petgraph/algo/
dominators.rs

1//! Compute dominators of a control-flow graph.
2//!
3//! # The Dominance Relation
4//!
5//! In a directed graph with a root node **R**, a node **A** is said to *dominate* a
6//! node **B** iff every path from **R** to **B** contains **A**.
7//!
8//! The node **A** is said to *strictly dominate* the node **B** iff **A** dominates
9//! **B** and **A ≠ B**.
10//!
11//! The node **A** is said to be the *immediate dominator* of a node **B** iff it
12//! strictly dominates **B** and there does not exist any node **C** where **A**
13//! dominates **C** and **C** dominates **B**.
14
15use std::cmp::Ordering;
16use std::collections::{hash_map::Iter, HashMap, HashSet};
17use std::hash::Hash;
18
19use crate::visit::{DfsPostOrder, GraphBase, IntoNeighbors, Visitable, Walker};
20
21/// The dominance relation for some graph and root.
22#[derive(Debug, Clone)]
23pub struct Dominators<N>
24where
25    N: Copy + Eq + Hash,
26{
27    root: N,
28    dominators: HashMap<N, N>,
29}
30
31impl<N> Dominators<N>
32where
33    N: Copy + Eq + Hash,
34{
35    /// Get the root node used to construct these dominance relations.
36    pub fn root(&self) -> N {
37        self.root
38    }
39
40    /// Get the immediate dominator of the given node.
41    ///
42    /// Returns `None` for any node that is not reachable from the root, and for
43    /// the root itself.
44    pub fn immediate_dominator(&self, node: N) -> Option<N> {
45        if node == self.root {
46            None
47        } else {
48            self.dominators.get(&node).cloned()
49        }
50    }
51
52    /// Iterate over the given node's strict dominators.
53    ///
54    /// If the given node is not reachable from the root, then `None` is
55    /// returned.
56    pub fn strict_dominators(&self, node: N) -> Option<DominatorsIter<N>> {
57        if self.dominators.contains_key(&node) {
58            Some(DominatorsIter {
59                dominators: self,
60                node: self.immediate_dominator(node),
61            })
62        } else {
63            None
64        }
65    }
66
67    /// Iterate over all of the given node's dominators (including the given
68    /// node itself).
69    ///
70    /// If the given node is not reachable from the root, then `None` is
71    /// returned.
72    pub fn dominators(&self, node: N) -> Option<DominatorsIter<N>> {
73        if self.dominators.contains_key(&node) {
74            Some(DominatorsIter {
75                dominators: self,
76                node: Some(node),
77            })
78        } else {
79            None
80        }
81    }
82
83    /// Iterate over all nodes immediately dominated by the given node (not
84    /// including the given node itself).
85    pub fn immediately_dominated_by(&self, node: N) -> DominatedByIter<N> {
86        DominatedByIter {
87            iter: self.dominators.iter(),
88            node,
89        }
90    }
91}
92
93/// Iterator for a node's dominators.
94#[derive(Debug, Clone)]
95pub struct DominatorsIter<'a, N>
96where
97    N: 'a + Copy + Eq + Hash,
98{
99    dominators: &'a Dominators<N>,
100    node: Option<N>,
101}
102
103impl<'a, N> Iterator for DominatorsIter<'a, N>
104where
105    N: 'a + Copy + Eq + Hash,
106{
107    type Item = N;
108
109    fn next(&mut self) -> Option<Self::Item> {
110        let next = self.node.take();
111        if let Some(next) = next {
112            self.node = self.dominators.immediate_dominator(next);
113        }
114        next
115    }
116}
117
118/// Iterator for nodes dominated by a given node.
119#[derive(Debug, Clone)]
120pub struct DominatedByIter<'a, N>
121where
122    N: 'a + Copy + Eq + Hash,
123{
124    iter: Iter<'a, N, N>,
125    node: N,
126}
127
128impl<'a, N> Iterator for DominatedByIter<'a, N>
129where
130    N: 'a + Copy + Eq + Hash,
131{
132    type Item = N;
133
134    fn next(&mut self) -> Option<Self::Item> {
135        for next in self.iter.by_ref() {
136            if next.1 == &self.node {
137                return Some(*next.0);
138            }
139        }
140        None
141    }
142    fn size_hint(&self) -> (usize, Option<usize>) {
143        let (_, upper) = self.iter.size_hint();
144        (0, upper)
145    }
146}
147
148/// The undefined dominator sentinel, for when we have not yet discovered a
149/// node's dominator.
150const UNDEFINED: usize = ::std::usize::MAX;
151
152/// This is an implementation of the engineered ["Simple, Fast Dominance
153/// Algorithm"][0] discovered by Cooper et al.
154///
155/// This algorithm is **O(|V|²)**, and therefore has slower theoretical running time
156/// than the Lengauer-Tarjan algorithm (which is **O(|E| log |V|)**. However,
157/// Cooper et al found it to be faster in practice on control flow graphs of up
158/// to ~30,000 vertices.
159///
160/// [0]: http://www.hipersoft.rice.edu/grads/publications/dom14.pdf
161pub fn simple_fast<G>(graph: G, root: G::NodeId) -> Dominators<G::NodeId>
162where
163    G: IntoNeighbors + Visitable,
164    <G as GraphBase>::NodeId: Eq + Hash,
165{
166    let (post_order, predecessor_sets) = simple_fast_post_order(graph, root);
167    let length = post_order.len();
168    debug_assert!(length > 0);
169    debug_assert!(post_order.last() == Some(&root));
170
171    // From here on out we use indices into `post_order` instead of actual
172    // `NodeId`s wherever possible. This greatly improves the performance of
173    // this implementation, but we have to pay a little bit of upfront cost to
174    // convert our data structures to play along first.
