rand/distributions/
bernoulli.rs

1// Copyright 2018 Developers of the Rand project.
2//
3// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
4// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
5// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
6// option. This file may not be copied, modified, or distributed
7// except according to those terms.
8
9//! The Bernoulli distribution.
10
11use crate::distributions::Distribution;
12use crate::Rng;
13use core::{fmt, u64};
14
15#[cfg(feature = "serde1")]
16use serde::{Serialize, Deserialize};
17/// The Bernoulli distribution.
18///
19/// This is a special case of the Binomial distribution where `n = 1`.
20///
21/// # Example
22///
23/// ```rust
24/// use rand::distributions::{Bernoulli, Distribution};
25///
26/// let d = Bernoulli::new(0.3).unwrap();
27/// let v = d.sample(&mut rand::thread_rng());
28/// println!("{} is from a Bernoulli distribution", v);
29/// ```
30///
31/// # Precision
32///
33/// This `Bernoulli` distribution uses 64 bits from the RNG (a `u64`),
34/// so only probabilities that are multiples of 2<sup>-64</sup> can be
35/// represented.
36#[derive(Clone, Copy, Debug, PartialEq)]
37#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
38pub struct Bernoulli {
39    /// Probability of success, relative to the maximal integer.
40    p_int: u64,
41}
42
43// To sample from the Bernoulli distribution we use a method that compares a
44// random `u64` value `v < (p * 2^64)`.
45//
46// If `p == 1.0`, the integer `v` to compare against can not represented as a
47// `u64`. We manually set it to `u64::MAX` instead (2^64 - 1 instead of 2^64).
48// Note that  value of `p < 1.0` can never result in `u64::MAX`, because an
49// `f64` only has 53 bits of precision, and the next largest value of `p` will
50// result in `2^64 - 2048`.
51//
52// Also there is a 100% theoretical concern: if someone consistently wants to
53// generate `true` using the Bernoulli distribution (i.e. by using a probability
54// of `1.0`), just using `u64::MAX` is not enough. On average it would return
55// false once every 2^64 iterations. Some people apparently care about this
56// case.
57//
58// That is why we special-case `u64::MAX` to always return `true`, without using
59// the RNG, and pay the performance price for all uses that *are* reasonable.
60// Luckily, if `new()` and `sample` are close, the compiler can optimize out the
61// extra check.
62const ALWAYS_TRUE: u64 = u64::MAX;
63
64// This is just `2.0.powi(64)`, but written this way because it is not available
65// in `no_std` mode.
66const SCALE: f64 = 2.0 * (1u64 << 63) as f64;
67
68/// Error type returned from `Bernoulli::new`.
69#[derive(Clone, Copy, Debug, PartialEq, Eq)]
70pub enum BernoulliError {
71    /// `p < 0` or `p > 1`.
72    InvalidProbability,
73}
74
75impl fmt::Display for BernoulliError {
76    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
77        f.write_str(match self {
78            BernoulliError::InvalidProbability => "p is outside [0, 1] in Bernoulli distribution",
79        })
80    }
81}
82
83#[cfg(feature = "std")]
84impl ::std::error::Error for BernoulliError {}
85
86impl Bernoulli {
87    /// Construct a new `Bernoulli` with the given probability of success `p`.
88    ///
89    /// # Precision
90    ///
91    /// For `p = 1.0`, the resulting distribution will always generate true.
92    /// For `p = 0.0`, the resulting distribution will always generate false.
93    ///
94    /// This method is accurate for any input `p` in the range `[0, 1]` which is
95    /// a multiple of 2<sup>-64</sup>. (Note that not all multiples of
96    /// 2<sup>-64</sup> in `[0, 1]` can be represented as a `f64`.)
97    #[inline]
98    pub fn new(p: f64) -> Result<Bernoulli, BernoulliError> {
99        if !(0.0..1.0).contains(&p) {
100            if p == 1.0 {
101                return Ok(Bernoulli { p_int: ALWAYS_TRUE });
102            }
103            return Err(BernoulliError::InvalidProbability);
104        }
105        Ok(Bernoulli {
106            p_int: (p * SCALE) as u64,
107        })
108    }
109
110    /// Construct a new `Bernoulli` with the probability of success of
111    /// `numerator`-in-`denominator`. I.e. `new_ratio(2, 3)` will return
112    /// a `Bernoulli` with a 2-in-3 chance, or about 67%, of returning `true`.
