petgraph/algo/simple_paths.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
use std::{
hash::Hash,
iter::{from_fn, FromIterator},
};
use indexmap::IndexSet;
use crate::{
visit::{IntoNeighborsDirected, NodeCount},
Direction::Outgoing,
};
/// Returns an iterator that produces all simple paths from `from` node to `to`, which contains at least `min_intermediate_nodes` nodes
/// and at most `max_intermediate_nodes`, if given, or limited by the graph's order otherwise. The simple path is a path without repetitions.
///
/// This algorithm is adapted from <https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.simple_paths.all_simple_paths.html>.
///
/// # Example
/// ```
/// use petgraph::{algo, prelude::*};
///
/// let mut graph = DiGraph::<&str, i32>::new();
///
/// let a = graph.add_node("a");
/// let b = graph.add_node("b");
/// let c = graph.add_node("c");
/// let d = graph.add_node("d");
///
/// graph.extend_with_edges(&[(a, b, 1), (b, c, 1), (c, d, 1), (a, b, 1), (b, d, 1)]);
///
/// let ways = algo::all_simple_paths::<Vec<_>, _>(&graph, a, d, 0, None)
/// .collect::<Vec<_>>();
///
/// assert_eq!(4, ways.len());
/// ```
pub fn all_simple_paths<TargetColl, G>(
graph: G,
from: G::NodeId,
to: G::NodeId,
min_intermediate_nodes: usize,
max_intermediate_nodes: Option<usize>,
) -> impl Iterator<Item = TargetColl>
where
G: NodeCount,
G: IntoNeighborsDirected,
G::NodeId: Eq + Hash,
TargetColl: FromIterator<G::NodeId>,
{
// how many nodes are allowed in simple path up to target node
// it is min/max allowed path length minus one, because it is more appropriate when implementing lookahead
// than constantly add 1 to length of current path
let max_length = if let Some(l) = max_intermediate_nodes {
l + 1
} else {
graph.node_count() - 1
};
let min_length = min_intermediate_nodes + 1;
// list of visited nodes
let mut visited: IndexSet<G::NodeId> = IndexSet::from_iter(Some(from));
// list of childs of currently exploring path nodes,
// last elem is list of childs of last visited node
let mut stack = vec![graph.neighbors_directed(from, Outgoing)];
from_fn(move || {
while let Some(children) = stack.last_mut() {
if let Some(child) = children.next() {
if visited.len() < max_length {
if child == to {
if visited.len() >= min_length {
let path = visited
.iter()
.cloned()
.chain(Some(to))
.collect::<TargetColl>();
return Some(path);
}
} else if !visited.contains(&child) {
visited.insert(child);
stack.push(graph.neighbors_directed(child, Outgoing));
}
} else {
if (child == to || children.any(|v| v == to)) && visited.len() >= min_length {
let path = visited
.iter()
.cloned()
.chain(Some(to))
.collect::<TargetColl>();
return Some(path);
}
stack.pop();
visited.pop();
}
} else {
stack.pop();
visited.pop();
}
}
None
})
}
#[cfg(test)]
mod test {
use std::{collections::HashSet, iter::FromIterator};
use itertools::assert_equal;
use crate::{dot::Dot, prelude::DiGraph};
use super::all_simple_paths;
#[test]
fn test_all_simple_paths() {
let graph = DiGraph::<i32, i32, _>::from_edges(&[
(0, 1),
(0, 2),
(0, 3),
(1, 2),
(1, 3),
(2, 3),
(2, 4),
(3, 2),
(3, 4),
(4, 2),
(4, 5),
(5, 2),
(5, 3),
]);
let expexted_simple_paths_0_to_5 = vec![
vec![0usize, 1, 2, 3, 4, 5],
vec![0, 1, 2, 4, 5],
vec![0, 1, 3, 2, 4, 5],
vec![0, 1, 3, 4, 5],
vec![0, 2, 3, 4, 5],
vec![0, 2, 4, 5],
vec![0, 3, 2, 4, 5],
vec![0, 3, 4, 5],
];
println!("{}", Dot::new(&graph));
let actual_simple_paths_0_to_5: HashSet<Vec<_>> =
all_simple_paths(&graph, 0u32.into(), 5u32.into(), 0, None)
.map(|v: Vec<_>| v.into_iter().map(|i| i.index()).collect())
.collect();
assert_eq!(actual_simple_paths_0_to_5.len(), 8);
assert_eq!(
HashSet::from_iter(expexted_simple_paths_0_to_5),
actual_simple_paths_0_to_5
);
}
#[test]
fn test_one_simple_path() {
let graph = DiGraph::<i32, i32, _>::from_edges(&[(0, 1), (2, 1)]);
let expexted_simple_paths_0_to_1 = &[vec![0usize, 1]];
println!("{}", Dot::new(&graph));
let actual_simple_paths_0_to_1: Vec<Vec<_>> =
all_simple_paths(&graph, 0u32.into(), 1u32.into(), 0, None)
.map(|v: Vec<_>| v.into_iter().map(|i| i.index()).collect())
.collect();
assert_eq!(actual_simple_paths_0_to_1.len(), 1);
assert_equal(expexted_simple_paths_0_to_1, &actual_simple_paths_0_to_1);
}
#[test]
fn test_no_simple_paths() {
let graph = DiGraph::<i32, i32, _>::from_edges(&[(0, 1), (2, 1)]);
println!("{}", Dot::new(&graph));
let actual_simple_paths_0_to_2: Vec<Vec<_>> =
all_simple_paths(&graph, 0u32.into(), 2u32.into(), 0, None)
.map(|v: Vec<_>| v.into_iter().map(|i| i.index()).collect())
.collect();
assert_eq!(actual_simple_paths_0_to_2.len(), 0);
}
}