petgraph/algo/matching.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
use std::collections::VecDeque;
use std::hash::Hash;
use crate::visit::{
EdgeRef, GraphBase, IntoEdges, IntoNeighbors, IntoNodeIdentifiers, NodeCount, NodeIndexable,
VisitMap, Visitable,
};
/// Computed
/// [*matching*](https://en.wikipedia.org/wiki/Matching_(graph_theory)#Definitions)
/// of the graph.
pub struct Matching<G: GraphBase> {
graph: G,
mate: Vec<Option<G::NodeId>>,
n_edges: usize,
}
impl<G> Matching<G>
where
G: GraphBase,
{
fn new(graph: G, mate: Vec<Option<G::NodeId>>, n_edges: usize) -> Self {
Self {
graph,
mate,
n_edges,
}
}
}
impl<G> Matching<G>
where
G: NodeIndexable,
{
/// Gets the matched counterpart of given node, if there is any.
///
/// Returns `None` if the node is not matched or does not exist.
pub fn mate(&self, node: G::NodeId) -> Option<G::NodeId> {
self.mate.get(self.graph.to_index(node)).and_then(|&id| id)
}
/// Iterates over all edges from the matching.
///
/// An edge is represented by its endpoints. The graph is considered
/// undirected and every pair of matched nodes is reported only once.
pub fn edges(&self) -> MatchedEdges<'_, G> {
MatchedEdges {
graph: &self.graph,
mate: self.mate.as_slice(),
current: 0,
}
}
/// Iterates over all nodes from the matching.
pub fn nodes(&self) -> MatchedNodes<'_, G> {
MatchedNodes {
graph: &self.graph,
mate: self.mate.as_slice(),
current: 0,
}
}
/// Returns `true` if given edge is in the matching, or `false` otherwise.
///
/// If any of the nodes does not exist, `false` is returned.
pub fn contains_edge(&self, a: G::NodeId, b: G::NodeId) -> bool {
match self.mate(a) {
Some(mate) => mate == b,
None => false,
}
}
/// Returns `true` if given node is in the matching, or `false` otherwise.
///
/// If the node does not exist, `false` is returned.
pub fn contains_node(&self, node: G::NodeId) -> bool {
self.mate(node).is_some()
}
/// Gets the number of matched **edges**.
pub fn len(&self) -> usize {
self.n_edges
}
/// Returns `true` if the number of matched **edges** is 0.
pub fn is_empty(&self) -> bool {
self.len() == 0
}
}
impl<G> Matching<G>
where
G: NodeCount,
{
/// Returns `true` if the matching is perfect.
///
/// A matching is
/// [*perfect*](https://en.wikipedia.org/wiki/Matching_(graph_theory)#Definitions)
/// if every node in the graph is incident to an edge from the matching.
pub fn is_perfect(&self) -> bool {
let n_nodes = self.graph.node_count();
n_nodes % 2 == 0 && self.n_edges == n_nodes / 2
}
}
trait WithDummy: NodeIndexable {
fn dummy_idx(&self) -> usize;
fn node_bound_with_dummy(&self) -> usize;
/// Convert `i` to a node index, returns None for the dummy node
fn try_from_index(&self, i: usize) -> Option<Self::NodeId>;
}
impl<G: NodeIndexable> WithDummy for G {
fn dummy_idx(&self) -> usize {
// Gabow numbers the vertices from 1 to n, and uses 0 as the dummy
// vertex. Our vertex indices are zero-based and so we use the node
// bound as the dummy node.
self.node_bound()
}
fn node_bound_with_dummy(&self) -> usize {
self.node_bound() + 1
}
fn try_from_index(&self, i: usize) -> Option<Self::NodeId> {
if i != self.dummy_idx() {
Some(self.from_index(i))
} else {
None
}
}
}
pub struct MatchedNodes<'a, G: GraphBase> {
graph: &'a G,
mate: &'a [Option<G::NodeId>],
current: usize,
}
impl<G> Iterator for MatchedNodes<'_, G>
where
G: NodeIndexable,
{
type Item = G::NodeId;
fn next(&mut self) -> Option<Self::Item> {
while self.current != self.mate.len() {
let current = self.current;
self.current += 1;
if self.mate[current].is_some() {
return Some(self.graph.from_index(current));
}
}
None
}
}
pub struct MatchedEdges<'a, G: GraphBase> {
graph: &'a G,
mate: &'a [Option<G::NodeId>],
current: usize,
}
impl<G> Iterator for MatchedEdges<'_, G>
where
G: NodeIndexable,
{
type Item = (G::NodeId, G::NodeId);
fn next(&mut self) -> Option<Self::Item> {
while self.current != self.mate.len() {
let current = self.current;
self.current += 1;
if let Some(mate) = self.mate[current] {
// Check if the mate is a node after the current one. If not, then
// do not report that edge since it has been already reported (the
// graph is considered undirected).