113    ///
114    /// return `true`. If `numerator == 0` it will always return `false`.
115    /// For `numerator > denominator` and `denominator == 0`, this returns an
116    /// error. Otherwise, for `numerator == denominator`, samples are always
117    /// true; for `numerator == 0` samples are always false.
118    #[inline]
119    pub fn from_ratio(numerator: u32, denominator: u32) -> Result<Bernoulli, BernoulliError> {
120        if numerator > denominator || denominator == 0 {
121            return Err(BernoulliError::InvalidProbability);
122        }
123        if numerator == denominator {
124            return Ok(Bernoulli { p_int: ALWAYS_TRUE });
125        }
126        let p_int = ((f64::from(numerator) / f64::from(denominator)) * SCALE) as u64;
127        Ok(Bernoulli { p_int })
128    }
129}
130
131impl Distribution<bool> for Bernoulli {
132    #[inline]
133    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool {
134        // Make sure to always return true for p = 1.0.
135        if self.p_int == ALWAYS_TRUE {
136            return true;
137        }
138        let v: u64 = rng.gen();
139        v < self.p_int
140    }
141}
142
143#[cfg(test)]
144mod test {
145    use super::Bernoulli;
146    use crate::distributions::Distribution;
147    use crate::Rng;
148
149    #[test]
150    #[cfg(feature="serde1")]
151    fn test_serializing_deserializing_bernoulli() {
152        let coin_flip = Bernoulli::new(0.5).unwrap();
153        let de_coin_flip : Bernoulli = bincode::deserialize(&bincode::serialize(&coin_flip).unwrap()).unwrap();
154
155        assert_eq!(coin_flip.p_int, de_coin_flip.p_int);
156    }
157
158    #[test]
159    fn test_trivial() {
160        // We prefer to be explicit here.
161        #![allow(clippy::bool_assert_comparison)]
162
163        let mut r = crate::test::rng(1);
164        let always_false = Bernoulli::new(0.0).unwrap();
165        let always_true = Bernoulli::new(1.0).unwrap();
166        for _ in 0..5 {
167            assert_eq!(r.sample::<bool, _>(&always_false), false);
168            assert_eq!(r.sample::<bool, _>(&always_true), true);
169            assert_eq!(Distribution::<bool>::sample(&always_false, &mut r), false);
170            assert_eq!(Distribution::<bool>::sample(&always_true, &mut r), true);
171        }
172    }
173
174    #[test]
175    #[cfg_attr(miri, ignore)] // Miri is too slow
176    fn test_average() {
177        const P: f64 = 0.3;
178        const NUM: u32 = 3;
179        const DENOM: u32 = 10;
180        let d1 = Bernoulli::new(P).unwrap();
181        let d2 = Bernoulli::from_ratio(NUM, DENOM).unwrap();
182        const N: u32 = 100_000;
183
184        let mut sum1: u32 = 0;
185        let mut sum2: u32 = 0;
186        let mut rng = crate::test::rng(2);
187        for _ in 0..N {
188            if d1.sample(&mut rng) {
189                sum1 += 1;
190            }
191            if d2.sample(&mut rng) {
192                sum2 += 1;
193            }
194        }
195        let avg1 = (sum1 as f64) / (N as f64);
196        assert!((avg1 - P).abs() < 5e-3);
197
198        let avg2 = (sum2 as f64) / (N as f64);
199        assert!((avg2 - (NUM as f64) / (DENOM as f64)).abs() < 5e-3);
200    }
201
202    #[test]
203    fn value_stability() {
204        let mut rng = crate::test::rng(3);
205        let distr = Bernoulli::new(0.4532).unwrap();
206        let mut buf = [false; 10];
207        for x in &mut buf {
208            *x = rng.sample(&distr);
209        }
210        assert_eq!(buf, [
211            true, false, false, true, false, false, true, true, true, true
212        ]);
213    }
214
215    #[test]
216    fn bernoulli_distributions_can_be_compared() {
217        assert_eq!(Bernoulli::new(1.0), Bernoulli::new(1.0));
218    }
219}