = Complex64::new(1e300, 1e300);
611    ///
612    /// // Generic division will overflow.
613    /// assert!(!(a / b).is_normal());
614    ///
615    /// // But we can do better for `Float` types.
616    /// let quotient = a.fdiv(b);
617    /// assert!(quotient.is_normal());
618    /// println!("{:e}", quotient);
619    ///
620    /// let expected = Complex64::new(2.5e-300, 5e-301);
621    /// assert!((quotient - expected).norm() < 1e-315);
622    /// ```
623    #[inline]
624    pub fn fdiv(self, other: Complex<T>) -> Complex<T> {
625        self * other.finv()
626    }
627}
628
629#[cfg(any(feature = "std", feature = "libm"))]
630impl<T: Float + FloatConst> Complex<T> {
631    /// Computes `2^(self)`.
632    #[inline]
633    pub fn exp2(self) -> Self {
634        // formula: 2^(a + bi) = 2^a (cos(b*log2) + i*sin(b*log2))
635        // = from_polar(2^a, b*log2)
636        Self::from_polar(self.re.exp2(), self.im * T::LN_2())
637    }
638
639    /// Computes the principal value of log base 2 of `self`.
640    #[inline]
641    pub fn log2(self) -> Self {
642        Self::ln(self) / T::LN_2()
643    }
644
645    /// Computes the principal value of log base 10 of `self`.
646    #[inline]
647    pub fn log10(self) -> Self {
648        Self::ln(self) / T::LN_10()
649    }
650}
651
652impl<T: FloatCore> Complex<T> {
653    /// Checks if the given complex number is NaN
654    #[inline]
655    pub fn is_nan(self) -> bool {
656        self.re.is_nan() || self.im.is_nan()
657    }
658
659    /// Checks if the given complex number is infinite
660    #[inline]
661    pub fn is_infinite(self) -> bool {
662        !self.is_nan() && (self.re.is_infinite() || self.im.is_infinite())
663    }
664
665    /// Checks if the given complex number is finite
666    #[inline]
667    pub fn is_finite(self) -> bool {
668        self.re.is_finite() && self.im.is_finite()
669    }
670
671    /// Checks if the given complex number is normal
672    #[inline]
673    pub fn is_normal(self) -> bool {
674        self.re.is_normal() && self.im.is_normal()
675    }
676}
677
678// Safety: `Complex<T>` is `repr(C)` and contains only instances of `T`, so we
679// can guarantee it contains no *added* padding. Thus, if `T: Zeroable`,
680// `Complex<T>` is also `Zeroable`
681#[cfg(feature = "bytemuck")]
682unsafe impl<T: bytemuck::Zeroable> bytemuck::Zeroable for Complex<T> {}
683
684// Safety: `Complex<T>` is `repr(C)` and contains only instances of `T`, so we
685// can guarantee it contains no *added* padding. Thus, if `T: Pod`,
686// `Complex<T>` is also `Pod`
687#[cfg(feature = "bytemuck")]
688unsafe impl<T: bytemuck::Pod> bytemuck::Pod for Complex<T> {}
689
690impl<T: Clone + Num> From<T> for Complex<T> {
691    #[inline]
692    fn from(re: T) -> Self {
693        Self::new(re, T::zero())
694    }
695}
696
697impl<'a, T: Clone + Num> From<&'a T> for Complex<T> {
698    #[inline]
699    fn from(re: &T) -> Self {
700        From::from(re.clone())
701    }
702}
703
704macro_rules! forward_ref_ref_binop {
705    (impl $imp:ident, $method:ident) => {
706        impl<'a, 'b, T: Clone + Num> $imp<&'b Complex<T>> for &'a Complex<T> {
707            type Output = Complex<T>;
708
709            #[inline]
710            fn $method(self, other: &Complex<T>) -> Self::Output {
711                self.clone().$method(other.clone())
712            }
713        }
714    };
715}
716
717macro_rules! forward_ref_val_binop {
718    (impl $imp:ident, $method:ident) => {
719        impl<'a, T: Clone + Num> $imp<Complex<T>> for &'a Complex<T> {
720            type Output = Complex<T>;
721
722            #[inline]
723            fn $method(self, other: Complex<T>) -> Self::Output {
724                self.clone().$method(other)
725            }
726        }
727    };
728}
729
730macro_rules! forward_val_ref_binop {
731    (impl $imp:ident, $method:ident) => {
732        impl<'a, T: Clone + Num> $imp<&'a Complex<T>> for Complex<T> {
733            type Output = Complex<T>;
734
735            #[inline]
736            fn $method(self, other: &Complex<T>) -> Self::Output {
737                self.$method(other.clone())
738            }
739        }
740    };
741}
742
743macro_rules! forward_all_binop {
744    (impl $imp:ident, $method:ident) => {
745        forward_ref_ref_binop!(impl $imp, $method);
746        forward_ref_val_binop!(impl $imp, $method);
747        forward_val_ref_binop!(impl $imp, $method);
748    };
749}
750
751// arithmetic
752forward_all_binop!(impl Add, add);
753
754// (a + i b) + (c + i d) == (a + c) + i (b + d)
755impl<T: Clone + Num> Add<Complex<T>> for Complex<T> {
756    type Output = Self;
757
758    #[inline]
759    fn add(self, other: Self) -> Self::Output {
760        Self::Output::new(self.re + other.re, self.im + other.im)
761    }
762}
763
764forward_all_binop!(impl Sub, sub);
765
766// (a + i b) - (c + i d) == (a - c) + i (b - d)
767impl<T: Clone + Num> Sub<Complex<T>> for Complex<T> {
768    type Output = Self;
769
770    #[inline]
771    fn sub(self, other: Self) -> Self::Output {
772        Self::Output::new(self.re - other.re, self.im - other.im)
773    }
774}
775
776forward_all_binop!(impl Mul, mul);
777
778// (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c)
779impl<T: Clone + Num> Mul<Complex<T>> for Complex<T> {
780    type Output = Self;
781
782    #[inline]
783    fn mul(self, other: Self) -> Self::Output {
784        let re = self.re.clone() * other.re.clone() - self.im.clone() * other.im.clone();
785        let im = self.re * other.im + self.im * other.re;
786        Self::Output::new(re, im)
787    }
788}
789
790// (a + i b) * (c + i d) + (e + i f) == ((a*c + e) - b*d) + i (a*d + (b*c + f))
791impl<T: Clone + Num + MulAdd<Output = T>> MulAdd<Complex<T>> for Complex<T> {
792    type Output = Complex<T>;
793
794    #[inline]
795    fn mul_add(self, other: Complex<T>, add: Complex<T>) -> Complex<T> {
796        let re = self.re.clone().mul_add(other.re.clone(), add.re)
797            - (self.im.clone() * other.im.clone()); // FIXME: use mulsub when available in rust
798        let im = self.re.mul_add(other.im, self.im.mul_add(other.re, add.im));
799        Complex::new(re, im)
800    }
801}
802impl<'a, 'b, T: Clone + Num + MulAdd<Output = T>> MulAdd<&'b Complex<T>> for &'a Complex<T> {
803    type Output = Complex<T>;
804
805    #[inline]
806    fn mul_add(self, other: &Complex<T>, add: &Complex<T>) -> Complex<T> {
807        self.clone().mul_add(other.clone(), add.clone())
808    }
809}
810
811forward_all_binop!(impl Div, div);
812
813// (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d)
814//   == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)]
815impl<T: Clone + Num> Div<Complex<T>> for Complex<T> {
816    type Output = Self;
817
818    #[inline]
819    fn div(self, other: Self) -> Self::Output {
820        let norm_sqr = other.norm_sqr();
821        let re = self.re.clone() * other.re.clone() + self.im.clone() * other.im.clone();
822        let im = self.im * other.re - self.re * other.im;
823        Self::Output::new(re / norm_sqr.clone(), im / norm_sqr)
824    }
825}
826
827forward_all_binop!(impl Rem, rem);
828
829impl<T: Clone + Num> Complex<T> {
830    /// Find the gaussian integer corresponding to the true ratio rounded towards zero.
831    fn div_trunc(&self, divisor: &Self) -> Self {
832        let Complex { re, im } = self / divisor;
833        Complex::new(re.clone() - re % T::one(), im.clone() - im % T::one())
834    }
835}
836
837impl<T: Clone + Num> Rem<Complex<T>> for Complex<T> {
838    type Output = Self;
839
840    #[inline]
841    fn rem(self, modulus: Self) -> Self::Output {
842        let gaussian = self.div_trunc(&modulus);
843        self - modulus * gaussian
844    }
845}
846
847// Op Assign
848
849mod opassign {
850    use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign};
851
852    use num_traits::{MulAddAssign, NumAssign};
853
854    use crate::Complex;
855
856    impl<T: Clone + NumAssign> AddAssign for Complex<T> {
857        fn add_assign(&mut self, other: Self) {
858            self.re += other.re;
859            self.im += other.im;
860        }
861    }
862
863    impl<T: Clone + NumAssign> SubAssign for Complex<T> {
864        fn sub_assign(&mut self, other: Self) {
865            self.re -= other.re;
866            self.im -= other.im;
867        }
868    }
869
870    // (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c)
871    impl<T: Clone + NumAssign> MulAssign for Complex<T> {
872        fn mul_assign(&mut self, other: Self) {
873            let a = self.re.clone();
874
875            self.re *= other.re.clone();
876            self.re -= self.im.clone() * other.im.clone();
877
878            self.im *= other.re;
879            self.im += a * other.im;
880        }
881    }
882
883    // (a + i b) * (c + i d) + (e + i f) == ((a*c + e) - b*d) + i (b*c + (a*d + f))
884    impl<T: Clone + NumAssign + MulAddAssign> MulAddAssign for Complex<T> {
885        fn mul_add_assign(&mut self, other: Complex<T>, add: Complex<T>) {
886            let a = self.re.clone();
887
888            self.re.mul_add_assign(other.re.clone(), add.re); // (a*c + e)
889            self.re -= self.im.clone() * other.im.clone(); // ((a*c + e) - b*d)
890
891            let mut adf = a;
892            adf.mul_add_assign(other.im, add.im); // (a*d + f)
893            self.im.mul_add_assign(other.re, adf); // (b*c + (a*d + f))
894        }
895    }
896
897    impl<'a, 'b, T: Clone + NumAssign + MulAddAssign> MulAddAssign<&'a Complex<T>, &'b Complex<T>>
898        for Complex<T>
899    {
900        fn mul_add_assign(&mut self, other: &Complex<T>, add: &Complex<T>) {
901            self.mul_add_assign(other.clone(), add.clone());
902        }
903    }
904
905    // (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d)
906    //   == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)]
