parking_lot/raw_rwlock.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
// Copyright 2016 Amanieu d'Antras
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
use crate::elision::{have_elision, AtomicElisionExt};
use crate::raw_mutex::{TOKEN_HANDOFF, TOKEN_NORMAL};
use crate::util;
use core::{
cell::Cell,
sync::atomic::{AtomicUsize, Ordering},
};
use lock_api::{RawRwLock as RawRwLock_, RawRwLockUpgrade};
use parking_lot_core::{
self, deadlock, FilterOp, ParkResult, ParkToken, SpinWait, UnparkResult, UnparkToken,
};
use std::time::{Duration, Instant};
// This reader-writer lock implementation is based on Boost's upgrade_mutex:
// https://github.com/boostorg/thread/blob/fc08c1fe2840baeeee143440fba31ef9e9a813c8/include/boost/thread/v2/shared_mutex.hpp#L432
//
// This implementation uses 2 wait queues, one at key [addr] and one at key
// [addr + 1]. The primary queue is used for all new waiting threads, and the
// secondary queue is used by the thread which has acquired WRITER_BIT but is
// waiting for the remaining readers to exit the lock.
//
// This implementation is fair between readers and writers since it uses the
// order in which threads first started queuing to alternate between read phases
// and write phases. In particular is it not vulnerable to write starvation
// since readers will block if there is a pending writer.
// There is at least one thread in the main queue.
const PARKED_BIT: usize = 0b0001;
// There is a parked thread holding WRITER_BIT. WRITER_BIT must be set.
const WRITER_PARKED_BIT: usize = 0b0010;
// A reader is holding an upgradable lock. The reader count must be non-zero and
// WRITER_BIT must not be set.
const UPGRADABLE_BIT: usize = 0b0100;
// If the reader count is zero: a writer is currently holding an exclusive lock.
// Otherwise: a writer is waiting for the remaining readers to exit the lock.
const WRITER_BIT: usize = 0b1000;
// Mask of bits used to count readers.
const READERS_MASK: usize = !0b1111;
// Base unit for counting readers.
const ONE_READER: usize = 0b10000;
// Token indicating what type of lock a queued thread is trying to acquire
const TOKEN_SHARED: ParkToken = ParkToken(ONE_READER);
const TOKEN_EXCLUSIVE: ParkToken = ParkToken(WRITER_BIT);
const TOKEN_UPGRADABLE: ParkToken = ParkToken(ONE_READER | UPGRADABLE_BIT);
/// Raw reader-writer lock type backed by the parking lot.
pub struct RawRwLock {
state: AtomicUsize,
}
unsafe impl lock_api::RawRwLock for RawRwLock {
const INIT: RawRwLock = RawRwLock {
state: AtomicUsize::new(0),
};
type GuardMarker = crate::GuardMarker;
#[inline]
fn lock_exclusive(&self) {
if self
.state
.compare_exchange_weak(0, WRITER_BIT, Ordering::Acquire, Ordering::Relaxed)
.is_err()
{
let result = self.lock_exclusive_slow(None);
debug_assert!(result);
}
self.deadlock_acquire();
}
#[inline]
fn try_lock_exclusive(&self) -> bool {
if self
.state
.compare_exchange(0, WRITER_BIT, Ordering::Acquire, Ordering::Relaxed)
.is_ok()
{
self.deadlock_acquire();
true
} else {
false
}
}
#[inline]
unsafe fn unlock_exclusive(&self) {
self.deadlock_release();
if self
.state
.compare_exchange(WRITER_BIT, 0, Ordering::Release, Ordering::Relaxed)
.is_ok()
{
return;
}
self.unlock_exclusive_slow(false);
}
#[inline]
fn lock_shared(&self) {
if !self.try_lock_shared_fast(false) {
let result = self.lock_shared_slow(false, None);
debug_assert!(result);
}
self.deadlock_acquire();
}
#[inline]
fn try_lock_shared(&self) -> bool {
let result = if self.try_lock_shared_fast(false) {
true
} else {
self.try_lock_shared_slow(false)
};
if result {
self.deadlock_acquire();
}
result
}
#[inline]
unsafe fn unlock_shared(&self) {
self.deadlock_release();
let state = if have_elision() {
self.state.elision_fetch_sub_release(ONE_READER)
} else {
self.state.fetch_sub(ONE_READER, Ordering::Release)
};
if state & (READERS_MASK | WRITER_PARKED_BIT) == (ONE_READER | WRITER_PARKED_BIT) {
self.unlock_shared_slow();
}
}
#[inline]
fn is_locked(&self) -> bool {
let state = self.state.load(Ordering::Relaxed);
state & (WRITER_BIT | READERS_MASK) != 0
}
#[inline]
fn is_locked_exclusive(&self) -> bool {
let state = self.state.load(Ordering::Relaxed);
state & (WRITER_BIT) != 0
}
}
unsafe impl lock_api::RawRwLockFair for RawRwLock {
#[inline]
unsafe fn unlock_shared_fair(&self) {
// Shared unlocking is always fair in this implementation.
