petgraph/algo/k_shortest_path.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
use std::collections::{BinaryHeap, HashMap};
use std::hash::Hash;
use crate::algo::Measure;
use crate::scored::MinScored;
use crate::visit::{EdgeRef, IntoEdges, NodeCount, NodeIndexable, Visitable};
/// \[Generic\] k'th shortest path algorithm.
///
/// Compute the length of the k'th shortest path from `start` to every reachable
/// node.
///
/// The graph should be `Visitable` and implement `IntoEdges`. The function
/// `edge_cost` should return the cost for a particular edge, which is used
/// to compute path costs. Edge costs must be non-negative.
///
/// If `goal` is not `None`, then the algorithm terminates once the `goal` node's
/// cost is calculated.
///
/// Computes in **O(k * (|E| + |V|*log(|V|)))** time (average).
///
/// Returns a `HashMap` that maps `NodeId` to path cost.
/// # Example
/// ```rust
/// use petgraph::Graph;
/// use petgraph::algo::k_shortest_path;
/// use petgraph::prelude::*;
/// use std::collections::HashMap;
///
/// let mut graph : Graph<(),(),Directed>= Graph::new();
/// let a = graph.add_node(()); // node with no weight
/// let b = graph.add_node(());
/// let c = graph.add_node(());
/// let d = graph.add_node(());
/// let e = graph.add_node(());
/// let f = graph.add_node(());
/// let g = graph.add_node(());
/// let h = graph.add_node(());
/// // z will be in another connected component
/// let z = graph.add_node(());
///
/// graph.extend_with_edges(&[
/// (a, b),
/// (b, c),
/// (c, d),
/// (d, a),
/// (e, f),
/// (b, e),
/// (f, g),
/// (g, h),
/// (h, e)
/// ]);
/// // a ----> b ----> e ----> f
/// // ^ | ^ |
/// // | v | v
/// // d <---- c h <---- g
///
/// let expected_res: HashMap<NodeIndex, usize> = [
/// (a, 7),
/// (b, 4),
/// (c, 5),
/// (d, 6),
/// (e, 5),
/// (f, 6),
/// (g, 7),
/// (h, 8)
/// ].iter().cloned().collect();
/// let res = k_shortest_path(&graph,b,None,2, |_| 1);
/// assert_eq!(res, expected_res);
/// // z is not inside res because there is not path from b to z.
/// ```
pub fn k_shortest_path<G, F, K>(
graph: G,
start: G::NodeId,
goal: Option<G::NodeId>,
k: usize,
mut edge_cost: F,
) -> HashMap<G::NodeId, K>
where
G: IntoEdges + Visitable + NodeCount + NodeIndexable,
G::NodeId: Eq + Hash,
F: FnMut(G::EdgeRef) -> K,
K: Measure + Copy,
{
let mut counter: Vec<usize> = vec![0; graph.node_count()];
let mut scores = HashMap::new();
let mut visit_next = BinaryHeap::new();
let zero_score = K::default();
visit_next.push(MinScored(zero_score, start));
while let Some(MinScored(node_score, node)) = visit_next.pop() {
counter[graph.to_index(node)] += 1;
let current_counter = counter[graph.to_index(node)];
if current_counter > k {
continue;
}
if current_counter == k {
scores.insert(node, node_score);
}
//Already reached goal k times
if goal.as_ref() == Some(&node) && current_counter == k {
break;
}
for edge in graph.edges(node) {
visit_next.push(MinScored(node_score + edge_cost(edge), edge.target()));
}
}
scores
}