907    impl<T: Clone + NumAssign> DivAssign for Complex<T> {
908        fn div_assign(&mut self, other: Self) {
909            let a = self.re.clone();
910            let norm_sqr = other.norm_sqr();
911
912            self.re *= other.re.clone();
913            self.re += self.im.clone() * other.im.clone();
914            self.re /= norm_sqr.clone();
915
916            self.im *= other.re;
917            self.im -= a * other.im;
918            self.im /= norm_sqr;
919        }
920    }
921
922    impl<T: Clone + NumAssign> RemAssign for Complex<T> {
923        fn rem_assign(&mut self, modulus: Self) {
924            let gaussian = self.div_trunc(&modulus);
925            *self -= modulus * gaussian;
926        }
927    }
928
929    impl<T: Clone + NumAssign> AddAssign<T> for Complex<T> {
930        fn add_assign(&mut self, other: T) {
931            self.re += other;
932        }
933    }
934
935    impl<T: Clone + NumAssign> SubAssign<T> for Complex<T> {
936        fn sub_assign(&mut self, other: T) {
937            self.re -= other;
938        }
939    }
940
941    impl<T: Clone + NumAssign> MulAssign<T> for Complex<T> {
942        fn mul_assign(&mut self, other: T) {
943            self.re *= other.clone();
944            self.im *= other;
945        }
946    }
947
948    impl<T: Clone + NumAssign> DivAssign<T> for Complex<T> {
949        fn div_assign(&mut self, other: T) {
950            self.re /= other.clone();
951            self.im /= other;
952        }
953    }
954
955    impl<T: Clone + NumAssign> RemAssign<T> for Complex<T> {
956        fn rem_assign(&mut self, other: T) {
957            self.re %= other.clone();
958            self.im %= other;
959        }
960    }
961
962    macro_rules! forward_op_assign {
963        (impl $imp:ident, $method:ident) => {
964            impl<'a, T: Clone + NumAssign> $imp<&'a Complex<T>> for Complex<T> {
965                #[inline]
966                fn $method(&mut self, other: &Self) {
967                    self.$method(other.clone())
968                }
969            }
970            impl<'a, T: Clone + NumAssign> $imp<&'a T> for Complex<T> {
971                #[inline]
972                fn $method(&mut self, other: &T) {
973                    self.$method(other.clone())
974                }
975            }
976        };
977    }
978
979    forward_op_assign!(impl AddAssign, add_assign);
980    forward_op_assign!(impl SubAssign, sub_assign);
981    forward_op_assign!(impl MulAssign, mul_assign);
982    forward_op_assign!(impl DivAssign, div_assign);
983    forward_op_assign!(impl RemAssign, rem_assign);
984}
985
986impl<T: Clone + Num + Neg<Output = T>> Neg for Complex<T> {
987    type Output = Self;
988
989    #[inline]
990    fn neg(self) -> Self::Output {
991        Self::Output::new(-self.re, -self.im)
992    }
993}
994
995impl<'a, T: Clone + Num + Neg<Output = T>> Neg for &'a Complex<T> {
996    type Output = Complex<T>;
997
998    #[inline]
999    fn neg(self) -> Self::Output {
1000        -self.clone()
1001    }
1002}
1003
1004impl<T: Clone + Num + Neg<Output = T>> Inv for Complex<T> {
1005    type Output = Self;
1006
1007    #[inline]
1008    fn inv(self) -> Self::Output {
1009        Complex::inv(&self)
1010    }
1011}
1012
1013impl<'a, T: Clone + Num + Neg<Output = T>> Inv for &'a Complex<T> {
1014    type Output = Complex<T>;
1015
1016    #[inline]
1017    fn inv(self) -> Self::Output {
1018        Complex::inv(self)
1019    }
1020}
1021
1022macro_rules! real_arithmetic {
1023    (@forward $imp:ident::$method:ident for $($real:ident),*) => (
1024        impl<'a, T: Clone + Num> $imp<&'a T> for Complex<T> {
1025            type Output = Complex<T>;
1026
1027            #[inline]
1028            fn $method(self, other: &T) -> Self::Output {
1029                self.$method(other.clone())
1030            }
1031        }
1032        impl<'a, T: Clone + Num> $imp<T> for &'a Complex<T> {
1033            type Output = Complex<T>;
1034
1035            #[inline]
1036            fn $method(self, other: T) -> Self::Output {
1037                self.clone().$method(other)
1038            }
1039        }
1040        impl<'a, 'b, T: Clone + Num> $imp<&'a T> for &'b Complex<T> {
1041            type Output = Complex<T>;
1042
1043            #[inline]
1044            fn $method(self, other: &T) -> Self::Output {
1045                self.clone().$method(other.clone())
1046            }
1047        }
1048        $(
1049            impl<'a> $imp<&'a Complex<$real>> for $real {
1050                type Output = Complex<$real>;
1051
1052                #[inline]
1053                fn $method(self, other: &Complex<$real>) -> Complex<$real> {
1054                    self.$method(other.clone())
1055                }
1056            }
1057            impl<'a> $imp<Complex<$real>> for &'a $real {
1058                type Output = Complex<$real>;
1059
1060                #[inline]
1061                fn $method(self, other: Complex<$real>) -> Complex<$real> {
1062                    self.clone().$method(other)
1063                }
1064            }
1065            impl<'a, 'b> $imp<&'a Complex<$real>> for &'b $real {
1066                type Output = Complex<$real>;
1067
1068                #[inline]
1069                fn $method(self, other: &Complex<$real>) -> Complex<$real> {
1070                    self.clone().$method(other.clone())
1071                }
1072            }
1073        )*
1074    );
1075    ($($real:ident),*) => (
1076        real_arithmetic!(@forward Add::add for $($real),*);
1077        real_arithmetic!(@forward Sub::sub for $($real),*);
1078        real_arithmetic!(@forward Mul::mul for $($real),*);
1079        real_arithmetic!(@forward Div::div for $($real),*);
1080        real_arithmetic!(@forward Rem::rem for $($real),*);
1081
1082        $(
1083            impl Add<Complex<$real>> for $real {
1084                type Output = Complex<$real>;
1085
1086                #[inline]
1087                fn add(self, other: Complex<$real>) -> Self::Output {
1088                    Self::Output::new(self + other.re, other.im)
1089                }
1090            }
1091
1092            impl Sub<Complex<$real>> for $real {
1093                type Output = Complex<$real>;
1094
1095                #[inline]
1096                fn sub(self, other: Complex<$real>) -> Self::Output  {
1097                    Self::Output::new(self - other.re, $real::zero() - other.im)
1098                }
1099            }
1100
1101            impl Mul<Complex<$real>> for $real {
1102                type Output = Complex<$real>;
1103
1104                #[inline]
1105                fn mul(self, other: Complex<$real>) -> Self::Output {
1106                    Self::Output::new(self * other.re, self * other.im)
1107                }
1108            }
1109
1110            impl Div<Complex<$real>> for $real {
1111                type Output = Complex<$real>;
1112
1113                #[inline]
1114                fn div(self, other: Complex<$real>) -> Self::Output {
1115                    // a / (c + i d) == [a * (c - i d)] / (c*c + d*d)
1116                    let norm_sqr = other.norm_sqr();
1117                    Self::Output::new(self * other.re / norm_sqr.clone(),
1118                                      $real::zero() - self * other.im / norm_sqr)
1119                }
1120            }
1121
1122            impl Rem<Complex<$real>> for $real {
1123                type Output = Complex<$real>;
1124
1125                #[inline]
1126                fn rem(self, other: Complex<$real>) -> Self::Output {
1127                    Self::Output::new(self, Self::zero()) % other
1128                }
1129            }
1130        )*
1131    );
1132}
1133
1134impl<T: Clone + Num> Add<T> for Complex<T> {
1135    type Output = Complex<T>;
1136
1137    #[inline]
1138    fn add(self, other: T) -> Self::Output {
1139        Self::Output::new(self.re + other, self.im)
1140    }
1141}
1142
1143impl<T: Clone + Num> Sub<T> for Complex<T> {
1144    type Output = Complex<T>;
1145
1146    #[inline]
1147    fn sub(self, other: T) -> Self::Output {
1148        Self::Output::new(self.re - other, self.im)
1149    }
1150}
1151
1152impl<T: Clone + Num> Mul<T> for Complex<T> {
1153    type Output = Complex<T>;
1154
1155    #[inline]
1156    fn mul(self, other: T) -> Self::Output {
1157        Self::Output::new(self.re * other.clone(), self.im * other)
1158    }
1159}
1160
1161impl<T: Clone + Num> Div<T> for Complex<T> {
1162    type Output = Self;
1163
1164    #[inline]
1165    fn div(self, other: T) -> Self::Output {
1166        Self::Output::new(self.re / other.clone(), self.im / other)
1167    }
1168}
1169
1170impl<T: Clone + Num> Rem<T> for Complex<T> {
1171    type Output = Complex<T>;
1172
1173    #[inline]
1174    fn rem(self, other: T) -> Self::Output {
1175        Self::Output::new(self.re % other.clone(), self.im % other)
1176    }
1177}
1178
1179real_arithmetic!(usize, u8, u16, u32, u64, u128, isize, i8, i16, i32, i64, i128, f32, f64);
1180
1181// constants
1182impl<T: ConstZero> Complex<T> {
1183    /// A constant `Complex` 0.
1184    pub const ZERO: Self = Self::new(T::ZERO, T::ZERO);
1185}
1186
1187impl<T: Clone + Num + ConstZero> ConstZero for Complex<T> {
1188    const ZERO: Self = Self::ZERO;
1189}
1190
1191impl<T: Clone + Num> Zero for Complex<T> {
1192    #[inline]
1193    fn zero() -> Self {
1194        Self::new(Zero::zero(), Zero::zero())
1195    }
1196
1197    #[inline]
1198    fn is_zero(&self) -> bool {
1199        self.re.is_zero() && self.im.is_zero()
1200    }
1201
1202    #[inline]
1203    fn set_zero(&mut self) {
1204        self.re.set_zero();
1205        self.im.set_zero();
1206    }
1207}
1208
1209impl<T: ConstOne + ConstZero> Complex<T> {
1210    /// A constant `Complex` 1.
1211    pub const ONE: Self = Self::new(T::ONE, T::ZERO);
1212
1213    /// A constant `Complex` _i_, the imaginary unit.