self.unlock_shared();
}
#[inline]
unsafe fn unlock_exclusive_fair(&self) {
self.deadlock_release();
if self
.state
.compare_exchange(WRITER_BIT, 0, Ordering::Release, Ordering::Relaxed)
.is_ok()
{
return;
}
self.unlock_exclusive_slow(true);
}
#[inline]
unsafe fn bump_shared(&self) {
if self.state.load(Ordering::Relaxed) & (READERS_MASK | WRITER_BIT)
== ONE_READER | WRITER_BIT
{
self.bump_shared_slow();
}
}
#[inline]
unsafe fn bump_exclusive(&self) {
if self.state.load(Ordering::Relaxed) & PARKED_BIT != 0 {
self.bump_exclusive_slow();
}
}
}
unsafe impl lock_api::RawRwLockDowngrade for RawRwLock {
#[inline]
unsafe fn downgrade(&self) {
let state = self
.state
.fetch_add(ONE_READER - WRITER_BIT, Ordering::Release);
// Wake up parked shared and upgradable threads if there are any
if state & PARKED_BIT != 0 {
self.downgrade_slow();
}
}
}
unsafe impl lock_api::RawRwLockTimed for RawRwLock {
type Duration = Duration;
type Instant = Instant;
#[inline]
fn try_lock_shared_for(&self, timeout: Self::Duration) -> bool {
let result = if self.try_lock_shared_fast(false) {
true
} else {
self.lock_shared_slow(false, util::to_deadline(timeout))
};
if result {
self.deadlock_acquire();
}
result
}
#[inline]
fn try_lock_shared_until(&self, timeout: Self::Instant) -> bool {
let result = if self.try_lock_shared_fast(false) {
true
} else {
self.lock_shared_slow(false, Some(timeout))
};
if result {
self.deadlock_acquire();
}
result
}
#[inline]
fn try_lock_exclusive_for(&self, timeout: Duration) -> bool {
let result = if self
.state
.compare_exchange_weak(0, WRITER_BIT, Ordering::Acquire, Ordering::Relaxed)
.is_ok()
{
true
} else {
self.lock_exclusive_slow(util::to_deadline(timeout))
};
if result {
self.deadlock_acquire();
}
result
}
#[inline]
fn try_lock_exclusive_until(&self, timeout: Instant) -> bool {
let result = if self
.state
.compare_exchange_weak(0, WRITER_BIT, Ordering::Acquire, Ordering::Relaxed)
.is_ok()
{
true
} else {
self.lock_exclusive_slow(Some(timeout))
};
if result {
self.deadlock_acquire();
}
result
}
}
unsafe impl lock_api::RawRwLockRecursive for RawRwLock {
#[inline]
fn lock_shared_recursive(&self) {
if !self.try_lock_shared_fast(true) {
let result = self.lock_shared_slow(true, None);
debug_assert!(result);
}
self.deadlock_acquire();
}
#[inline]
fn try_lock_shared_recursive(&self) -> bool {
let result = if self.try_lock_shared_fast(true) {
true
} else {
self.try_lock_shared_slow(true)
};
if result {
self.deadlock_acquire();
}
result
}
}
unsafe impl lock_api::RawRwLockRecursiveTimed for RawRwLock {
#[inline]
fn try_lock_shared_recursive_for(&self, timeout: Self::Duration) -> bool {
let result = if self.try_lock_shared_fast(true) {
true
} else {
self.lock_shared_slow(true, util::to_deadline(timeout))
};
if result {
self.deadlock_acquire();
}
result
}
#[inline]