175
176    // Maps a node to its index into `post_order`.
177    let node_to_post_order_idx: HashMap<_, _> = post_order
178        .iter()
179        .enumerate()
180        .map(|(idx, &node)| (node, idx))
181        .collect();
182
183    // Maps a node's `post_order` index to its set of predecessors's indices
184    // into `post_order` (as a vec).
185    let idx_to_predecessor_vec =
186        predecessor_sets_to_idx_vecs(&post_order, &node_to_post_order_idx, predecessor_sets);
187
188    let mut dominators = vec![UNDEFINED; length];
189    dominators[length - 1] = length - 1;
190
191    let mut changed = true;
192    while changed {
193        changed = false;
194
195        // Iterate in reverse post order, skipping the root.
196
197        for idx in (0..length - 1).rev() {
198            debug_assert!(post_order[idx] != root);
199
200            // Take the intersection of every predecessor's dominator set; that
201            // is the current best guess at the immediate dominator for this
202            // node.
203
204            let new_idom_idx = {
205                let mut predecessors = idx_to_predecessor_vec[idx]
206                    .iter()
207                    .filter(|&&p| dominators[p] != UNDEFINED);
208                let new_idom_idx = predecessors.next().expect(
209                    "Because the root is initialized to dominate itself, and is the \
210                     first node in every path, there must exist a predecessor to this \
211                     node that also has a dominator",
212                );
213                predecessors.fold(*new_idom_idx, |new_idom_idx, &predecessor_idx| {
214                    intersect(&dominators, new_idom_idx, predecessor_idx)
215                })
216            };
217
218            debug_assert!(new_idom_idx < length);
219
220            if new_idom_idx != dominators[idx] {
221                dominators[idx] = new_idom_idx;
222                changed = true;
223            }
224        }
225    }
226
227    // All done! Translate the indices back into proper `G::NodeId`s.
228
229    debug_assert!(!dominators.iter().any(|&dom| dom == UNDEFINED));
230
231    Dominators {
232        root,
233        dominators: dominators
234            .into_iter()
235            .enumerate()
236            .map(|(idx, dom_idx)| (post_order[idx], post_order[dom_idx]))
237            .collect(),
238    }
239}
240
241fn intersect(dominators: &[usize], mut finger1: usize, mut finger2: usize) -> usize {
242    loop {
243        match finger1.cmp(&finger2) {
244            Ordering::Less => finger1 = dominators[finger1],
245            Ordering::Greater => finger2 = dominators[finger2],
246            Ordering::Equal => return finger1,
247        }
248    }
249}
250
251fn predecessor_sets_to_idx_vecs<N>(
252    post_order: &[N],
253    node_to_post_order_idx: &HashMap<N, usize>,
254    mut predecessor_sets: HashMap<N, HashSet<N>>,
255) -> Vec<Vec<usize>>
256where
257    N: Copy + Eq + Hash,
258{
259    post_order
260        .iter()
261        .map(|node| {
262            predecessor_sets
263                .remove(node)
264                .map(|predecessors| {
265                    predecessors
266                        .into_iter()
267                        .map(|p| *node_to_post_order_idx.get(&p).unwrap())
268                        .collect()
269                })
270                .unwrap_or_default()
271        })
272        .collect()
273}
274
275type PredecessorSets<NodeId> = HashMap<NodeId, HashSet<NodeId>>;
276
277fn simple_fast_post_order<G>(
278    graph: G,
279    root: G::NodeId,
280) -> (Vec<G::NodeId>, PredecessorSets<G::NodeId>)
281where
282    G: IntoNeighbors + Visitable,
283    <G as GraphBase>::NodeId: Eq + Hash,
284{
285    let mut post_order = vec![];
286    let mut predecessor_sets = HashMap::new();
287
288    for node in DfsPostOrder::new(graph, root).iter(graph) {
289        post_order.push(node);
290
291        for successor in graph.neighbors(node) {
292            predecessor_sets
293                .entry(successor)
294                .or_insert_with(HashSet::new)
295                .insert(node);
296        }
297    }
298
299    (post_order, predecessor_sets)
300}
301
302#[cfg(test)]
303mod tests {
304    use super::*;
305
306    #[test]
307    fn test_iter_dominators() {
308        let doms: Dominators<u32> = Dominators {
309            root: 0,
310            dominators: [(2, 1), (1, 0), (0, 0)].iter().cloned().collect(),
311        };
312
313        let all_doms: Vec<_> = doms.dominators(2).unwrap().collect();
314        assert_eq!(vec![2, 1, 0], all_doms);
315
316        assert_eq!(None::<()>, doms.dominators(99).map(|_| unreachable!()));
317
318        let strict_doms: Vec<_> = doms.strict_dominators(2).unwrap().collect();
319        assert_eq!(vec![1, 0], strict_doms);
320
321        assert_eq!(
322            None::<()>,
323            doms.strict_dominators(99).map(|_| unreachable!())
324        );
325
326        let dom_by: Vec<_> = doms.immediately_dominated_by(1).collect();
327        assert_eq!(vec![2], dom_by);
328        assert_eq!(None, doms.immediately_dominated_by(99).next());
329    }
330}