1214    pub const I: Self = Self::new(T::ZERO, T::ONE);
1215}
1216
1217impl<T: Clone + Num + ConstOne + ConstZero> ConstOne for Complex<T> {
1218    const ONE: Self = Self::ONE;
1219}
1220
1221impl<T: Clone + Num> One for Complex<T> {
1222    #[inline]
1223    fn one() -> Self {
1224        Self::new(One::one(), Zero::zero())
1225    }
1226
1227    #[inline]
1228    fn is_one(&self) -> bool {
1229        self.re.is_one() && self.im.is_zero()
1230    }
1231
1232    #[inline]
1233    fn set_one(&mut self) {
1234        self.re.set_one();
1235        self.im.set_zero();
1236    }
1237}
1238
1239macro_rules! write_complex {
1240    ($f:ident, $t:expr, $prefix:expr, $re:expr, $im:expr, $T:ident) => {{
1241        let abs_re = if $re < Zero::zero() {
1242            $T::zero() - $re.clone()
1243        } else {
1244            $re.clone()
1245        };
1246        let abs_im = if $im < Zero::zero() {
1247            $T::zero() - $im.clone()
1248        } else {
1249            $im.clone()
1250        };
1251
1252        return if let Some(prec) = $f.precision() {
1253            fmt_re_im(
1254                $f,
1255                $re < $T::zero(),
1256                $im < $T::zero(),
1257                format_args!(concat!("{:.1$", $t, "}"), abs_re, prec),
1258                format_args!(concat!("{:.1$", $t, "}"), abs_im, prec),
1259            )
1260        } else {
1261            fmt_re_im(
1262                $f,
1263                $re < $T::zero(),
1264                $im < $T::zero(),
1265                format_args!(concat!("{:", $t, "}"), abs_re),
1266                format_args!(concat!("{:", $t, "}"), abs_im),
1267            )
1268        };
1269
1270        fn fmt_re_im(
1271            f: &mut fmt::Formatter<'_>,
1272            re_neg: bool,
1273            im_neg: bool,
1274            real: fmt::Arguments<'_>,
1275            imag: fmt::Arguments<'_>,
1276        ) -> fmt::Result {
1277            let prefix = if f.alternate() { $prefix } else { "" };
1278            let sign = if re_neg {
1279                "-"
1280            } else if f.sign_plus() {
1281                "+"
1282            } else {
1283                ""
1284            };
1285
1286            if im_neg {
1287                fmt_complex(
1288                    f,
1289                    format_args!(
1290                        "{}{pre}{re}-{pre}{im}i",
1291                        sign,
1292                        re = real,
1293                        im = imag,
1294                        pre = prefix
1295                    ),
1296                )
1297            } else {
1298                fmt_complex(
1299                    f,
1300                    format_args!(
1301                        "{}{pre}{re}+{pre}{im}i",
1302                        sign,
1303                        re = real,
1304                        im = imag,
1305                        pre = prefix
1306                    ),
1307                )
1308            }
1309        }
1310
1311        #[cfg(feature = "std")]
1312        // Currently, we can only apply width using an intermediate `String` (and thus `std`)
1313        fn fmt_complex(f: &mut fmt::Formatter<'_>, complex: fmt::Arguments<'_>) -> fmt::Result {
1314            use std::string::ToString;
1315            if let Some(width) = f.width() {
1316                write!(f, "{0: >1$}", complex.to_string(), width)
1317            } else {
1318                write!(f, "{}", complex)
1319            }
1320        }
1321
1322        #[cfg(not(feature = "std"))]
1323        fn fmt_complex(f: &mut fmt::Formatter<'_>, complex: fmt::Arguments<'_>) -> fmt::Result {
1324            write!(f, "{}", complex)
1325        }
1326    }};
1327}
1328
1329// string conversions
1330impl<T> fmt::Display for Complex<T>
1331where
1332    T: fmt::Display + Num + PartialOrd + Clone,
1333{
1334    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1335        write_complex!(f, "", "", self.re, self.im, T)
1336    }
1337}
1338
1339impl<T> fmt::LowerExp for Complex<T>
1340where
1341    T: fmt::LowerExp + Num + PartialOrd + Clone,
1342{
1343    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1344        write_complex!(f, "e", "", self.re, self.im, T)
1345    }
1346}
1347
1348impl<T> fmt::UpperExp for Complex<T>
1349where
1350    T: fmt::UpperExp + Num + PartialOrd + Clone,
1351{
1352    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1353        write_complex!(f, "E", "", self.re, self.im, T)
1354    }
1355}
1356
1357impl<T> fmt::LowerHex for Complex<T>
1358where
1359    T: fmt::LowerHex + Num + PartialOrd + Clone,
1360{
1361    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1362        write_complex!(f, "x", "0x", self.re, self.im, T)
1363    }
1364}
1365
1366impl<T> fmt::UpperHex for Complex<T>
1367where
1368    T: fmt::UpperHex + Num + PartialOrd + Clone,
1369{
1370    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1371        write_complex!(f, "X", "0x", self.re, self.im, T)
1372    }
1373}
1374
1375impl<T> fmt::Octal for Complex<T>
1376where
1377    T: fmt::Octal + Num + PartialOrd + Clone,
1378{
1379    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1380        write_complex!(f, "o", "0o", self.re, self.im, T)
1381    }
1382}
1383
1384impl<T> fmt::Binary for Complex<T>
1385where
1386    T: fmt::Binary + Num + PartialOrd + Clone,
1387{
1388    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1389        write_complex!(f, "b", "0b", self.re, self.im, T)
1390    }
1391}
1392
1393fn from_str_generic<T, E, F>(s: &str, from: F) -> Result<Complex<T>, ParseComplexError<E>>
1394where
1395    F: Fn(&str) -> Result<T, E>,
1396    T: Clone + Num,
1397{
1398    let imag = match s.rfind('j') {
1399        None => 'i',
1400        _ => 'j',
1401    };
1402
1403    let mut neg_b = false;
1404    let mut a = s;
1405    let mut b = "";
1406
1407    for (i, w) in s.as_bytes().windows(2).enumerate() {
1408        let p = w[0];
1409        let c = w[1];
1410
1411        // ignore '+'/'-' if part of an exponent
1412        if (c == b'+' || c == b'-') && !(p == b'e' || p == b'E') {
1413            // trim whitespace around the separator
1414            a = s[..=i].trim_end_matches(char::is_whitespace);
1415            b = s[i + 2..].trim_start_matches(char::is_whitespace);
1416            neg_b = c == b'-';
1417
1418            if b.is_empty() || (neg_b && b.starts_with('-')) {
1419                return Err(ParseComplexError::expr_error());
1420            }
1421            break;
1422        }
1423    }
1424
1425    // split off real and imaginary parts
1426    if b.is_empty() {
1427        // input was either pure real or pure imaginary
1428        b = if a.ends_with(imag) { "0" } else { "0i" };
1429    }
1430
1431    let re;
1432    let neg_re;
1433    let im;
1434    let neg_im;
1435    if a.ends_with(imag) {
1436        im = a;
1437        neg_im = false;
1438        re = b;
1439        neg_re = neg_b;
1440    } else if b.ends_with(imag) {
1441        re = a;
1442        neg_re = false;
1443        im = b;
1444        neg_im = neg_b;
1445    } else {
1446        return Err(ParseComplexError::expr_error());
1447    }
1448
1449    // parse re
1450    let re = from(re).map_err(ParseComplexError::from_error)?;
1451    let re = if neg_re { T::zero() - re } else { re };
1452
1453    // pop imaginary unit off
1454    let mut im = &im[..im.len() - 1];
1455    // handle im == "i" or im == "-i"
1456    if im.is_empty() || im == "+" {
1457        im = "1";
1458    } else if im == "-" {
1459        im = "-1";
1460    }
1461
1462    // parse im
1463    let im = from(im).map_err(ParseComplexError::from_error)?;
1464    let im = if neg_im { T::zero() - im } else { im };
1465
1466    Ok(Complex::new(re, im))
1467}
1468
1469impl<T> FromStr for Complex<T>
1470where
1471    T: FromStr + Num + Clone,
1472{
1473    type Err = ParseComplexError<T::Err>;
1474
1475    /// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T`
1476    fn from_str(s: &str) -> Result<Self, Self::Err> {
1477        from_str_generic(s, T::from_str)
1478    }
1479}
1480
1481impl<T: Num + Clone> Num for Complex<T> {
1482    type FromStrRadixErr = ParseComplexError<T::FromStrRadixErr>;
1483
1484    /// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T`
1485    ///
1486    /// `radix` must be <= 18; larger radix would include *i* and *j* as digits,
1487    /// which cannot be supported.
1488    ///
1489    /// The conversion returns an error if 18 <= radix <= 36; it panics if radix > 36.
1490    ///
1491    /// The elements of `T` are parsed using `Num::from_str_radix` too, and errors
1492    /// (or panics) from that are reflected here as well.
1493    fn from_str_radix(s: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> {
1494        assert!(
1495            radix <= 36,
1496            "from_str_radix: radix is too high (maximum 36)"
1497        );
1498
1499        // larger radix would include 'i' and 'j' as digits, which cannot be supported
1500        if radix > 18 {
1501            return Err(ParseComplexError::unsupported_radix());
1502        }
1503
1504        from_str_generic(s, |x| -> Result<T, T::FromStrRadixErr> {
1505            T::from_str_radix(x, radix)
1506        })
1507    }
1508}
1509
1510impl<T: Num + Clone> Sum for Complex<T> {
1511    fn sum<I>(iter: I) -> Self
1512    where
1513        I: Iterator<Item = Self>,
1514    {
1515        iter.fold(Self::zero(), |acc, c| acc + c)
1516    }
1517}
1518
1519impl<'a, T: 'a + Num + Clone> Sum<&'a Complex<T>> for Complex<T> {
1520    fn sum<I>(iter: I) -> Self
1521    where
1522        I: Iterator<Item = &'a Complex<T>>,
1523    {
1524        iter.fold(Self::zero(), |acc, c| acc + c)
1525    }
1526}
1527
1528impl<T: Num + Clone> Product for Complex<T> {
1529    fn product<I>(iter: I) -> Self
1530    where
1531        I: Iterator<Item = Self>,
1532    {
1533        iter.fold(Self::one(), |acc, c| acc * c)
1534    }
1535}
1536
1537impl<'a, T: 'a + Num + Clone> Product<&'a Complex<T>> for Complex<T> {
1538    fn product<I>(iter: I) -> Self
1539    where
1540        I: Iterator<Item = &'a Complex<T>>,
1541    {
1542        iter.fold(Self::one(), |acc, c| acc * c)
1543    }
1544}
1545
1546#[cfg(feature = "serde")]
1547impl<T> serde::Serialize for Complex<T>
1548where
1549    T: serde::Serialize,
1550{
1551    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
1552    where
1553        S: serde::Serializer,
1554    {
1555        (&self.re, &self.im).serialize(serializer)
1556    }
1557}
1558
1559#[cfg(feature = "serde")]
1560impl<'de, T> serde::Deserialize<'de> for Complex<T>
1561where
1562    T: serde::Deserialize<'de>,
1563{
1564    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
1565    where
1566        D: serde::Deserializer<'de>,
1567    {
1568        let (re, im) = serde::Deserialize::deserialize(deserializer)?;
1569        Ok(Self::new(re, im))
1570    }
1571}
1572
1573#[derive(Debug, PartialEq)]
1574pub struct ParseComplexError<E> {
