num_traits/ops/
euclid.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
use core::ops::{Div, Rem};

pub trait Euclid: Sized + Div<Self, Output = Self> + Rem<Self, Output = Self> {
    /// Calculates Euclidean division, the matching method for `rem_euclid`.
    ///
    /// This computes the integer `n` such that
    /// `self = n * v + self.rem_euclid(v)`.
    /// In other words, the result is `self / v` rounded to the integer `n`
    /// such that `self >= n * v`.
    ///
    /// # Examples
    ///
    /// ```
    /// use num_traits::Euclid;
    ///
    /// let a: i32 = 7;
    /// let b: i32 = 4;
    /// assert_eq!(Euclid::div_euclid(&a, &b), 1); // 7 > 4 * 1
    /// assert_eq!(Euclid::div_euclid(&-a, &b), -2); // -7 >= 4 * -2
    /// assert_eq!(Euclid::div_euclid(&a, &-b), -1); // 7 >= -4 * -1
    /// assert_eq!(Euclid::div_euclid(&-a, &-b), 2); // -7 >= -4 * 2
    /// ```
    fn div_euclid(&self, v: &Self) -> Self;

    /// Calculates the least nonnegative remainder of `self (mod v)`.
    ///
    /// In particular, the return value `r` satisfies `0.0 <= r < v.abs()` in
    /// most cases. However, due to a floating point round-off error it can
    /// result in `r == v.abs()`, violating the mathematical definition, if
    /// `self` is much smaller than `v.abs()` in magnitude and `self < 0.0`.
    /// This result is not an element of the function's codomain, but it is the
    /// closest floating point number in the real numbers and thus fulfills the
    /// property `self == self.div_euclid(v) * v + self.rem_euclid(v)`
    /// approximatively.
    ///
    /// # Examples
    ///
    /// ```
    /// use num_traits::Euclid;
    ///
    /// let a: i32 = 7;
    /// let b: i32 = 4;
    /// assert_eq!(Euclid::rem_euclid(&a, &b), 3);
    /// assert_eq!(Euclid::rem_euclid(&-a, &b), 1);
    /// assert_eq!(Euclid::rem_euclid(&a, &-b), 3);
    /// assert_eq!(Euclid::rem_euclid(&-a, &-b), 1);
    /// ```
    fn rem_euclid(&self, v: &Self) -> Self;

    /// Returns both the quotient and remainder from Euclidean division.
    ///
    /// By default, it internally calls both `Euclid::div_euclid` and `Euclid::rem_euclid`,
    /// but it can be overridden in order to implement some optimization.
    ///
    /// # Examples
    ///
    /// ```
    /// # use num_traits::Euclid;
    /// let x = 5u8;
    /// let y = 3u8;
    ///
    /// let div = Euclid::div_euclid(&x, &y);
    /// let rem = Euclid::rem_euclid(&x, &y);
    ///
    /// assert_eq!((div, rem), Euclid::div_rem_euclid(&x, &y));
    /// ```
    fn div_rem_euclid(&self, v: &Self) -> (Self, Self) {
        (self.div_euclid(v), self.rem_euclid(v))
    }
}

macro_rules! euclid_forward_impl {
    ($($t:ty)*) => {$(
        impl Euclid for $t {
            #[inline]
            fn div_euclid(&self, v: &$t) -> Self {
                <$t>::div_euclid(*self, *v)
            }

            #[inline]
            fn rem_euclid(&self, v: &$t) -> Self {
                <$t>::rem_euclid(*self, *v)
            }
        }
    )*}
}

euclid_forward_impl!(isize i8 i16 i32 i64 i128);
euclid_forward_impl!(usize u8 u16 u32 u64 u128);

#[cfg(feature = "std")]
euclid_forward_impl!(f32 f64);

#[cfg(not(feature = "std"))]
impl Euclid for f32 {
    #[inline]
    fn div_euclid(&self, v: &f32) -> f32 {
        let q = <f32 as crate::float::FloatCore>::trunc(self / v);
        if self % v < 0.0 {
            return if *v > 0.0 { q - 1.0 } else { q + 1.0 };
        }
        q
    }

    #[inline]
    fn rem_euclid(&self, v: &f32) -> f32 {
        let r = self % v;
        if r < 0.0 {
            r + <f32 as crate::float::FloatCore>::abs(*v)
        } else {
            r
        }
    }
}

#[cfg(not(feature = "std"))]
impl Euclid for f64 {
    #[inline]
    fn div_euclid(&self, v: &f64) -> f64 {
        let q = <f64 as crate::float::FloatCore>::trunc(self / v);
        if self % v < 0.0 {
            return if *v > 0.0 { q - 1.0 } else { q + 1.0 };
        }
        q
    }

    #[inline]
    fn rem_euclid(&self, v: &f64) -> f64 {
        let r = self % v;
        if r < 0.0 {
            r + <f64 as crate::float::FloatCore>::abs(*v)
        } else {
            r
        }
    }
}

pub trait CheckedEuclid: Euclid {
    /// Performs euclid division that returns `None` instead of panicking on division by zero
    /// and instead of wrapping around on underflow and overflow.
    fn checked_div_euclid(&self, v: &Self) -> Option<Self>;

