petgraph/algo/page_rank.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
use crate::visit::{EdgeRef, IntoEdges, NodeCount, NodeIndexable};
#[cfg(feature = "rayon")]
use rayon::prelude::*;
use super::UnitMeasure;
/// \[Generic\] Page Rank algorithm.
///
/// Computes the ranks of every node in a graph using the [Page Rank algorithm][pr].
///
/// Returns a `Vec` container mapping each node index to its rank.
///
/// # Panics
/// The damping factor should be a number of type `f32` or `f64` between 0 and 1 (0 and 1 included). Otherwise, it panics.
///
/// # Complexity
/// Time complexity is **O(N|V|²|E|)**.
/// Space complexity is **O(|V| + |E|)**
/// where **N** is the number of iterations, **|V|** the number of vertices (i.e nodes) and **|E|** the number of edges.
///
/// [pr]: https://en.wikipedia.org/wiki/PageRank
///
/// # Example
/// ```rust
/// use petgraph::Graph;
/// use petgraph::algo::page_rank;
/// let mut g: Graph<(), usize> = Graph::new();
/// assert_eq!(page_rank(&g, 0.5_f64, 1), vec![]); // empty graphs have no node ranks.
/// let a = g.add_node(());
/// let b = g.add_node(());
/// let c = g.add_node(());
/// let d = g.add_node(());
/// let e = g.add_node(());
/// g.extend_with_edges(&[(0, 1), (0, 3), (1, 2), (1, 3)]);
/// // With the following dot representation.
/// //digraph {
/// // 0 [ label = "()" ]
/// // 1 [ label = "()" ]
/// // 2 [ label = "()" ]
/// // 3 [ label = "()" ]
/// // 4 [ label = "()" ]
/// // 0 -> 1 [ label = "0.0" ]
/// // 0 -> 3 [ label = "0.0" ]
/// // 1 -> 2 [ label = "0.0" ]
/// // 1 -> 3 [ label = "0.0" ]
/// //}
/// let damping_factor = 0.7_f32;
/// let number_iterations = 10;
/// let output_ranks = page_rank(&g, damping_factor, number_iterations);
/// let expected_ranks = vec![0.14685437, 0.20267677, 0.22389607, 0.27971846, 0.14685437];
/// assert_eq!(expected_ranks, output_ranks);
/// ```
pub fn page_rank<G, D>(graph: G, damping_factor: D, nb_iter: usize) -> Vec<D>
where
G: NodeCount + IntoEdges + NodeIndexable,
D: UnitMeasure + Copy,
{
let node_count = graph.node_count();
if node_count == 0 {
return vec![];
}
assert!(
D::zero() <= damping_factor && damping_factor <= D::one(),
"Damping factor should be between 0 et 1."
);
let nb = D::from_usize(node_count);
let mut ranks = vec![D::one() / nb; node_count];
let nodeix = |i| graph.from_index(i);
let out_degrees: Vec<D> = (0..node_count)
.map(|i| graph.edges(nodeix(i)).map(|_| D::one()).sum::<D>())
.collect();
for _ in 0..nb_iter {
let pi = (0..node_count)
.enumerate()
.map(|(v, _)| {
ranks
.iter()
.enumerate()
.map(|(w, r)| {
let mut w_out_edges = graph.edges(nodeix(w));
if w_out_edges.any(|e| e.target() == nodeix(v)) {
damping_factor * *r / out_degrees[w]
} else if out_degrees[w] == D::zero() {
damping_factor * *r / nb // stochastic matrix condition
} else {
(D::one() - damping_factor) * *r / nb // random jumps
}
})
.sum::<D>()
})
.collect::<Vec<D>>();
let sum = pi.iter().copied().sum::<D>();
ranks = pi.iter().map(|r| *r / sum).collect::<Vec<D>>();
}
ranks
}
#[allow(dead_code)]
fn out_edges_info<G, D>(graph: G, index_w: usize, index_v: usize) -> (D, bool)
where
G: NodeCount + IntoEdges + NodeIndexable + std::marker::Sync,
D: UnitMeasure + Copy + std::marker::Send + std::marker::Sync,
{
let node_w = graph.from_index(index_w);
let node_v = graph.from_index(index_v);
let mut out_edges = graph.edges(node_w);
let mut out_edge = out_edges.next();
let mut out_degree = D::zero();
let mut flag_points_to = false;
while let Some(edge) = out_edge {
out_degree = out_degree + D::one();
if edge.target() == node_v {
flag_points_to = true;
}
out_edge = out_edges.next();
}
(out_degree, flag_points_to)
}
/// \[Generic\] Parallel Page Rank algorithm.
///
/// See [`page_rank`].
#[cfg(feature = "rayon")]
pub fn parallel_page_rank<G, D>(
graph: G,
damping_factor: D,
nb_iter: usize,
tol: Option<D>,
) -> Vec<D>
where
G: NodeCount + IntoEdges + NodeIndexable + std::marker::Sync,
D: UnitMeasure + Copy + std::marker::Send + std::marker::Sync,
{
let node_count = graph.node_count();
if node_count == 0 {
return vec![];
}
assert!(
D::zero() <= damping_factor && damping_factor <= D::one(),
"Damping factor should be between 0 et 1."
);
let mut tolerance = D::default_tol();
if let Some(_tol) = tol {
tolerance = _tol;
}
let nb = D::from_usize(node_count);
let mut ranks: Vec<D> = (0..node_count)
.into_par_iter()
.map(|i| D::one() / nb)
.collect();
for _ in 0..nb_iter {
let pi = (0..node_count)
.into_par_iter()
.map(|v| {
ranks
.iter()
.enumerate()
.map(|(w, r)| {
let (out_deg, w_points_to_v) = out_edges_info(graph, w, v);
if w_points_to_v {
damping_factor * *r / out_deg
} else if out_deg == D::zero() {
damping_factor * *r / nb // stochastic matrix condition
} else {
(D::one() - damping_factor) * *r / nb // random jumps
}
})
.sum::<D>()
})
.collect::<Vec<D>>();
let sum = pi.par_iter().map(|score| *score).sum::<D>();
let new_ranks = pi.par_iter().map(|r| *r / sum).collect::<Vec<D>>();
let squared_norm_2 = new_ranks
.par_iter()
.zip(&ranks)
.map(|(new, old)| (*new - *old) * (*new - *old))
.sum::<D>();
if squared_norm_2 <= tolerance {
return ranks;
} else {
ranks = new_ranks;
}
}
ranks
}