1575    kind: ComplexErrorKind<E>,
1576}
1577
1578#[derive(Debug, PartialEq)]
1579enum ComplexErrorKind<E> {
1580    ParseError(E),
1581    ExprError,
1582    UnsupportedRadix,
1583}
1584
1585impl<E> ParseComplexError<E> {
1586    fn expr_error() -> Self {
1587        ParseComplexError {
1588            kind: ComplexErrorKind::ExprError,
1589        }
1590    }
1591
1592    fn unsupported_radix() -> Self {
1593        ParseComplexError {
1594            kind: ComplexErrorKind::UnsupportedRadix,
1595        }
1596    }
1597
1598    fn from_error(error: E) -> Self {
1599        ParseComplexError {
1600            kind: ComplexErrorKind::ParseError(error),
1601        }
1602    }
1603}
1604
1605#[cfg(feature = "std")]
1606impl<E: Error> Error for ParseComplexError<E> {
1607    #[allow(deprecated)]
1608    fn description(&self) -> &str {
1609        match self.kind {
1610            ComplexErrorKind::ParseError(ref e) => e.description(),
1611            ComplexErrorKind::ExprError => "invalid or unsupported complex expression",
1612            ComplexErrorKind::UnsupportedRadix => "unsupported radix for conversion",
1613        }
1614    }
1615}
1616
1617impl<E: fmt::Display> fmt::Display for ParseComplexError<E> {
1618    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1619        match self.kind {
1620            ComplexErrorKind::ParseError(ref e) => e.fmt(f),
1621            ComplexErrorKind::ExprError => "invalid or unsupported complex expression".fmt(f),
1622            ComplexErrorKind::UnsupportedRadix => "unsupported radix for conversion".fmt(f),
1623        }
1624    }
1625}
1626
1627#[cfg(test)]
1628fn hash<T: hash::Hash>(x: &T) -> u64 {
1629    use std::collections::hash_map::RandomState;
1630    use std::hash::{BuildHasher, Hasher};
1631    let mut hasher = <RandomState as BuildHasher>::Hasher::new();
1632    x.hash(&mut hasher);
1633    hasher.finish()
1634}
1635
1636#[cfg(test)]
1637pub(crate) mod test {
1638    #![allow(non_upper_case_globals)]
1639
1640    use super::{Complex, Complex64};
1641    use super::{ComplexErrorKind, ParseComplexError};
1642    use core::f64;
1643    use core::str::FromStr;
1644
1645    use std::string::{String, ToString};
1646
1647    use num_traits::{Num, One, Zero};
1648
1649    pub const _0_0i: Complex64 = Complex::new(0.0, 0.0);
1650    pub const _1_0i: Complex64 = Complex::new(1.0, 0.0);
1651    pub const _1_1i: Complex64 = Complex::new(1.0, 1.0);
1652    pub const _0_1i: Complex64 = Complex::new(0.0, 1.0);
1653    pub const _neg1_1i: Complex64 = Complex::new(-1.0, 1.0);
1654    pub const _05_05i: Complex64 = Complex::new(0.5, 0.5);
1655    pub const all_consts: [Complex64; 5] = [_0_0i, _1_0i, _1_1i, _neg1_1i, _05_05i];
1656    pub const _4_2i: Complex64 = Complex::new(4.0, 2.0);
1657    pub const _1_infi: Complex64 = Complex::new(1.0, f64::INFINITY);
1658    pub const _neg1_infi: Complex64 = Complex::new(-1.0, f64::INFINITY);
1659    pub const _1_nani: Complex64 = Complex::new(1.0, f64::NAN);
1660    pub const _neg1_nani: Complex64 = Complex::new(-1.0, f64::NAN);
1661    pub const _inf_0i: Complex64 = Complex::new(f64::INFINITY, 0.0);
1662    pub const _neginf_1i: Complex64 = Complex::new(f64::NEG_INFINITY, 1.0);
1663    pub const _neginf_neg1i: Complex64 = Complex::new(f64::NEG_INFINITY, -1.0);
1664    pub const _inf_1i: Complex64 = Complex::new(f64::INFINITY, 1.0);
1665    pub const _inf_neg1i: Complex64 = Complex::new(f64::INFINITY, -1.0);
1666    pub const _neginf_infi: Complex64 = Complex::new(f64::NEG_INFINITY, f64::INFINITY);
1667    pub const _inf_infi: Complex64 = Complex::new(f64::INFINITY, f64::INFINITY);
1668    pub const _neginf_nani: Complex64 = Complex::new(f64::NEG_INFINITY, f64::NAN);
1669    pub const _inf_nani: Complex64 = Complex::new(f64::INFINITY, f64::NAN);
1670    pub const _nan_0i: Complex64 = Complex::new(f64::NAN, 0.0);
1671    pub const _nan_1i: Complex64 = Complex::new(f64::NAN, 1.0);
1672    pub const _nan_neg1i: Complex64 = Complex::new(f64::NAN, -1.0);
1673    pub const _nan_nani: Complex64 = Complex::new(f64::NAN, f64::NAN);
1674
1675    #[test]
1676    fn test_consts() {
1677        // check our constants are what Complex::new creates
1678        fn test(c: Complex64, r: f64, i: f64) {
1679            assert_eq!(c, Complex::new(r, i));
1680        }
1681        test(_0_0i, 0.0, 0.0);
1682        test(_1_0i, 1.0, 0.0);
1683        test(_1_1i, 1.0, 1.0);
1684        test(_neg1_1i, -1.0, 1.0);
1685        test(_05_05i, 0.5, 0.5);
1686
1687        assert_eq!(_0_0i, Zero::zero());
1688        assert_eq!(_1_0i, One::one());
1689    }
1690
1691    #[test]
1692    fn test_scale_unscale() {
1693        assert_eq!(_05_05i.scale(2.0), _1_1i);
1694        assert_eq!(_1_1i.unscale(2.0), _05_05i);
1695        for &c in all_consts.iter() {
1696            assert_eq!(c.scale(2.0).unscale(2.0), c);
1697        }
1698    }
1699
1700    #[test]
1701    fn test_conj() {
1702        for &c in all_consts.iter() {
1703            assert_eq!(c.conj(), Complex::new(c.re, -c.im));
1704            assert_eq!(c.conj().conj(), c);
1705        }
1706    }
1707
1708    #[test]
1709    fn test_inv() {
1710        assert_eq!(_1_1i.inv(), _05_05i.conj());
1711        assert_eq!(_1_0i.inv(), _1_0i.inv());
1712    }
1713
1714    #[test]
1715    #[should_panic]
1716    fn test_divide_by_zero_natural() {
1717        let n = Complex::new(2, 3);
1718        let d = Complex::new(0, 0);
1719        let _x = n / d;
1720    }
1721
1722    #[test]
1723    fn test_inv_zero() {
1724        // FIXME #20: should this really fail, or just NaN?
1725        assert!(_0_0i.inv().is_nan());
1726    }
1727
1728    #[test]
1729    #[allow(clippy::float_cmp)]
1730    fn test_l1_norm() {
1731        assert_eq!(_0_0i.l1_norm(), 0.0);
1732        assert_eq!(_1_0i.l1_norm(), 1.0);
1733        assert_eq!(_1_1i.l1_norm(), 2.0);
1734        assert_eq!(_0_1i.l1_norm(), 1.0);
1735        assert_eq!(_neg1_1i.l1_norm(), 2.0);
1736        assert_eq!(_05_05i.l1_norm(), 1.0);
1737        assert_eq!(_4_2i.l1_norm(), 6.0);
1738    }
1739
1740    #[test]
1741    fn test_pow() {
1742        for c in all_consts.iter() {
1743            assert_eq!(c.powi(0), _1_0i);
1744            let mut pos = _1_0i;
1745            let mut neg = _1_0i;
1746            for i in 1i32..20 {
1747                pos *= c;
1748                assert_eq!(pos, c.powi(i));
1749                if c.is_zero() {
1750                    assert!(c.powi(-i).is_nan());
1751                } else {
1752                    neg /= c;
1753                    assert_eq!(neg, c.powi(-i));
1754                }
1755            }
1756        }
1757    }
1758
1759    #[cfg(any(feature = "std", feature = "libm"))]
1760    pub(crate) mod float {
1761
1762        use core::f64::INFINITY;
1763
1764        use super::*;
1765        use num_traits::{Float, Pow};
1766
1767        #[test]
1768        fn test_cis() {
1769            assert!(close(Complex::cis(0.0 * f64::consts::PI), _1_0i));
1770            assert!(close(Complex::cis(0.5 * f64::consts::PI), _0_1i));
1771            assert!(close(Complex::cis(1.0 * f64::consts::PI), -_1_0i));
1772            assert!(close(Complex::cis(1.5 * f64::consts::PI), -_0_1i));
1773            assert!(close(Complex::cis(2.0 * f64::consts::PI), _1_0i));
1774        }
1775
1776        #[test]
1777        #[cfg_attr(target_arch = "x86", ignore)]
1778        // FIXME #7158: (maybe?) currently failing on x86.
1779        #[allow(clippy::float_cmp)]
1780        fn test_norm() {
1781            fn test(c: Complex64, ns: f64) {
1782                assert_eq!(c.norm_sqr(), ns);
1783                assert_eq!(c.norm(), ns.sqrt())
1784            }
1785            test(_0_0i, 0.0);
1786            test(_1_0i, 1.0);
1787            test(_1_1i, 2.0);
1788            test(_neg1_1i, 2.0);
1789            test(_05_05i, 0.5);
1790        }
1791
1792        #[test]
1793        fn test_arg() {
1794            fn test(c: Complex64, arg: f64) {
1795                assert!((c.arg() - arg).abs() < 1.0e-6)
1796            }
1797            test(_1_0i, 0.0);
1798            test(_1_1i, 0.25 * f64::consts::PI);
1799            test(_neg1_1i, 0.75 * f64::consts::PI);
1800            test(_05_05i, 0.25 * f64::consts::PI);
1801        }
1802
1803        #[test]
1804        fn test_polar_conv() {
1805            fn test(c: Complex64) {
1806                let (r, theta) = c.to_polar();
1807                assert!((c - Complex::from_polar(r, theta)).norm() < 1e-6);
1808            }
1809            for &c in all_consts.iter() {
1810                test(c);
1811            }
1812        }
1813
1814        pub(crate) fn close(a: Complex64, b: Complex64) -> bool {
1815            close_to_tol(a, b, 1e-10)
1816        }
1817
1818        fn close_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool {
1819            // returns true if a and b are reasonably close
1820            let close = (a == b) || (a - b).norm() < tol;
1821            if !close {
1822                println!("{:?} != {:?}", a, b);
1823            }
1824            close
1825        }
1826
1827        // Version that also works if re or im are +inf, -inf, or nan
1828        fn close_naninf(a: Complex64, b: Complex64) -> bool {
1829            close_naninf_to_tol(a, b, 1.0e-10)
1830        }
1831
1832        fn close_naninf_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool {
1833            let mut close = true;
1834
1835            // Compare the real parts
1836            if a.re.is_finite() {
1837                if b.re.is_finite() {
1838                    close = (a.re == b.re) || (a.re - b.re).abs() < tol;
1839                } else {
1840                    close = false;
1841                }
1842            } else if (a.re.is_nan() && !b.re.is_nan())
1843                || (a.re.is_infinite()
1844                    && a.re.is_sign_positive()
1845                    && !(b.re.is_infinite() && b.re.is_sign_positive()))
1846                || (a.re.is_infinite()
1847                    && a.re.is_sign_negative()
1848                    && !(b.re.is_infinite() && b.re.is_sign_negative()))
1849            {
1850                close = false;
1851            }
1852
1853            // Compare the imaginary parts
1854            if a.im.is_finite() {
1855                if b.im.is_finite() {
1856                    close &= (a.im == b.im) || (a.im - b.im).abs() < tol;
1857                } else {
1858                    close = false;
1859                }
1860            } else if (a.im.is_nan() && !b.im.is_nan())
1861                || (a.im.is_infinite()
1862                    && a.im.is_sign_positive()
1863                    && !(b.im.is_infinite() && b.im.is_sign_positive()))
1864                || (a.im.is_infinite()
1865                    && a.im.is_sign_negative()
1866                    && !(b.im.is_infinite() && b.im.is_sign_negative()))
1867            {
1868                close = false;