fn try_lock_shared_recursive_until(&self, timeout: Self::Instant) -> bool {
let result = if self.try_lock_shared_fast(true) {
true
} else {
self.lock_shared_slow(true, Some(timeout))
};
if result {
self.deadlock_acquire();
}
result
}
}
unsafe impl lock_api::RawRwLockUpgrade for RawRwLock {
#[inline]
fn lock_upgradable(&self) {
if !self.try_lock_upgradable_fast() {
let result = self.lock_upgradable_slow(None);
debug_assert!(result);
}
self.deadlock_acquire();
}
#[inline]
fn try_lock_upgradable(&self) -> bool {
let result = if self.try_lock_upgradable_fast() {
true
} else {
self.try_lock_upgradable_slow()
};
if result {
self.deadlock_acquire();
}
result
}
#[inline]
unsafe fn unlock_upgradable(&self) {
self.deadlock_release();
let state = self.state.load(Ordering::Relaxed);
#[allow(clippy::collapsible_if)]
if state & PARKED_BIT == 0 {
if self
.state
.compare_exchange_weak(
state,
state - (ONE_READER | UPGRADABLE_BIT),
Ordering::Release,
Ordering::Relaxed,
)
.is_ok()
{
return;
}
}
self.unlock_upgradable_slow(false);
}
#[inline]
unsafe fn upgrade(&self) {
let state = self.state.fetch_sub(
(ONE_READER | UPGRADABLE_BIT) - WRITER_BIT,
Ordering::Acquire,
);
if state & READERS_MASK != ONE_READER {
let result = self.upgrade_slow(None);
debug_assert!(result);
}
}
#[inline]
unsafe fn try_upgrade(&self) -> bool {
if self
.state
.compare_exchange_weak(
ONE_READER | UPGRADABLE_BIT,
WRITER_BIT,
Ordering::Acquire,
Ordering::Relaxed,
)
.is_ok()
{
true
} else {
self.try_upgrade_slow()
}
}
}
unsafe impl lock_api::RawRwLockUpgradeFair for RawRwLock {
#[inline]
unsafe fn unlock_upgradable_fair(&self) {
self.deadlock_release();
let state = self.state.load(Ordering::Relaxed);
#[allow(clippy::collapsible_if)]
if state & PARKED_BIT == 0 {
if self
.state
.compare_exchange_weak(
state,
state - (ONE_READER | UPGRADABLE_BIT),
Ordering::Release,
Ordering::Relaxed,
)
.is_ok()
{
return;
}
}
self.unlock_upgradable_slow(false);
}
#[inline]
unsafe fn bump_upgradable(&self) {
if self.state.load(Ordering::Relaxed) == ONE_READER | UPGRADABLE_BIT | PARKED_BIT {
self.bump_upgradable_slow();
}
}
}
unsafe impl lock_api::RawRwLockUpgradeDowngrade for RawRwLock {
#[inline]
unsafe fn downgrade_upgradable(&self) {
let state = self.state.fetch_sub(UPGRADABLE_BIT, Ordering::Relaxed);
// Wake up parked upgradable threads if there are any
if state & PARKED_BIT != 0 {
self.downgrade_slow();
}
}
#[inline]
unsafe fn downgrade_to_upgradable(&self) {
let state = self.state.fetch_add(
(ONE_READER | UPGRADABLE_BIT) - WRITER_BIT,
Ordering::Release,
);
// Wake up parked shared threads if there are any
if state & PARKED_BIT != 0 {
self.downgrade_to_upgradable_slow();
}
}
}
unsafe impl lock_api::RawRwLockUpgradeTimed for RawRwLock {
#[inline]
fn try_lock_upgradable_until(&self, timeout: Instant) -> bool {
let result = if self.try_lock_upgradable_fast() {