if self.graph.to_index(mate) > current {
let this = self.graph.from_index(current);
return Some((this, mate));
}
}
}
None
}
}
/// \[Generic\] Compute a
/// [*matching*](https://en.wikipedia.org/wiki/Matching_(graph_theory)) using a
/// greedy heuristic.
///
/// The input graph is treated as if undirected. The underlying heuristic is
/// unspecified, but is guaranteed to be bounded by *O(|V| + |E|)*. No
/// guarantees about the output are given other than that it is a valid
/// matching.
///
/// If you require a maximum matching, use [`maximum_matching`][1] function
/// instead.
///
/// [1]: fn.maximum_matching.html
pub fn greedy_matching<G>(graph: G) -> Matching<G>
where
G: Visitable + IntoNodeIdentifiers + NodeIndexable + IntoNeighbors,
G::NodeId: Eq + Hash,
G::EdgeId: Eq + Hash,
{
let (mates, n_edges) = greedy_matching_inner(&graph);
Matching::new(graph, mates, n_edges)
}
#[inline]
fn greedy_matching_inner<G>(graph: &G) -> (Vec<Option<G::NodeId>>, usize)
where
G: Visitable + IntoNodeIdentifiers + NodeIndexable + IntoNeighbors,
{
let mut mate = vec![None; graph.node_bound()];
let mut n_edges = 0;
let visited = &mut graph.visit_map();
for start in graph.node_identifiers() {
let mut last = Some(start);
// Function non_backtracking_dfs does not expand the node if it has been
// already visited.
non_backtracking_dfs(graph, start, visited, |next| {
// Alternate matched and unmatched edges.
if let Some(pred) = last.take() {
mate[graph.to_index(pred)] = Some(next);
mate[graph.to_index(next)] = Some(pred);
n_edges += 1;
} else {
last = Some(next);
}
});
}
(mate, n_edges)
}
fn non_backtracking_dfs<G, F>(graph: &G, source: G::NodeId, visited: &mut G::Map, mut visitor: F)
where
G: Visitable + IntoNeighbors,
F: FnMut(G::NodeId),
{
if visited.visit(source) {
for target in graph.neighbors(source) {
if !visited.is_visited(&target) {
visitor(target);
non_backtracking_dfs(graph, target, visited, visitor);
// Non-backtracking traversal, stop iterating over the
// neighbors.
break;
}
}
}
}
#[derive(Clone, Copy)]
enum Label<G: GraphBase> {
None,
Start,
// If node v is outer node, then label(v) = w is another outer node on path
// from v to start u.
Vertex(G::NodeId),
// If node v is outer node, then label(v) = (r, s) are two outer vertices
// (connected by an edge)
Edge(G::EdgeId, [G::NodeId; 2]),
// Flag is a special label used in searching for the join vertex of two
// paths.
Flag(G::EdgeId),
}
impl<G: GraphBase> Label<G> {
fn is_outer(&self) -> bool {
self != &Label::None
&& !match self {
Label::Flag(_) => true,
_ => false,
}
}
fn is_inner(&self) -> bool {
!self.is_outer()
}
fn to_vertex(&self) -> Option<G::NodeId> {
match *self {
Label::Vertex(v) => Some(v),
_ => None,
}
}
fn is_flagged(&self, edge: G::EdgeId) -> bool {
match self {
Label::Flag(flag) if flag == &edge => true,
_ => false,
}
}
}
impl<G: GraphBase> Default for Label<G> {
fn default() -> Self {
Label::None
}
}
impl<G: GraphBase> PartialEq for Label<G> {
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(Label::None, Label::None) => true,
(Label::Start, Label::Start) => true,
(Label::Vertex(v1), Label::Vertex(v2)) => v1 == v2,
(Label::Edge(e1, _), Label::Edge(e2, _)) => e1 == e2,
(Label::Flag(e1), Label::Flag(e2)) => e1 == e2,
_ => false,
}
}
}
/// \[Generic\] Compute the [*maximum
/// matching*](https://en.wikipedia.org/wiki/Matching_(graph_theory)) using
/// [Gabow's algorithm][1].