1869            }
1870
1871            if close == false {
1872                println!("{:?} != {:?}", a, b);
1873            }
1874            close
1875        }
1876
1877        #[test]
1878        fn test_exp2() {
1879            assert!(close(_0_0i.exp2(), _1_0i));
1880        }
1881
1882        #[test]
1883        fn test_exp() {
1884            assert!(close(_1_0i.exp(), _1_0i.scale(f64::consts::E)));
1885            assert!(close(_0_0i.exp(), _1_0i));
1886            assert!(close(_0_1i.exp(), Complex::new(1.0.cos(), 1.0.sin())));
1887            assert!(close(_05_05i.exp() * _05_05i.exp(), _1_1i.exp()));
1888            assert!(close(
1889                _0_1i.scale(-f64::consts::PI).exp(),
1890                _1_0i.scale(-1.0)
1891            ));
1892            for &c in all_consts.iter() {
1893                // e^conj(z) = conj(e^z)
1894                assert!(close(c.conj().exp(), c.exp().conj()));
1895                // e^(z + 2 pi i) = e^z
1896                assert!(close(
1897                    c.exp(),
1898                    (c + _0_1i.scale(f64::consts::PI * 2.0)).exp()
1899                ));
1900            }
1901
1902            // The test values below were taken from https://en.cppreference.com/w/cpp/numeric/complex/exp
1903            assert!(close_naninf(_1_infi.exp(), _nan_nani));
1904            assert!(close_naninf(_neg1_infi.exp(), _nan_nani));
1905            assert!(close_naninf(_1_nani.exp(), _nan_nani));
1906            assert!(close_naninf(_neg1_nani.exp(), _nan_nani));
1907            assert!(close_naninf(_inf_0i.exp(), _inf_0i));
1908            assert!(close_naninf(_neginf_1i.exp(), 0.0 * Complex::cis(1.0)));
1909            assert!(close_naninf(_neginf_neg1i.exp(), 0.0 * Complex::cis(-1.0)));
1910            assert!(close_naninf(
1911                _inf_1i.exp(),
1912                f64::INFINITY * Complex::cis(1.0)
1913            ));
1914            assert!(close_naninf(
1915                _inf_neg1i.exp(),
1916                f64::INFINITY * Complex::cis(-1.0)
1917            ));
1918            assert!(close_naninf(_neginf_infi.exp(), _0_0i)); // Note: ±0±0i: signs of zeros are unspecified
1919            assert!(close_naninf(_inf_infi.exp(), _inf_nani)); // Note: ±∞+NaN*i: sign of the real part is unspecified
1920            assert!(close_naninf(_neginf_nani.exp(), _0_0i)); // Note: ±0±0i: signs of zeros are unspecified
1921            assert!(close_naninf(_inf_nani.exp(), _inf_nani)); // Note: ±∞+NaN*i: sign of the real part is unspecified
1922            assert!(close_naninf(_nan_0i.exp(), _nan_0i));
1923            assert!(close_naninf(_nan_1i.exp(), _nan_nani));
1924            assert!(close_naninf(_nan_neg1i.exp(), _nan_nani));
1925            assert!(close_naninf(_nan_nani.exp(), _nan_nani));
1926        }
1927
1928        #[test]
1929        fn test_ln() {
1930            assert!(close(_1_0i.ln(), _0_0i));
1931            assert!(close(_0_1i.ln(), _0_1i.scale(f64::consts::PI / 2.0)));
1932            assert!(close(_0_0i.ln(), Complex::new(f64::neg_infinity(), 0.0)));
1933            assert!(close(
1934                (_neg1_1i * _05_05i).ln(),
1935                _neg1_1i.ln() + _05_05i.ln()
1936            ));
1937            for &c in all_consts.iter() {
1938                // ln(conj(z() = conj(ln(z))
1939                assert!(close(c.conj().ln(), c.ln().conj()));
1940                // for this branch, -pi <= arg(ln(z)) <= pi
1941                assert!(-f64::consts::PI <= c.ln().arg() && c.ln().arg() <= f64::consts::PI);
1942            }
1943        }
1944
1945        #[test]
1946        fn test_powc() {
1947            let a = Complex::new(2.0, -3.0);
1948            let b = Complex::new(3.0, 0.0);
1949            assert!(close(a.powc(b), a.powf(b.re)));
1950            assert!(close(b.powc(a), a.expf(b.re)));
1951            let c = Complex::new(1.0 / 3.0, 0.1);
1952            assert!(close_to_tol(
1953                a.powc(c),
1954                Complex::new(1.65826, -0.33502),
1955                1e-5
1956            ));
1957            let z = Complex::new(0.0, 0.0);
1958            assert!(close(z.powc(b), z));
1959            assert!(z.powc(Complex64::new(0., INFINITY)).is_nan());
1960            assert!(z.powc(Complex64::new(10., INFINITY)).is_nan());
1961            assert!(z.powc(Complex64::new(INFINITY, INFINITY)).is_nan());
1962            assert!(close(z.powc(Complex64::new(INFINITY, 0.)), z));
1963            assert!(z.powc(Complex64::new(-1., 0.)).re.is_infinite());
1964            assert!(z.powc(Complex64::new(-1., 0.)).im.is_nan());
1965
1966            for c in all_consts.iter() {
1967                assert_eq!(c.powc(_0_0i), _1_0i);
1968            }
1969            assert_eq!(_nan_nani.powc(_0_0i), _1_0i);
1970        }
1971
1972        #[test]
1973        fn test_powf() {
1974            let c = Complex64::new(2.0, -1.0);
1975            let expected = Complex64::new(-0.8684746, -16.695934);
1976            assert!(close_to_tol(c.powf(3.5), expected, 1e-5));
1977            assert!(close_to_tol(Pow::pow(c, 3.5_f64), expected, 1e-5));
1978            assert!(close_to_tol(Pow::pow(c, 3.5_f32), expected, 1e-5));
1979
1980            for c in all_consts.iter() {
1981                assert_eq!(c.powf(0.0), _1_0i);
1982            }
1983            assert_eq!(_nan_nani.powf(0.0), _1_0i);
1984        }
1985
1986        #[test]
1987        fn test_log() {
1988            let c = Complex::new(2.0, -1.0);
1989            let r = c.log(10.0);
1990            assert!(close_to_tol(r, Complex::new(0.349485, -0.20135958), 1e-5));
1991        }
1992
1993        #[test]
1994        fn test_log2() {
1995            assert!(close(_1_0i.log2(), _0_0i));
1996        }
1997
1998        #[test]
1999        fn test_log10() {
2000            assert!(close(_1_0i.log10(), _0_0i));
2001        }
2002
2003        #[test]
2004        fn test_some_expf_cases() {
2005            let c = Complex::new(2.0, -1.0);
2006            let r = c.expf(10.0);
2007            assert!(close_to_tol(r, Complex::new(-66.82015, -74.39803), 1e-5));
2008
2009            let c = Complex::new(5.0, -2.0);
2010            let r = c.expf(3.4);
2011            assert!(close_to_tol(r, Complex::new(-349.25, -290.63), 1e-2));
2012
2013            let c = Complex::new(-1.5, 2.0 / 3.0);
2014            let r = c.expf(1.0 / 3.0);
2015            assert!(close_to_tol(r, Complex::new(3.8637, -3.4745), 1e-2));
2016        }
2017
2018        #[test]
2019        fn test_sqrt() {
2020            assert!(close(_0_0i.sqrt(), _0_0i));
2021            assert!(close(_1_0i.sqrt(), _1_0i));
2022            assert!(close(Complex::new(-1.0, 0.0).sqrt(), _0_1i));
2023            assert!(close(Complex::new(-1.0, -0.0).sqrt(), _0_1i.scale(-1.0)));
2024            assert!(close(_0_1i.sqrt(), _05_05i.scale(2.0.sqrt())));
2025            for &c in all_consts.iter() {
2026                // sqrt(conj(z() = conj(sqrt(z))
2027                assert!(close(c.conj().sqrt(), c.sqrt().conj()));
2028                // for this branch, -pi/2 <= arg(sqrt(z)) <= pi/2
2029                assert!(
2030                    -f64::consts::FRAC_PI_2 <= c.sqrt().arg()
2031                        && c.sqrt().arg() <= f64::consts::FRAC_PI_2
2032                );
2033                // sqrt(z) * sqrt(z) = z
2034                assert!(close(c.sqrt() * c.sqrt(), c));
2035            }
2036        }
2037
2038        #[test]
2039        fn test_sqrt_real() {
2040            for n in (0..100).map(f64::from) {
2041                // √(n² + 0i) = n + 0i
2042                let n2 = n * n;
2043                assert_eq!(Complex64::new(n2, 0.0).sqrt(), Complex64::new(n, 0.0));
2044                // √(-n² + 0i) = 0 + ni
2045                assert_eq!(Complex64::new(-n2, 0.0).sqrt(), Complex64::new(0.0, n));
2046                // √(-n² - 0i) = 0 - ni
2047                assert_eq!(Complex64::new(-n2, -0.0).sqrt(), Complex64::new(0.0, -n));
2048            }
2049        }
2050
2051        #[test]
2052        fn test_sqrt_imag() {
2053            for n in (0..100).map(f64::from) {
2054                // √(0 + n²i) = n e^(iπ/4)
2055                let n2 = n * n;
2056                assert!(close(
2057                    Complex64::new(0.0, n2).sqrt(),
2058                    Complex64::from_polar(n, f64::consts::FRAC_PI_4)
2059                ));
2060                // √(0 - n²i) = n e^(-iπ/4)
2061                assert!(close(
2062                    Complex64::new(0.0, -n2).sqrt(),
2063                    Complex64::from_polar(n, -f64::consts::FRAC_PI_4)
2064                ));
2065            }
2066        }
2067
2068        #[test]
2069        fn test_cbrt() {
2070            assert!(close(_0_0i.cbrt(), _0_0i));
2071            assert!(close(_1_0i.cbrt(), _1_0i));
2072            assert!(close(
2073                Complex::new(-1.0, 0.0).cbrt(),
2074                Complex::new(0.5, 0.75.sqrt())
2075            ));
2076            assert!(close(
2077                Complex::new(-1.0, -0.0).cbrt(),
2078                Complex::new(0.5, -(0.75.sqrt()))
2079            ));
2080            assert!(close(_0_1i.cbrt(), Complex::new(0.75.sqrt(), 0.5)));
2081            assert!(close(_0_1i.conj().cbrt(), Complex::new(0.75.sqrt(), -0.5)));
2082            for &c in all_consts.iter() {
2083                // cbrt(conj(z() = conj(cbrt(z))
2084                assert!(close(c.conj().cbrt(), c.cbrt().conj()));
2085                // for this branch, -pi/3 <= arg(cbrt(z)) <= pi/3
2086                assert!(
2087                    -f64::consts::FRAC_PI_3 <= c.cbrt().arg()
2088                        && c.cbrt().arg() <= f64::consts::FRAC_PI_3
2089                );
2090                // cbrt(z) * cbrt(z) cbrt(z) = z
2091                assert!(close(c.cbrt() * c.cbrt() * c.cbrt(), c));
2092            }
2093        }
2094
2095        #[test]
2096        fn test_cbrt_real() {
2097            for n in (0..100).map(f64::from) {
2098                // ∛(n³ + 0i) = n + 0i
2099                let n3 = n * n * n;
2100                assert!(close(
2101                    Complex64::new(n3, 0.0).cbrt(),
2102                    Complex64::new(n, 0.0)
2103                ));
2104                // ∛(-n³ + 0i) = n e^(iπ/3)
2105                assert!(close(
2106                    Complex64::new(-n3, 0.0).cbrt(),
2107                    Complex64::from_polar(n, f64::consts::FRAC_PI_3)
2108                ));
2109                // ∛(-n³ - 0i) = n e^(-iπ/3)
2110                assert!(close(
2111                    Complex64::new(-n3, -0.0).cbrt(),
2112                    Complex64::from_polar(n, -f64::consts::FRAC_PI_3)
2113                ));
2114            }
2115        }
2116
2117        #[test]
2118        fn test_cbrt_imag() {
2119            for n in (0..100).map(f64::from) {
2120                // ∛(0 + n³i) = n e^(iπ/6)
2121                let n3 = n * n * n;
2122                assert!(close(