true
} else {
self.lock_upgradable_slow(Some(timeout))
};
if result {
self.deadlock_acquire();
}
result
}
#[inline]
fn try_lock_upgradable_for(&self, timeout: Duration) -> bool {
let result = if self.try_lock_upgradable_fast() {
true
} else {
self.lock_upgradable_slow(util::to_deadline(timeout))
};
if result {
self.deadlock_acquire();
}
result
}
#[inline]
unsafe fn try_upgrade_until(&self, timeout: Instant) -> bool {
let state = self.state.fetch_sub(
(ONE_READER | UPGRADABLE_BIT) - WRITER_BIT,
Ordering::Relaxed,
);
if state & READERS_MASK == ONE_READER {
true
} else {
self.upgrade_slow(Some(timeout))
}
}
#[inline]
unsafe fn try_upgrade_for(&self, timeout: Duration) -> bool {
let state = self.state.fetch_sub(
(ONE_READER | UPGRADABLE_BIT) - WRITER_BIT,
Ordering::Relaxed,
);
if state & READERS_MASK == ONE_READER {
true
} else {
self.upgrade_slow(util::to_deadline(timeout))
}
}
}
impl RawRwLock {
#[inline(always)]
fn try_lock_shared_fast(&self, recursive: bool) -> bool {
let state = self.state.load(Ordering::Relaxed);
// We can't allow grabbing a shared lock if there is a writer, even if
// the writer is still waiting for the remaining readers to exit.
if state & WRITER_BIT != 0 {
// To allow recursive locks, we make an exception and allow readers
// to skip ahead of a pending writer to avoid deadlocking, at the
// cost of breaking the fairness guarantees.
if !recursive || state & READERS_MASK == 0 {
return false;
}
}
// Use hardware lock elision to avoid cache conflicts when multiple
// readers try to acquire the lock. We only do this if the lock is
// completely empty since elision handles conflicts poorly.
if have_elision() && state == 0 {
self.state
.elision_compare_exchange_acquire(0, ONE_READER)
.is_ok()
} else if let Some(new_state) = state.checked_add(ONE_READER) {
self.state
.compare_exchange_weak(state, new_state, Ordering::Acquire, Ordering::Relaxed)
.is_ok()
} else {
false
}
}
#[cold]
fn try_lock_shared_slow(&self, recursive: bool) -> bool {
let mut state = self.state.load(Ordering::Relaxed);
loop {
// This mirrors the condition in try_lock_shared_fast
#[allow(clippy::collapsible_if)]
if state & WRITER_BIT != 0 {
if !recursive || state & READERS_MASK == 0 {
return false;
}
}
if have_elision() && state == 0 {
match self.state.elision_compare_exchange_acquire(0, ONE_READER) {
Ok(_) => return true,
Err(x) => state = x,
}
} else {
match self.state.compare_exchange_weak(
state,
state
.checked_add(ONE_READER)
.expect("RwLock reader count overflow"),
Ordering::Acquire,
Ordering::Relaxed,
) {
Ok(_) => return true,
Err(x) => state = x,
}
}
}
}
#[inline(always)]
fn try_lock_upgradable_fast(&self) -> bool {
let state = self.state.load(Ordering::Relaxed);
// We can't grab an upgradable lock if there is already a writer or
// upgradable reader.