///
/// [1]: https://dl.acm.org/doi/10.1145/321941.321942
///
/// The input graph is treated as if undirected. The algorithm runs in
/// *O(|V|³)*. An algorithm with a better time complexity might be used in the
/// future.
///
/// **Panics** if `g.node_bound()` is `std::usize::MAX`.
///
/// # Examples
///
/// ```
/// use petgraph::prelude::*;
/// use petgraph::algo::maximum_matching;
///
/// // The example graph:
/// //
/// // +-- b ---- d ---- f
/// // / | |
/// // a | |
/// // \ | |
/// // +-- c ---- e
/// //
/// // Maximum matching: { (a, b), (c, e), (d, f) }
///
/// let mut graph: UnGraph<(), ()> = UnGraph::new_undirected();
/// let a = graph.add_node(());
/// let b = graph.add_node(());
/// let c = graph.add_node(());
/// let d = graph.add_node(());
/// let e = graph.add_node(());
/// let f = graph.add_node(());
/// graph.extend_with_edges(&[(a, b), (a, c), (b, c), (b, d), (c, e), (d, e), (d, f)]);
///
/// let matching = maximum_matching(&graph);
/// assert!(matching.contains_edge(a, b));
/// assert!(matching.contains_edge(c, e));
/// assert_eq!(matching.mate(d), Some(f));
/// assert_eq!(matching.mate(f), Some(d));
/// ```
pub fn maximum_matching<G>(graph: G) -> Matching<G>
where
G: Visitable + NodeIndexable + IntoNodeIdentifiers + IntoEdges,
{
// The dummy identifier needs an unused index
assert_ne!(
graph.node_bound(),
std::usize::MAX,
"The input graph capacity should be strictly less than std::usize::MAX."
);
// Greedy algorithm should create a fairly good initial matching. The hope
// is that it speeds up the computation by doing les work in the complex
// algorithm.
let (mut mate, mut n_edges) = greedy_matching_inner(&graph);
// Gabow's algorithm uses a dummy node in the mate array.
mate.push(None);
let len = graph.node_bound() + 1;
debug_assert_eq!(mate.len(), len);
let mut label: Vec<Label<G>> = vec![Label::None; len];
let mut first_inner = vec![std::usize::MAX; len];
let visited = &mut graph.visit_map();
for start in 0..graph.node_bound() {
if mate[start].is_some() {
// The vertex is already matched. A start must be a free vertex.
continue;
}
// Begin search from the node.
label[start] = Label::Start;
first_inner[start] = graph.dummy_idx();
graph.reset_map(visited);
// start is never a dummy index
let start = graph.from_index(start);
// Queue will contain outer vertices that should be processed next. The
// start vertex is considered an outer vertex.
let mut queue = VecDeque::new();
queue.push_back(start);
// Mark the start vertex so it is not processed repeatedly.
visited.visit(start);
'search: while let Some(outer_vertex) = queue.pop_front() {
for edge in graph.edges(outer_vertex) {
if edge.source() == edge.target() {
// Ignore self-loops.
continue;
}
let other_vertex = edge.target();
let other_idx = graph.to_index(other_vertex);
if mate[other_idx].is_none() && other_vertex != start {
// An augmenting path was found. Augment the matching. If
// `other` is actually the start node, then the augmentation
// must not be performed, because the start vertex would be
// incident to two edges, which violates the matching
// property.
mate[other_idx] = Some(outer_vertex);
augment_path(&graph, outer_vertex, other_vertex, &mut mate, &label);
n_edges += 1;
// The path is augmented, so the start is no longer free
// vertex. We need to begin with a new start.
break 'search;
} else if label[other_idx].is_outer() {
// The `other` is an outer vertex (a label has been set to
// it). An odd cycle (blossom) was found. Assign this edge
// as a label to all inner vertices in paths P(outer) and
// P(other).
find_join(
&graph,
edge,
&mate,
&mut label,
&mut first_inner,
|labeled| {
if visited.visit(labeled) {
queue.push_back(labeled);
}
},
);
} else {
let mate_vertex = mate[other_idx];
let mate_idx = mate_vertex.map_or(graph.dummy_idx(), |id| graph.to_index(id));
if label[mate_idx].is_inner() {
// Mate of `other` vertex is inner (no label has been
// set to it so far). But it actually is an outer vertex
// (it is on a path to the start vertex that begins with
// a matched edge, since it is a mate of `other`).