2123                    Complex64::new(0.0, n3).cbrt(),
2124                    Complex64::from_polar(n, f64::consts::FRAC_PI_6)
2125                ));
2126                // ∛(0 - n³i) = n e^(-iπ/6)
2127                assert!(close(
2128                    Complex64::new(0.0, -n3).cbrt(),
2129                    Complex64::from_polar(n, -f64::consts::FRAC_PI_6)
2130                ));
2131            }
2132        }
2133
2134        #[test]
2135        fn test_sin() {
2136            assert!(close(_0_0i.sin(), _0_0i));
2137            assert!(close(_1_0i.scale(f64::consts::PI * 2.0).sin(), _0_0i));
2138            assert!(close(_0_1i.sin(), _0_1i.scale(1.0.sinh())));
2139            for &c in all_consts.iter() {
2140                // sin(conj(z)) = conj(sin(z))
2141                assert!(close(c.conj().sin(), c.sin().conj()));
2142                // sin(-z) = -sin(z)
2143                assert!(close(c.scale(-1.0).sin(), c.sin().scale(-1.0)));
2144            }
2145        }
2146
2147        #[test]
2148        fn test_cos() {
2149            assert!(close(_0_0i.cos(), _1_0i));
2150            assert!(close(_1_0i.scale(f64::consts::PI * 2.0).cos(), _1_0i));
2151            assert!(close(_0_1i.cos(), _1_0i.scale(1.0.cosh())));
2152            for &c in all_consts.iter() {
2153                // cos(conj(z)) = conj(cos(z))
2154                assert!(close(c.conj().cos(), c.cos().conj()));
2155                // cos(-z) = cos(z)
2156                assert!(close(c.scale(-1.0).cos(), c.cos()));
2157            }
2158        }
2159
2160        #[test]
2161        fn test_tan() {
2162            assert!(close(_0_0i.tan(), _0_0i));
2163            assert!(close(_1_0i.scale(f64::consts::PI / 4.0).tan(), _1_0i));
2164            assert!(close(_1_0i.scale(f64::consts::PI).tan(), _0_0i));
2165            for &c in all_consts.iter() {
2166                // tan(conj(z)) = conj(tan(z))
2167                assert!(close(c.conj().tan(), c.tan().conj()));
2168                // tan(-z) = -tan(z)
2169                assert!(close(c.scale(-1.0).tan(), c.tan().scale(-1.0)));
2170            }
2171        }
2172
2173        #[test]
2174        fn test_asin() {
2175            assert!(close(_0_0i.asin(), _0_0i));
2176            assert!(close(_1_0i.asin(), _1_0i.scale(f64::consts::PI / 2.0)));
2177            assert!(close(
2178                _1_0i.scale(-1.0).asin(),
2179                _1_0i.scale(-f64::consts::PI / 2.0)
2180            ));
2181            assert!(close(_0_1i.asin(), _0_1i.scale((1.0 + 2.0.sqrt()).ln())));
2182            for &c in all_consts.iter() {
2183                // asin(conj(z)) = conj(asin(z))
2184                assert!(close(c.conj().asin(), c.asin().conj()));
2185                // asin(-z) = -asin(z)
2186                assert!(close(c.scale(-1.0).asin(), c.asin().scale(-1.0)));
2187                // for this branch, -pi/2 <= asin(z).re <= pi/2
2188                assert!(
2189                    -f64::consts::PI / 2.0 <= c.asin().re && c.asin().re <= f64::consts::PI / 2.0
2190                );
2191            }
2192        }
2193
2194        #[test]
2195        fn test_acos() {
2196            assert!(close(_0_0i.acos(), _1_0i.scale(f64::consts::PI / 2.0)));
2197            assert!(close(_1_0i.acos(), _0_0i));
2198            assert!(close(
2199                _1_0i.scale(-1.0).acos(),
2200                _1_0i.scale(f64::consts::PI)
2201            ));
2202            assert!(close(
2203                _0_1i.acos(),
2204                Complex::new(f64::consts::PI / 2.0, (2.0.sqrt() - 1.0).ln())
2205            ));
2206            for &c in all_consts.iter() {
2207                // acos(conj(z)) = conj(acos(z))
2208                assert!(close(c.conj().acos(), c.acos().conj()));
2209                // for this branch, 0 <= acos(z).re <= pi
2210                assert!(0.0 <= c.acos().re && c.acos().re <= f64::consts::PI);
2211            }
2212        }
2213
2214        #[test]
2215        fn test_atan() {
2216            assert!(close(_0_0i.atan(), _0_0i));
2217            assert!(close(_1_0i.atan(), _1_0i.scale(f64::consts::PI / 4.0)));
2218            assert!(close(
2219                _1_0i.scale(-1.0).atan(),
2220                _1_0i.scale(-f64::consts::PI / 4.0)
2221            ));
2222            assert!(close(_0_1i.atan(), Complex::new(0.0, f64::infinity())));
2223            for &c in all_consts.iter() {
2224                // atan(conj(z)) = conj(atan(z))
2225                assert!(close(c.conj().atan(), c.atan().conj()));
2226                // atan(-z) = -atan(z)
2227                assert!(close(c.scale(-1.0).atan(), c.atan().scale(-1.0)));
2228                // for this branch, -pi/2 <= atan(z).re <= pi/2
2229                assert!(
2230                    -f64::consts::PI / 2.0 <= c.atan().re && c.atan().re <= f64::consts::PI / 2.0
2231                );
2232            }
2233        }
2234
2235        #[test]
2236        fn test_sinh() {
2237            assert!(close(_0_0i.sinh(), _0_0i));
2238            assert!(close(
2239                _1_0i.sinh(),
2240                _1_0i.scale((f64::consts::E - 1.0 / f64::consts::E) / 2.0)
2241            ));
2242            assert!(close(_0_1i.sinh(), _0_1i.scale(1.0.sin())));
2243            for &c in all_consts.iter() {
2244                // sinh(conj(z)) = conj(sinh(z))
2245                assert!(close(c.conj().sinh(), c.sinh().conj()));
2246                // sinh(-z) = -sinh(z)
2247                assert!(close(c.scale(-1.0).sinh(), c.sinh().scale(-1.0)));
2248            }
2249        }
2250
2251        #[test]
2252        fn test_cosh() {
2253            assert!(close(_0_0i.cosh(), _1_0i));
2254            assert!(close(
2255                _1_0i.cosh(),
2256                _1_0i.scale((f64::consts::E + 1.0 / f64::consts::E) / 2.0)
2257            ));
2258            assert!(close(_0_1i.cosh(), _1_0i.scale(1.0.cos())));
2259            for &c in all_consts.iter() {
2260                // cosh(conj(z)) = conj(cosh(z))
2261                assert!(close(c.conj().cosh(), c.cosh().conj()));
2262                // cosh(-z) = cosh(z)
2263                assert!(close(c.scale(-1.0).cosh(), c.cosh()));
2264            }
2265        }
2266
2267        #[test]
2268        fn test_tanh() {
2269            assert!(close(_0_0i.tanh(), _0_0i));
2270            assert!(close(
2271                _1_0i.tanh(),
2272                _1_0i.scale((f64::consts::E.powi(2) - 1.0) / (f64::consts::E.powi(2) + 1.0))
2273            ));
2274            assert!(close(_0_1i.tanh(), _0_1i.scale(1.0.tan())));
2275            for &c in all_consts.iter() {
2276                // tanh(conj(z)) = conj(tanh(z))
2277                assert!(close(c.conj().tanh(), c.conj().tanh()));
2278                // tanh(-z) = -tanh(z)
2279                assert!(close(c.scale(-1.0).tanh(), c.tanh().scale(-1.0)));
2280            }
2281        }
2282
2283        #[test]
2284        fn test_asinh() {
2285            assert!(close(_0_0i.asinh(), _0_0i));
2286            assert!(close(_1_0i.asinh(), _1_0i.scale(1.0 + 2.0.sqrt()).ln()));
2287            assert!(close(_0_1i.asinh(), _0_1i.scale(f64::consts::PI / 2.0)));
2288            assert!(close(
2289                _0_1i.asinh().scale(-1.0),
2290                _0_1i.scale(-f64::consts::PI / 2.0)
2291            ));
2292            for &c in all_consts.iter() {
2293                // asinh(conj(z)) = conj(asinh(z))
2294                assert!(close(c.conj().asinh(), c.conj().asinh()));
2295                // asinh(-z) = -asinh(z)
2296                assert!(close(c.scale(-1.0).asinh(), c.asinh().scale(-1.0)));
2297                // for this branch, -pi/2 <= asinh(z).im <= pi/2
2298                assert!(
2299                    -f64::consts::PI / 2.0 <= c.asinh().im && c.asinh().im <= f64::consts::PI / 2.0
2300                );
2301            }
2302        }
2303
2304        #[test]
2305        fn test_acosh() {
2306            assert!(close(_0_0i.acosh(), _0_1i.scale(f64::consts::PI / 2.0)));
2307            assert!(close(_1_0i.acosh(), _0_0i));
2308            assert!(close(
2309                _1_0i.scale(-1.0).acosh(),
2310                _0_1i.scale(f64::consts::PI)
2311            ));
2312            for &c in all_consts.iter() {
2313                // acosh(conj(z)) = conj(acosh(z))
2314                assert!(close(c.conj().acosh(), c.conj().acosh()));
2315                // for this branch, -pi <= acosh(z).im <= pi and 0 <= acosh(z).re
2316                assert!(
2317                    -f64::consts::PI <= c.acosh().im
2318                        && c.acosh().im <= f64::consts::PI
2319                        && 0.0 <= c.cosh().re
2320                );
2321            }
2322        }
2323
2324        #[test]
2325        fn test_atanh() {
2326            assert!(close(_0_0i.atanh(), _0_0i));
2327            assert!(close(_0_1i.atanh(), _0_1i.scale(f64::consts::PI / 4.0)));
2328            assert!(close(_1_0i.atanh(), Complex::new(f64::infinity(), 0.0)));
2329            for &c in all_consts.iter() {
2330                // atanh(conj(z)) = conj(atanh(z))
2331                assert!(close(c.conj().atanh(), c.conj().atanh()));
2332                // atanh(-z) = -atanh(z)
2333                assert!(close(c.scale(-1.0).atanh(), c.atanh().scale(-1.0)));
2334                // for this branch, -pi/2 <= atanh(z).im <= pi/2
2335                assert!(
2336                    -f64::consts::PI / 2.0 <= c.atanh().im && c.atanh().im <= f64::consts::PI / 2.0
2337                );
2338            }
2339        }
2340
2341        #[test]
2342        fn test_exp_ln() {
2343            for &c in all_consts.iter() {
2344                // e^ln(z) = z
2345                assert!(close(c.ln().exp(), c));
2346            }
2347        }
2348
2349        #[test]
2350        fn test_exp2_log() {
2351            for &c in all_consts.iter() {
2352                // 2^log2(z) = z
2353                assert!(close(c.log2().exp2(), c));
2354            }
2355        }
2356
2357        #[test]
2358        fn test_trig_to_hyperbolic() {
2359            for &c in all_consts.iter() {
2360                // sin(iz) = i sinh(z)
2361                assert!(close((_0_1i * c).sin(), _0_1i * c.sinh()));
2362                // cos(iz) = cosh(z)
2363                assert!(close((_0_1i * c).cos(), c.cosh()));
2364                // tan(iz) = i tanh(z)
2365                assert!(close((_0_1i * c).tan(), _0_1i * c.tanh()));
2366            }
2367        }
2368
2369        #[test]
2370        fn test_trig_identities() {
2371            for &c in all_consts.iter() {
2372                // tan(z) = sin(z)/cos(z)
2373                assert!(close(c.tan(), c.sin() / c.cos()));
2374                // sin(z)^2 + cos(z)^2 = 1
2375                assert!(close(c.sin() * c.sin() + c.cos() * c.cos(), _1_0i));
2376
2377                // sin(asin(z)) = z
2378                assert!(close(c.asin().sin(), c));
2379                // cos(acos(z)) = z