if state & (WRITER_BIT | UPGRADABLE_BIT) != 0 {
return false;
}
if let Some(new_state) = state.checked_add(ONE_READER | UPGRADABLE_BIT) {
self.state
.compare_exchange_weak(state, new_state, Ordering::Acquire, Ordering::Relaxed)
.is_ok()
} else {
false
}
}
#[cold]
fn try_lock_upgradable_slow(&self) -> bool {
let mut state = self.state.load(Ordering::Relaxed);
loop {
// This mirrors the condition in try_lock_upgradable_fast
if state & (WRITER_BIT | UPGRADABLE_BIT) != 0 {
return false;
}
match self.state.compare_exchange_weak(
state,
state
.checked_add(ONE_READER | UPGRADABLE_BIT)
.expect("RwLock reader count overflow"),
Ordering::Acquire,
Ordering::Relaxed,
) {
Ok(_) => return true,
Err(x) => state = x,
}
}
}
#[cold]
fn lock_exclusive_slow(&self, timeout: Option<Instant>) -> bool {
let try_lock = |state: &mut usize| {
loop {
if *state & (WRITER_BIT | UPGRADABLE_BIT) != 0 {
return false;
}
// Grab WRITER_BIT if it isn't set, even if there are parked threads.
match self.state.compare_exchange_weak(
*state,
*state | WRITER_BIT,
Ordering::Acquire,
Ordering::Relaxed,
) {
Ok(_) => return true,
Err(x) => *state = x,
}
}
};
// Step 1: grab exclusive ownership of WRITER_BIT
let timed_out = !self.lock_common(
timeout,
TOKEN_EXCLUSIVE,
try_lock,
WRITER_BIT | UPGRADABLE_BIT,
);
if timed_out {
return false;
}
// Step 2: wait for all remaining readers to exit the lock.
self.wait_for_readers(timeout, 0)
}
#[cold]
fn unlock_exclusive_slow(&self, force_fair: bool) {
// There are threads to unpark. Try to unpark as many as we can.
let callback = |mut new_state, result: UnparkResult| {
// If we are using a fair unlock then we should keep the
// rwlock locked and hand it off to the unparked threads.
if result.unparked_threads != 0 && (force_fair || result.be_fair) {
if result.have_more_threads {
new_state |= PARKED_BIT;
}
self.state.store(new_state, Ordering::Release);
TOKEN_HANDOFF
} else {
// Clear the parked bit if there are no more parked threads.
if result.have_more_threads {
self.state.store(PARKED_BIT, Ordering::Release);
} else {
self.state.store(0, Ordering::Release);
}
TOKEN_NORMAL
}
};
// SAFETY: `callback` does not panic or call into any function of `parking_lot`.
unsafe {
self.wake_parked_threads(0, callback);
}
}
#[cold]
fn lock_shared_slow(&self, recursive: bool, timeout: Option<Instant>) -> bool {
let try_lock = |state: &mut usize| {
let mut spinwait_shared = SpinWait::new();
loop {
// Use hardware lock elision to avoid cache conflicts when multiple
// readers try to acquire the lock. We only do this if the lock is
// completely empty since elision handles conflicts poorly.
if have_elision() && *state == 0 {
match self.state.elision_compare_exchange_acquire(0, ONE_READER) {
Ok(_) => return true,
Err(x) => *state = x,
}
}
// This is the same condition as try_lock_shared_fast
#[allow(clippy::collapsible_if)]
if *state & WRITER_BIT != 0 {
if !recursive || *state & READERS_MASK == 0 {
return false;
}
}
if self
.state
.compare_exchange_weak(
*state,
state
.checked_add(ONE_READER)
.expect("RwLock reader count overflow"),
Ordering::Acquire,
Ordering::Relaxed,
)
.is_ok()
{
return true;
}
// If there is high contention on the reader count then we want
// to leave some time between attempts to acquire the lock to
// let other threads make progress.
spinwait_shared.spin_no_yield();
*state = self.state.load(Ordering::Relaxed);
}
};
self.lock_common(timeout, TOKEN_SHARED, try_lock, WRITER_BIT)
}
#[cold]
fn unlock_shared_slow(&self) {
// At this point WRITER_PARKED_BIT is set and READER_MASK is empty. We
// just need to wake up a potentially sleeping pending writer.
// Using the 2nd key at addr + 1
let addr = self as *const _ as usize + 1;
let callback = |_result: UnparkResult| {
// Clear the WRITER_PARKED_BIT here since there can only be one
// parked writer thread.
self.state.fetch_and(!WRITER_PARKED_BIT, Ordering::Relaxed);
TOKEN_NORMAL
};
// SAFETY:
// * `addr` is an address we control.