// Assign the label of this mate to the `outer` vertex,
// so the path for it can be reconstructed using `mate`
// and this label.
label[mate_idx] = Label::Vertex(outer_vertex);
first_inner[mate_idx] = other_idx;
}
// Add the vertex to the queue only if it's not the dummy and this is its first
// discovery.
if let Some(mate_vertex) = mate_vertex {
if visited.visit(mate_vertex) {
queue.push_back(mate_vertex);
}
}
}
}
}
// Reset the labels. All vertices are inner for the next search.
for lbl in label.iter_mut() {
*lbl = Label::None;
}
}
// Discard the dummy node.
mate.pop();
Matching::new(graph, mate, n_edges)
}
fn find_join<G, F>(
graph: &G,
edge: G::EdgeRef,
mate: &[Option<G::NodeId>],
label: &mut [Label<G>],
first_inner: &mut [usize],
mut visitor: F,
) where
G: IntoEdges + NodeIndexable + Visitable,
F: FnMut(G::NodeId),
{
// Simultaneously traverse the inner vertices on paths P(source) and
// P(target) to find a join vertex - an inner vertex that is shared by these
// paths.
let source = graph.to_index(edge.source());
let target = graph.to_index(edge.target());
let mut left = first_inner[source];
let mut right = first_inner[target];
if left == right {
// No vertices can be labeled, since both paths already refer to a
// common vertex - the join.
return;
}
// Flag the (first) inner vertices. This ensures that they are assigned the
// join as their first inner vertex.
let flag = Label::Flag(edge.id());
label[left] = flag;
label[right] = flag;
// Find the join.
let join = loop {
// Swap the sides. Do not swap if the right side is already finished.
if right != graph.dummy_idx() {
std::mem::swap(&mut left, &mut right);
}
// Set left to the next inner vertex in P(source) or P(target).
// The unwraps are safe because left is not the dummy node.
let left_mate = graph.to_index(mate[left].unwrap());
let next_inner = label[left_mate].to_vertex().unwrap();
left = first_inner[graph.to_index(next_inner)];
if !label[left].is_flagged(edge.id()) {
// The inner vertex is not flagged yet, so flag it.
label[left] = flag;
} else {
// The inner vertex is already flagged. It means that the other side
// had to visit it already. Therefore it is the join vertex.
break left;
}
};
// Label all inner vertices on P(source) and P(target) with the found join.
for endpoint in [source, target].iter().copied() {
let mut inner = first_inner[endpoint];
while inner != join {
// Notify the caller about labeling a vertex.
if let Some(ix) = graph.try_from_index(inner) {
visitor(ix);
}
label[inner] = Label::Edge(edge.id(), [edge.source(), edge.target()]);
first_inner[inner] = join;
let inner_mate = graph.to_index(mate[inner].unwrap());
let next_inner = label[inner_mate].to_vertex().unwrap();
inner = first_inner[graph.to_index(next_inner)];
}
}
for (vertex_idx, vertex_label) in label.iter().enumerate() {
// To all outer vertices that are on paths P(source) and P(target) until
// the join, se the join as their first inner vertex.
if vertex_idx != graph.dummy_idx()
&& vertex_label.is_outer()
&& label[first_inner[vertex_idx]].is_outer()
{
first_inner[vertex_idx] = join;
}
}
}
fn augment_path<G>(
graph: &G,
outer: G::NodeId,
other: G::NodeId,
mate: &mut [Option<G::NodeId>],
label: &[Label<G>],
) where
G: NodeIndexable,
{
let outer_idx = graph.to_index(outer);
let temp = mate[outer_idx];
let temp_idx = temp.map_or(graph.dummy_idx(), |id| graph.to_index(id));
mate[outer_idx] = Some(other);
if mate[temp_idx] != Some(outer) {
// We are at the end of the path and so the entire path is completely
// rematched/augmented.
} else if let Label::Vertex(vertex) = label[outer_idx] {
// The outer vertex has a vertex label which refers to another outer
// vertex on the path. So we set this another outer node as the mate for
// the previous mate of the outer node.
mate[temp_idx] = Some(vertex);
if let Some(temp) = temp {
augment_path(graph, vertex, temp, mate, label);
}
} else if let Label::Edge(_, [source, target]) = label[outer_idx] {
// The outer vertex has an edge label which refers to an edge in a
// blossom. We need to augment both directions along the blossom.
augment_path(graph, source, target, mate, label);
augment_path(graph, target, source, mate, label);
} else {
panic!("Unexpected label when augmenting path");
}
}