2380                assert!(close(c.acos().cos(), c));
2381                // tan(atan(z)) = z
2382                // i and -i are branch points
2383                if c != _0_1i && c != _0_1i.scale(-1.0) {
2384                    assert!(close(c.atan().tan(), c));
2385                }
2386
2387                // sin(z) = (e^(iz) - e^(-iz))/(2i)
2388                assert!(close(
2389                    ((_0_1i * c).exp() - (_0_1i * c).exp().inv()) / _0_1i.scale(2.0),
2390                    c.sin()
2391                ));
2392                // cos(z) = (e^(iz) + e^(-iz))/2
2393                assert!(close(
2394                    ((_0_1i * c).exp() + (_0_1i * c).exp().inv()).unscale(2.0),
2395                    c.cos()
2396                ));
2397                // tan(z) = i (1 - e^(2iz))/(1 + e^(2iz))
2398                assert!(close(
2399                    _0_1i * (_1_0i - (_0_1i * c).scale(2.0).exp())
2400                        / (_1_0i + (_0_1i * c).scale(2.0).exp()),
2401                    c.tan()
2402                ));
2403            }
2404        }
2405
2406        #[test]
2407        fn test_hyperbolic_identites() {
2408            for &c in all_consts.iter() {
2409                // tanh(z) = sinh(z)/cosh(z)
2410                assert!(close(c.tanh(), c.sinh() / c.cosh()));
2411                // cosh(z)^2 - sinh(z)^2 = 1
2412                assert!(close(c.cosh() * c.cosh() - c.sinh() * c.sinh(), _1_0i));
2413
2414                // sinh(asinh(z)) = z
2415                assert!(close(c.asinh().sinh(), c));
2416                // cosh(acosh(z)) = z
2417                assert!(close(c.acosh().cosh(), c));
2418                // tanh(atanh(z)) = z
2419                // 1 and -1 are branch points
2420                if c != _1_0i && c != _1_0i.scale(-1.0) {
2421                    assert!(close(c.atanh().tanh(), c));
2422                }
2423
2424                // sinh(z) = (e^z - e^(-z))/2
2425                assert!(close((c.exp() - c.exp().inv()).unscale(2.0), c.sinh()));
2426                // cosh(z) = (e^z + e^(-z))/2
2427                assert!(close((c.exp() + c.exp().inv()).unscale(2.0), c.cosh()));
2428                // tanh(z) = ( e^(2z) - 1)/(e^(2z) + 1)
2429                assert!(close(
2430                    (c.scale(2.0).exp() - _1_0i) / (c.scale(2.0).exp() + _1_0i),
2431                    c.tanh()
2432                ));
2433            }
2434        }
2435    }
2436
2437    // Test both a + b and a += b
2438    macro_rules! test_a_op_b {
2439        ($a:ident + $b:expr, $answer:expr) => {
2440            assert_eq!($a + $b, $answer);
2441            assert_eq!(
2442                {
2443                    let mut x = $a;
2444                    x += $b;
2445                    x
2446                },
2447                $answer
2448            );
2449        };
2450        ($a:ident - $b:expr, $answer:expr) => {
2451            assert_eq!($a - $b, $answer);
2452            assert_eq!(
2453                {
2454                    let mut x = $a;
2455                    x -= $b;
2456                    x
2457                },
2458                $answer
2459            );
2460        };
2461        ($a:ident * $b:expr, $answer:expr) => {
2462            assert_eq!($a * $b, $answer);
2463            assert_eq!(
2464                {
2465                    let mut x = $a;
2466                    x *= $b;
2467                    x
2468                },
2469                $answer
2470            );
2471        };
2472        ($a:ident / $b:expr, $answer:expr) => {
2473            assert_eq!($a / $b, $answer);
2474            assert_eq!(
2475                {
2476                    let mut x = $a;
2477                    x /= $b;
2478                    x
2479                },
2480                $answer
2481            );
2482        };
2483        ($a:ident % $b:expr, $answer:expr) => {
2484            assert_eq!($a % $b, $answer);
2485            assert_eq!(
2486                {
2487                    let mut x = $a;
2488                    x %= $b;
2489                    x
2490                },
2491                $answer
2492            );
2493        };
2494    }
2495
2496    // Test both a + b and a + &b
2497    macro_rules! test_op {
2498        ($a:ident $op:tt $b:expr, $answer:expr) => {
2499            test_a_op_b!($a $op $b, $answer);
2500            test_a_op_b!($a $op &$b, $answer);
2501        };
2502    }
2503
2504    mod complex_arithmetic {
2505        use super::{_05_05i, _0_0i, _0_1i, _1_0i, _1_1i, _4_2i, _neg1_1i, all_consts};
2506        use num_traits::{MulAdd, MulAddAssign, Zero};
2507
2508        #[test]
2509        fn test_add() {
2510            test_op!(_05_05i + _05_05i, _1_1i);
2511            test_op!(_0_1i + _1_0i, _1_1i);
2512            test_op!(_1_0i + _neg1_1i, _0_1i);
2513
2514            for &c in all_consts.iter() {
2515                test_op!(_0_0i + c, c);
2516                test_op!(c + _0_0i, c);
2517            }
2518        }
2519
2520        #[test]
2521        fn test_sub() {
2522            test_op!(_05_05i - _05_05i, _0_0i);
2523            test_op!(_0_1i - _1_0i, _neg1_1i);
2524            test_op!(_0_1i - _neg1_1i, _1_0i);
2525
2526            for &c in all_consts.iter() {
2527                test_op!(c - _0_0i, c);
2528                test_op!(c - c, _0_0i);
2529            }
2530        }
2531
2532        #[test]
2533        fn test_mul() {
2534            test_op!(_05_05i * _05_05i, _0_1i.unscale(2.0));
2535            test_op!(_1_1i * _0_1i, _neg1_1i);
2536
2537            // i^2 & i^4
2538            test_op!(_0_1i * _0_1i, -_1_0i);
2539            assert_eq!(_0_1i * _0_1i * _0_1i * _0_1i, _1_0i);
2540
2541            for &c in all_consts.iter() {
2542                test_op!(c * _1_0i, c);
2543                test_op!(_1_0i * c, c);
2544            }
2545        }
2546
2547        #[test]
2548        #[cfg(any(feature = "std", feature = "libm"))]
2549        fn test_mul_add_float() {
2550            assert_eq!(_05_05i.mul_add(_05_05i, _0_0i), _05_05i * _05_05i + _0_0i);
2551            assert_eq!(_05_05i * _05_05i + _0_0i, _05_05i.mul_add(_05_05i, _0_0i));
2552            assert_eq!(_0_1i.mul_add(_0_1i, _0_1i), _neg1_1i);
2553            assert_eq!(_1_0i.mul_add(_1_0i, _1_0i), _1_0i * _1_0i + _1_0i);
2554            assert_eq!(_1_0i * _1_0i + _1_0i, _1_0i.mul_add(_1_0i, _1_0i));
2555
2556            let mut x = _1_0i;
2557            x.mul_add_assign(_1_0i, _1_0i);
2558            assert_eq!(x, _1_0i * _1_0i + _1_0i);
2559
2560            for &a in &all_consts {
2561                for &b in &all_consts {
2562                    for &c in &all_consts {
2563                        let abc = a * b + c;
2564                        assert_eq!(a.mul_add(b, c), abc);
2565                        let mut x = a;
2566                        x.mul_add_assign(b, c);
2567                        assert_eq!(x, abc);
2568                    }
2569                }
2570            }
2571        }
2572
2573        #[test]
2574        fn test_mul_add() {
2575            use super::Complex;
2576            const _0_0i: Complex<i32> = Complex { re: 0, im: 0 };
2577            const _1_0i: Complex<i32> = Complex { re: 1, im: 0 };
2578            const _1_1i: Complex<i32> = Complex { re: 1, im: 1 };
2579            const _0_1i: Complex<i32> = Complex { re: 0, im: 1 };
2580            const _neg1_1i: Complex<i32> = Complex { re: -1, im: 1 };
2581            const all_consts: [Complex<i32>; 5] = [_0_0i, _1_0i, _1_1i, _0_1i, _neg1_1i];
2582
2583            assert_eq!(_1_0i.mul_add(_1_0i, _0_0i), _1_0i * _1_0i + _0_0i);
2584            assert_eq!(_1_0i * _1_0i + _0_0i, _1_0i.mul_add(_1_0i, _0_0i));
2585            assert_eq!(_0_1i.mul_add(_0_1i, _0_1i), _neg1_1i);
2586            assert_eq!(_1_0i.mul_add(_1_0i, _1_0i), _1_0i * _1_0i + _1_0i);
2587            assert_eq!(_1_0i * _1_0i + _1_0i, _1_0i.mul_add(_1_0i, _1_0i));
2588
2589            let mut x = _1_0i;
2590            x.mul_add_assign(_1_0i, _1_0i);
2591            assert_eq!(x, _1_0i * _1_0i + _1_0i);
2592
2593            for &a in &all_consts {
2594                for &b in &all_consts {
2595                    for &c in &all_consts {
2596                        let abc = a * b + c;
2597                        assert_eq!(a.mul_add(b, c), abc);
2598                        let mut x = a;
2599                        x.mul_add_assign(b, c);
2600                        assert_eq!(x, abc);
2601                    }
2602                }
2603            }
2604        }
2605
2606        #[test]
2607        fn test_div() {
2608            test_op!(_neg1_1i / _0_1i, _1_1i);
2609            for &c in all_consts.iter() {
2610                if c != Zero::zero() {
2611                    test_op!(c / c, _1_0i);
2612                }
2613            }
2614        }
2615
2616        #[test]
2617        fn test_rem() {
2618            test_op!(_neg1_1i % _0_1i, _0_0i);
2619            test_op!(_4_2i % _0_1i, _0_0i);
2620            test_op!(_05_05i % _0_1i, _05_05i);
2621            test_op!(_05_05i % _1_1i, _05_05i);
2622            assert_eq!((_4_2i + _05_05i) % _0_1i, _05_05i);
2623            assert_eq!((_4_2i + _05_05i) % _1_1i, _05_05i);
2624        }
2625
2626        #[test]
2627        fn test_neg() {
2628            assert_eq!(-_1_0i + _0_1i, _neg1_1i);
2629            assert_eq!((-_0_1i) * _0_1i, _1_0i);
2630            for &c in all_consts.iter() {
2631                assert_eq!(-(-c), c);
2632            }
2633        }
2634    }
2635
2636    mod real_arithmetic {
2637        use super::super::Complex;
2638        use super::{_4_2i, _neg1_1i};
2639
2640        #[test]
2641        fn test_add() {
2642            test_op!(_4_2i + 0.5, Complex::new(4.5, 2.0));
2643            assert_eq!(0.5 + _4_2i, Complex::new(4.5, 2.0));
2644        }
2645
2646        #[test]
2647        fn test_sub() {
2648            test_op!(_4_2i - 0.5, Complex::new(3.5, 2.0));
2649            assert_eq!(0.5 - _4_2i, Complex::new(-3.5, -2.0));
2650        }
2651
2652        #[test]
2653        fn test_mul() {
2654            assert_eq!(_4_2i * 0.5, Complex::new(2.0, 1.0));
2655            assert_eq!(0.5 * _4_2i, Complex::new(2.0, 1.0));
2656        }
2657
2658        #[test]
2659        fn test_div() {
2660            assert_eq!(_4_2i / 0.5, Complex::new(8.0, 4.0));
2661            assert_eq!(0.5 / _4_2i, Complex::new(0.1, -0.05));
2662        }
2663
2664        #[test]
2665        fn test_rem() {
2666            assert_eq!(_4_2i % 2.0, Complex::new(0.0, 0.0));
2667            assert_eq!(_4_2i % 3.0, Complex::new(1.0, 2.0));
2668            assert_eq!(3.0 % _4_2i, Complex::new(3.0, 0.0));
2669            assert_eq!(_neg1_1i % 2.0, _neg1_1i);
2670            assert_eq!(-_4_2i % 3.0, Complex::new(-1.0, -2.0));
2671        }
2672
2673        #[test]
2674        fn test_div_rem_gaussian() {
2675            // These would overflow with `norm_sqr` division.