// * `callback` does not panic or call into any function of `parking_lot`.
unsafe {
parking_lot_core::unpark_one(addr, callback);
}
}
#[cold]
fn lock_upgradable_slow(&self, timeout: Option<Instant>) -> bool {
let try_lock = |state: &mut usize| {
let mut spinwait_shared = SpinWait::new();
loop {
if *state & (WRITER_BIT | UPGRADABLE_BIT) != 0 {
return false;
}
if self
.state
.compare_exchange_weak(
*state,
state
.checked_add(ONE_READER | UPGRADABLE_BIT)
.expect("RwLock reader count overflow"),
Ordering::Acquire,
Ordering::Relaxed,
)
.is_ok()
{
return true;
}
// If there is high contention on the reader count then we want
// to leave some time between attempts to acquire the lock to
// let other threads make progress.
spinwait_shared.spin_no_yield();
*state = self.state.load(Ordering::Relaxed);
}
};
self.lock_common(
timeout,
TOKEN_UPGRADABLE,
try_lock,
WRITER_BIT | UPGRADABLE_BIT,
)
}
#[cold]
fn unlock_upgradable_slow(&self, force_fair: bool) {
// Just release the lock if there are no parked threads.
let mut state = self.state.load(Ordering::Relaxed);
while state & PARKED_BIT == 0 {
match self.state.compare_exchange_weak(
state,
state - (ONE_READER | UPGRADABLE_BIT),
Ordering::Release,
Ordering::Relaxed,
) {
Ok(_) => return,
Err(x) => state = x,
}
}
// There are threads to unpark. Try to unpark as many as we can.
let callback = |new_state, result: UnparkResult| {
// If we are using a fair unlock then we should keep the
// rwlock locked and hand it off to the unparked threads.
let mut state = self.state.load(Ordering::Relaxed);
if force_fair || result.be_fair {
// Fall back to normal unpark on overflow. Panicking is
// not allowed in parking_lot callbacks.
while let Some(mut new_state) =
(state - (ONE_READER | UPGRADABLE_BIT)).checked_add(new_state)
{
if result.have_more_threads {
new_state |= PARKED_BIT;
} else {
new_state &= !PARKED_BIT;
}
match self.state.compare_exchange_weak(
state,
new_state,
Ordering::Relaxed,
Ordering::Relaxed,
) {
Ok(_) => return TOKEN_HANDOFF,
Err(x) => state = x,
}
}
}
// Otherwise just release the upgradable lock and update PARKED_BIT.
loop {
let mut new_state = state - (ONE_READER | UPGRADABLE_BIT);
if result.have_more_threads {
new_state |= PARKED_BIT;
} else {
new_state &= !PARKED_BIT;
}
match self.state.compare_exchange_weak(
state,
new_state,
Ordering::Relaxed,
Ordering::Relaxed,
) {
Ok(_) => return TOKEN_NORMAL,
Err(x) => state = x,
}
}
};
// SAFETY: `callback` does not panic or call into any function of `parking_lot`.
unsafe {
self.wake_parked_threads(0, callback);
}
}
#[cold]
fn try_upgrade_slow(&self) -> bool {
let mut state = self.state.load(Ordering::Relaxed);
loop {
if state & READERS_MASK != ONE_READER {
return false;
}
match self.state.compare_exchange_weak(
state,
state - (ONE_READER | UPGRADABLE_BIT) + WRITER_BIT,
Ordering::Relaxed,
Ordering::Relaxed,
) {
Ok(_) => return true,
Err(x) => state = x,
}
}
}
#[cold]
fn upgrade_slow(&self, timeout: Option<Instant>) -> bool {
self.wait_for_readers(timeout, ONE_READER | UPGRADABLE_BIT)
}
#[cold]
fn downgrade_slow(&self) {
// We only reach this point if PARKED_BIT is set.