    /// Finds the euclid remainder of dividing two numbers, checking for underflow, overflow and
    /// division by zero. If any of that happens, `None` is returned.
    fn checked_rem_euclid(&self, v: &Self) -> Option<Self>;

    /// Returns both the quotient and remainder from checked Euclidean division.
    ///
    /// By default, it internally calls both `CheckedEuclid::checked_div_euclid` and `CheckedEuclid::checked_rem_euclid`,
    /// but it can be overridden in order to implement some optimization.
    /// # Examples
    ///
    /// ```
    /// # use num_traits::CheckedEuclid;
    /// let x = 5u8;
    /// let y = 3u8;
    ///
    /// let div = CheckedEuclid::checked_div_euclid(&x, &y);
    /// let rem = CheckedEuclid::checked_rem_euclid(&x, &y);
    ///
    /// assert_eq!(Some((div.unwrap(), rem.unwrap())), CheckedEuclid::checked_div_rem_euclid(&x, &y));
    /// ```
    fn checked_div_rem_euclid(&self, v: &Self) -> Option<(Self, Self)> {
        Some((self.checked_div_euclid(v)?, self.checked_rem_euclid(v)?))
    }
}

macro_rules! checked_euclid_forward_impl {
    ($($t:ty)*) => {$(
        impl CheckedEuclid for $t {
            #[inline]
            fn checked_div_euclid(&self, v: &$t) -> Option<Self> {
                <$t>::checked_div_euclid(*self, *v)
            }

            #[inline]
            fn checked_rem_euclid(&self, v: &$t) -> Option<Self> {
                <$t>::checked_rem_euclid(*self, *v)
            }
        }
    )*}
}

checked_euclid_forward_impl!(isize i8 i16 i32 i64 i128);
checked_euclid_forward_impl!(usize u8 u16 u32 u64 u128);

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn euclid_unsigned() {
        macro_rules! test_euclid {
            ($($t:ident)+) => {
                $(
                    {
                        let x: $t = 10;
                        let y: $t = 3;
                        let div = Euclid::div_euclid(&x, &y);
                        let rem = Euclid::rem_euclid(&x, &y);
                        assert_eq!(div, 3);
                        assert_eq!(rem, 1);
                        assert_eq!((div, rem), Euclid::div_rem_euclid(&x, &y));
                    }
                )+
            };
        }

        test_euclid!(usize u8 u16 u32 u64);
    }

    #[test]
    fn euclid_signed() {
        macro_rules! test_euclid {
            ($($t:ident)+) => {
                $(
                    {
                        let x: $t = 10;
                        let y: $t = -3;
                        assert_eq!(Euclid::div_euclid(&x, &y), -3);
                        assert_eq!(Euclid::div_euclid(&-x, &y), 4);
                        assert_eq!(Euclid::rem_euclid(&x, &y), 1);
                        assert_eq!(Euclid::rem_euclid(&-x, &y), 2);
                        assert_eq!((Euclid::div_euclid(&x, &y), Euclid::rem_euclid(&x, &y)), Euclid::div_rem_euclid(&x, &y));
                        let x: $t = $t::min_value() + 1;
                        let y: $t = -1;
                        assert_eq!(Euclid::div_euclid(&x, &y), $t::max_value());
                    }
                )+
            };
        }

        test_euclid!(isize i8 i16 i32 i64 i128);
    }

    #[test]
    fn euclid_float() {
        macro_rules! test_euclid {
            ($($t:ident)+) => {
                $(
                    {
                        let x: $t = 12.1;
                        let y: $t = 3.2;
                        assert!(Euclid::div_euclid(&x, &y) * y + Euclid::rem_euclid(&x, &y) - x
                        <= 46.4 * <$t as crate::float::FloatCore>::epsilon());
                        assert!(Euclid::div_euclid(&x, &-y) * -y + Euclid::rem_euclid(&x, &-y) - x
                        <= 46.4 * <$t as crate::float::FloatCore>::epsilon());
                        assert!(Euclid::div_euclid(&-x, &y) * y + Euclid::rem_euclid(&-x, &y) + x
                        <= 46.4 * <$t as crate::float::FloatCore>::epsilon());
                        assert!(Euclid::div_euclid(&-x, &-y) * -y + Euclid::rem_euclid(&-x, &-y) + x
                        <= 46.4 * <$t as crate::float::FloatCore>::epsilon());
                        assert_eq!((Euclid::div_euclid(&x, &y), Euclid::rem_euclid(&x, &y)), Euclid::div_rem_euclid(&x, &y));
                    }
                )+
            };
        }

        test_euclid!(f32 f64);
    }

    #[test]
    fn euclid_checked() {
        macro_rules! test_euclid_checked {
            ($($t:ident)+) => {
                $(
                    {
                        assert_eq!(CheckedEuclid::checked_div_euclid(&$t::min_value(), &-1), None);
                        assert_eq!(CheckedEuclid::checked_rem_euclid(&$t::min_value(), &-1), None);
                        assert_eq!(CheckedEuclid::checked_div_euclid(&1, &0), None);
                        assert_eq!(CheckedEuclid::checked_rem_euclid(&1, &0), None);
                    }
                )+
            };
        }

        test_euclid_checked!(isize i8 i16 i32 i64 i128);
    }
}