2676            let max = Complex::new(255u8, 255u8);
2677            assert_eq!(max / 200, Complex::new(1, 1));
2678            assert_eq!(max % 200, Complex::new(55, 55));
2679        }
2680    }
2681
2682    #[test]
2683    fn test_to_string() {
2684        fn test(c: Complex64, s: String) {
2685            assert_eq!(c.to_string(), s);
2686        }
2687        test(_0_0i, "0+0i".to_string());
2688        test(_1_0i, "1+0i".to_string());
2689        test(_0_1i, "0+1i".to_string());
2690        test(_1_1i, "1+1i".to_string());
2691        test(_neg1_1i, "-1+1i".to_string());
2692        test(-_neg1_1i, "1-1i".to_string());
2693        test(_05_05i, "0.5+0.5i".to_string());
2694    }
2695
2696    #[test]
2697    fn test_string_formatting() {
2698        let a = Complex::new(1.23456, 123.456);
2699        assert_eq!(format!("{}", a), "1.23456+123.456i");
2700        assert_eq!(format!("{:.2}", a), "1.23+123.46i");
2701        assert_eq!(format!("{:.2e}", a), "1.23e0+1.23e2i");
2702        assert_eq!(format!("{:+.2E}", a), "+1.23E0+1.23E2i");
2703        #[cfg(feature = "std")]
2704        assert_eq!(format!("{:+20.2E}", a), "     +1.23E0+1.23E2i");
2705
2706        let b = Complex::new(0x80, 0xff);
2707        assert_eq!(format!("{:X}", b), "80+FFi");
2708        assert_eq!(format!("{:#x}", b), "0x80+0xffi");
2709        assert_eq!(format!("{:+#b}", b), "+0b10000000+0b11111111i");
2710        assert_eq!(format!("{:+#o}", b), "+0o200+0o377i");
2711        #[cfg(feature = "std")]
2712        assert_eq!(format!("{:+#16o}", b), "   +0o200+0o377i");
2713
2714        let c = Complex::new(-10, -10000);
2715        assert_eq!(format!("{}", c), "-10-10000i");
2716        #[cfg(feature = "std")]
2717        assert_eq!(format!("{:16}", c), "      -10-10000i");
2718    }
2719
2720    #[test]
2721    fn test_hash() {
2722        let a = Complex::new(0i32, 0i32);
2723        let b = Complex::new(1i32, 0i32);
2724        let c = Complex::new(0i32, 1i32);
2725        assert!(crate::hash(&a) != crate::hash(&b));
2726        assert!(crate::hash(&b) != crate::hash(&c));
2727        assert!(crate::hash(&c) != crate::hash(&a));
2728    }
2729
2730    #[test]
2731    fn test_hashset() {
2732        use std::collections::HashSet;
2733        let a = Complex::new(0i32, 0i32);
2734        let b = Complex::new(1i32, 0i32);
2735        let c = Complex::new(0i32, 1i32);
2736
2737        let set: HashSet<_> = [a, b, c].iter().cloned().collect();
2738        assert!(set.contains(&a));
2739        assert!(set.contains(&b));
2740        assert!(set.contains(&c));
2741        assert!(!set.contains(&(a + b + c)));
2742    }
2743
2744    #[test]
2745    fn test_is_nan() {
2746        assert!(!_1_1i.is_nan());
2747        let a = Complex::new(f64::NAN, f64::NAN);
2748        assert!(a.is_nan());
2749    }
2750
2751    #[test]
2752    fn test_is_nan_special_cases() {
2753        let a = Complex::new(0f64, f64::NAN);
2754        let b = Complex::new(f64::NAN, 0f64);
2755        assert!(a.is_nan());
2756        assert!(b.is_nan());
2757    }
2758
2759    #[test]
2760    fn test_is_infinite() {
2761        let a = Complex::new(2f64, f64::INFINITY);
2762        assert!(a.is_infinite());
2763    }
2764
2765    #[test]
2766    fn test_is_finite() {
2767        assert!(_1_1i.is_finite())
2768    }
2769
2770    #[test]
2771    fn test_is_normal() {
2772        let a = Complex::new(0f64, f64::NAN);
2773        let b = Complex::new(2f64, f64::INFINITY);
2774        assert!(!a.is_normal());
2775        assert!(!b.is_normal());
2776        assert!(_1_1i.is_normal());
2777    }
2778
2779    #[test]
2780    fn test_from_str() {
2781        fn test(z: Complex64, s: &str) {
2782            assert_eq!(FromStr::from_str(s), Ok(z));
2783        }
2784        test(_0_0i, "0 + 0i");
2785        test(_0_0i, "0+0j");
2786        test(_0_0i, "0 - 0j");
2787        test(_0_0i, "0-0i");
2788        test(_0_0i, "0i + 0");
2789        test(_0_0i, "0");
2790        test(_0_0i, "-0");
2791        test(_0_0i, "0i");
2792        test(_0_0i, "0j");
2793        test(_0_0i, "+0j");
2794        test(_0_0i, "-0i");
2795
2796        test(_1_0i, "1 + 0i");
2797        test(_1_0i, "1+0j");
2798        test(_1_0i, "1 - 0j");
2799        test(_1_0i, "+1-0i");
2800        test(_1_0i, "-0j+1");
2801        test(_1_0i, "1");
2802
2803        test(_1_1i, "1 + i");
2804        test(_1_1i, "1+j");
2805        test(_1_1i, "1 + 1j");
2806        test(_1_1i, "1+1i");
2807        test(_1_1i, "i + 1");
2808        test(_1_1i, "1i+1");
2809        test(_1_1i, "+j+1");
2810
2811        test(_0_1i, "0 + i");
2812        test(_0_1i, "0+j");
2813        test(_0_1i, "-0 + j");
2814        test(_0_1i, "-0+i");
2815        test(_0_1i, "0 + 1i");
2816        test(_0_1i, "0+1j");
2817        test(_0_1i, "-0 + 1j");
2818        test(_0_1i, "-0+1i");
2819        test(_0_1i, "j + 0");
2820        test(_0_1i, "i");
2821        test(_0_1i, "j");
2822        test(_0_1i, "1j");
2823
2824        test(_neg1_1i, "-1 + i");
2825        test(_neg1_1i, "-1+j");
2826        test(_neg1_1i, "-1 + 1j");
2827        test(_neg1_1i, "-1+1i");
2828        test(_neg1_1i, "1i-1");
2829        test(_neg1_1i, "j + -1");
2830
2831        test(_05_05i, "0.5 + 0.5i");
2832        test(_05_05i, "0.5+0.5j");
2833        test(_05_05i, "5e-1+0.5j");
2834        test(_05_05i, "5E-1 + 0.5j");
2835        test(_05_05i, "5E-1i + 0.5");
2836        test(_05_05i, "0.05e+1j + 50E-2");
2837    }
2838
2839    #[test]
2840    fn test_from_str_radix() {
2841        fn test(z: Complex64, s: &str, radix: u32) {
2842            let res: Result<Complex64, <Complex64 as Num>::FromStrRadixErr> =
2843                Num::from_str_radix(s, radix);
2844            assert_eq!(res.unwrap(), z)
2845        }
2846        test(_4_2i, "4+2i", 10);
2847        test(Complex::new(15.0, 32.0), "F+20i", 16);
2848        test(Complex::new(15.0, 32.0), "1111+100000i", 2);
2849        test(Complex::new(-15.0, -32.0), "-F-20i", 16);
2850        test(Complex::new(-15.0, -32.0), "-1111-100000i", 2);
2851
2852        fn test_error(s: &str, radix: u32) -> ParseComplexError<<f64 as Num>::FromStrRadixErr> {
2853            let res = Complex64::from_str_radix(s, radix);
2854
2855            res.expect_err(&format!("Expected failure on input {:?}", s))
2856        }
2857
2858        let err = test_error("1ii", 19);
2859        if let ComplexErrorKind::UnsupportedRadix = err.kind {
2860            /* pass */
2861        } else {
2862            panic!("Expected failure on invalid radix, got {:?}", err);
2863        }
2864
2865        let err = test_error("1 + 0", 16);
2866        if let ComplexErrorKind::ExprError = err.kind {
2867            /* pass */
2868        } else {
2869            panic!("Expected failure on expr error, got {:?}", err);
2870        }
2871    }
2872
2873    #[test]
2874    #[should_panic(expected = "radix is too high")]
2875    fn test_from_str_radix_fail() {
2876        // ensure we preserve the underlying panic on radix > 36
2877        let _complex = Complex64::from_str_radix("1", 37);
2878    }
2879
2880    #[test]
2881    fn test_from_str_fail() {
2882        fn test(s: &str) {
2883            let complex: Result<Complex64, _> = FromStr::from_str(s);
2884            assert!(
2885                complex.is_err(),
2886                "complex {:?} -> {:?} should be an error",
2887                s,
2888                complex
2889            );
2890        }
2891        test("foo");
2892        test("6E");
2893        test("0 + 2.718");
2894        test("1 - -2i");
2895        test("314e-2ij");
2896        test("4.3j - i");
2897        test("1i - 2i");
2898        test("+ 1 - 3.0i");
2899    }
2900
2901    #[test]
2902    fn test_sum() {
2903        let v = vec![_0_1i, _1_0i];
2904        assert_eq!(v.iter().sum::<Complex64>(), _1_1i);
2905        assert_eq!(v.into_iter().sum::<Complex64>(), _1_1i);
2906    }
2907
2908    #[test]
2909    fn test_prod() {
2910        let v = vec![_0_1i, _1_0i];
2911        assert_eq!(v.iter().product::<Complex64>(), _0_1i);
2912        assert_eq!(v.into_iter().product::<Complex64>(), _0_1i);
2913    }
2914
2915    #[test]
2916    fn test_zero() {
2917        let zero = Complex64::zero();
2918        assert!(zero.is_zero());
2919
2920        let mut c = Complex::new(1.23, 4.56);
2921        assert!(!c.is_zero());
2922        assert_eq!(c + zero, c);
2923
2924        c.set_zero();
2925        assert!(c.is_zero());
2926    }
2927
2928    #[test]
2929    fn test_one() {
2930        let one = Complex64::one();
2931        assert!(one.is_one());
2932
2933        let mut c = Complex::new(1.23, 4.56);
2934        assert!(!c.is_one());
2935        assert_eq!(c * one, c);
2936
2937        c.set_one();
2938        assert!(c.is_one());
2939    }
2940
2941    #[test]
2942    #[allow(clippy::float_cmp)]
2943    fn test_const() {
2944        const R: f64 = 12.3;
2945        const I: f64 = -4.5;
2946        const C: Complex64 = Complex::new(R, I);
2947
2948        assert_eq!(C.re, 12.3);
2949        assert_eq!(C.im, -4.5);
2950    }
2951}