let callback = |_, result: UnparkResult| {
// Clear the parked bit if there no more parked threads
if !result.have_more_threads {
self.state.fetch_and(!PARKED_BIT, Ordering::Relaxed);
}
TOKEN_NORMAL
};
// SAFETY: `callback` does not panic or call into any function of `parking_lot`.
unsafe {
self.wake_parked_threads(ONE_READER, callback);
}
}
#[cold]
fn downgrade_to_upgradable_slow(&self) {
// We only reach this point if PARKED_BIT is set.
let callback = |_, result: UnparkResult| {
// Clear the parked bit if there no more parked threads
if !result.have_more_threads {
self.state.fetch_and(!PARKED_BIT, Ordering::Relaxed);
}
TOKEN_NORMAL
};
// SAFETY: `callback` does not panic or call into any function of `parking_lot`.
unsafe {
self.wake_parked_threads(ONE_READER | UPGRADABLE_BIT, callback);
}
}
#[cold]
unsafe fn bump_shared_slow(&self) {
self.unlock_shared();
self.lock_shared();
}
#[cold]
fn bump_exclusive_slow(&self) {
self.deadlock_release();
self.unlock_exclusive_slow(true);
self.lock_exclusive();
}
#[cold]
fn bump_upgradable_slow(&self) {
self.deadlock_release();
self.unlock_upgradable_slow(true);
self.lock_upgradable();
}
/// Common code for waking up parked threads after releasing `WRITER_BIT` or
/// `UPGRADABLE_BIT`.
///
/// # Safety
///
/// `callback` must uphold the requirements of the `callback` parameter to
/// `parking_lot_core::unpark_filter`. Meaning no panics or calls into any function in
/// `parking_lot`.
#[inline]
unsafe fn wake_parked_threads(
&self,
new_state: usize,
callback: impl FnOnce(usize, UnparkResult) -> UnparkToken,
) {
// We must wake up at least one upgrader or writer if there is one,
// otherwise they may end up parked indefinitely since unlock_shared
// does not call wake_parked_threads.
let new_state = Cell::new(new_state);
let addr = self as *const _ as usize;
let filter = |ParkToken(token)| {
let s = new_state.get();
// If we are waking up a writer, don't wake anything else.
if s & WRITER_BIT != 0 {
return FilterOp::Stop;
}
// Otherwise wake *all* readers and one upgrader/writer.
if token & (UPGRADABLE_BIT | WRITER_BIT) != 0 && s & UPGRADABLE_BIT != 0 {
// Skip writers and upgradable readers if we already have
// a writer/upgradable reader.
FilterOp::Skip
} else {
new_state.set(s + token);
FilterOp::Unpark
}
};
let callback = |result| callback(new_state.get(), result);
// SAFETY:
// * `addr` is an address we control.
// * `filter` does not panic or call into any function of `parking_lot`.
// * `callback` safety responsibility is on caller
parking_lot_core::unpark_filter(addr, filter, callback);
}
// Common code for waiting for readers to exit the lock after acquiring
// WRITER_BIT.
#[inline]
fn wait_for_readers(&self, timeout: Option<Instant>, prev_value: usize) -> bool {
// At this point WRITER_BIT is already set, we just need to wait for the
// remaining readers to exit the lock.
let mut spinwait = SpinWait::new();
let mut state = self.state.load(Ordering::Acquire);
while state & READERS_MASK != 0 {
// Spin a few times to wait for readers to exit
if spinwait.spin() {
state = self.state.load(Ordering::Acquire);
continue;
}
// Set the parked bit
if state & WRITER_PARKED_BIT == 0 {
if let Err(x) = self.state.compare_exchange_weak(
state,
state | WRITER_PARKED_BIT,
Ordering::Acquire,
Ordering::Acquire,
) {
state = x;
continue;
}
}
// Park our thread until we are woken up by an unlock
// Using the 2nd key at addr + 1
let addr = self as *const _ as usize + 1;
let validate = || {
let state = self.state.load(Ordering::Relaxed);
state & READERS_MASK != 0 && state & WRITER_PARKED_BIT != 0
};
let before_sleep = || {};
let timed_out = |_, _| {};
// SAFETY:
// * `addr` is an address we control.
// * `validate`/`timed_out` does not panic or call into any function of `parking_lot`.
// * `before_sleep` does not call `park`, nor does it panic.
let park_result = unsafe {
parking_lot_core::park(
addr,
validate,
before_sleep,
timed_out,
TOKEN_EXCLUSIVE,
timeout,
)
};
match park_result {
// We still need to re-check the state if we are unparked
// since a previous writer timing-out could have allowed
// another reader to sneak in before we parked.
ParkResult::Unparked(_) | ParkResult::Invalid => {
state = self.state.load(Ordering::Acquire);
continue;
}
// Timeout expired
ParkResult::TimedOut => {
// We need to release WRITER_BIT and revert back to
// our previous value. We also wake up any threads that
// might be waiting on WRITER_BIT.
let state = self.state.fetch_add(
prev_value.wrapping_sub(WRITER_BIT | WRITER_PARKED_BIT),
Ordering::Relaxed,
);
if state & PARKED_BIT != 0 {
let callback = |_, result: UnparkResult| {
// Clear the parked bit if there no more parked threads
if !result.have_more_threads {
self.state.fetch_and(!PARKED_BIT, Ordering::Relaxed);
}
TOKEN_NORMAL
};
// SAFETY: `callback` does not panic or call any function of `parking_lot`.
unsafe {
self.wake_parked_threads(ONE_READER | UPGRADABLE_BIT, callback);
}
}
return false;
}
}
}
true
}
/// Common code for acquiring a lock
#[inline]
fn lock_common(
&self,
timeout: Option<Instant>,
token: ParkToken,
mut try_lock: impl FnMut(&mut usize) -> bool,
validate_flags: usize,
) -> bool {
let mut spinwait = SpinWait::new();
let mut state = self.state.load(Ordering::Relaxed);
loop {
// Attempt to grab the lock
if try_lock(&mut state) {
return true;
}
// If there are no parked threads, try spinning a few times.
if state & (PARKED_BIT | WRITER_PARKED_BIT) == 0 && spinwait.spin() {
state = self.state.load(Ordering::Relaxed);
continue;
}
// Set the parked bit
if state & PARKED_BIT == 0 {
if let Err(x) = self.state.compare_exchange_weak(
state,
state | PARKED_BIT,
Ordering::Relaxed,
Ordering::Relaxed,
) {
state = x;
continue;
}
}
// Park our thread until we are woken up by an unlock
let addr = self as *const _ as usize;
let validate = || {
let state = self.state.load(Ordering::Relaxed);
state & PARKED_BIT != 0 && (state & validate_flags != 0)
};
let before_sleep = || {};
let timed_out = |_, was_last_thread| {
// Clear the parked bit if we were the last parked thread
if was_last_thread {
self.state.fetch_and(!PARKED_BIT, Ordering::Relaxed);
}
};
// SAFETY:
// * `addr` is an address we control.
// * `validate`/`timed_out` does not panic or call into any function of `parking_lot`.
// * `before_sleep` does not call `park`, nor does it panic.
let park_result = unsafe {
parking_lot_core::park(addr, validate, before_sleep, timed_out, token, timeout)
};
match park_result {
// The thread that unparked us passed the lock on to us
// directly without unlocking it.
ParkResult::Unparked(TOKEN_HANDOFF) => return true,
// We were unparked normally, try acquiring the lock again
ParkResult::Unparked(_) => (),
// The validation function failed, try locking again
ParkResult::Invalid => (),
// Timeout expired
ParkResult::TimedOut => return false,
}
// Loop back and try locking again
spinwait.reset();
state = self.state.load(Ordering::Relaxed);
}
}
#[inline]
fn deadlock_acquire(&self) {
unsafe { deadlock::acquire_resource(self as *const _ as usize) };
unsafe { deadlock::acquire_resource(self as *const _ as usize + 1) };
}
#[inline]
fn deadlock_release(&self) {
unsafe { deadlock::release_resource(self as *const _ as usize) };
unsafe { deadlock::release_resource(self as *const _ as usize + 1) };
}
}