rand/
rng.rs

1// Copyright 2018 Developers of the Rand project.
2// Copyright 2013-2017 The Rust Project Developers.
3//
4// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
5// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
7// option. This file may not be copied, modified, or distributed
8// except according to those terms.
9
10//! [`Rng`] trait
11
12use rand_core::{Error, RngCore};
13use crate::distributions::uniform::{SampleRange, SampleUniform};
14use crate::distributions::{self, Distribution, Standard};
15use core::num::Wrapping;
16use core::{mem, slice};
17
18/// An automatically-implemented extension trait on [`RngCore`] providing high-level
19/// generic methods for sampling values and other convenience methods.
20///
21/// This is the primary trait to use when generating random values.
22///
23/// # Generic usage
24///
25/// The basic pattern is `fn foo<R: Rng + ?Sized>(rng: &mut R)`. Some
26/// things are worth noting here:
27///
28/// - Since `Rng: RngCore` and every `RngCore` implements `Rng`, it makes no
29///   difference whether we use `R: Rng` or `R: RngCore`.
30/// - The `+ ?Sized` un-bounding allows functions to be called directly on
31///   type-erased references; i.e. `foo(r)` where `r: &mut dyn RngCore`. Without
32///   this it would be necessary to write `foo(&mut r)`.
33///
34/// An alternative pattern is possible: `fn foo<R: Rng>(rng: R)`. This has some
35/// trade-offs. It allows the argument to be consumed directly without a `&mut`
36/// (which is how `from_rng(thread_rng())` works); also it still works directly
37/// on references (including type-erased references). Unfortunately within the
38/// function `foo` it is not known whether `rng` is a reference type or not,
39/// hence many uses of `rng` require an extra reference, either explicitly
40/// (`distr.sample(&mut rng)`) or implicitly (`rng.gen()`); one may hope the
41/// optimiser can remove redundant references later.
42///
43/// Example:
44///
45/// ```
46/// # use rand::thread_rng;
47/// use rand::Rng;
48///
49/// fn foo<R: Rng + ?Sized>(rng: &mut R) -> f32 {
50///     rng.gen()
51/// }
52///
53/// # let v = foo(&mut thread_rng());
54/// ```
55pub trait Rng: RngCore {
56    /// Return a random value supporting the [`Standard`] distribution.
57    ///
58    /// # Example
59    ///
60    /// ```
61    /// use rand::{thread_rng, Rng};
62    ///
63    /// let mut rng = thread_rng();
64    /// let x: u32 = rng.gen();
65    /// println!("{}", x);
66    /// println!("{:?}", rng.gen::<(f64, bool)>());
67    /// ```
68    ///
69    /// # Arrays and tuples
70    ///
71    /// The `rng.gen()` method is able to generate arrays (up to 32 elements)
72    /// and tuples (up to 12 elements), so long as all element types can be
73    /// generated.
74    /// When using `rustc` ≥ 1.51, enable the `min_const_gen` feature to support
75    /// arrays larger than 32 elements.
76    ///
77    /// For arrays of integers, especially for those with small element types
78    /// (< 64 bit), it will likely be faster to instead use [`Rng::fill`].
79    ///
80    /// ```
81    /// use rand::{thread_rng, Rng};
82    ///
83    /// let mut rng = thread_rng();
84    /// let tuple: (u8, i32, char) = rng.gen(); // arbitrary tuple support
85    ///
86    /// let arr1: [f32; 32] = rng.gen();        // array construction
87    /// let mut arr2 = [0u8; 128];
88    /// rng.fill(&mut arr2);                    // array fill
89    /// ```
90    ///
91    /// [`Standard`]: distributions::Standard
92    #[inline]
93    fn gen<T>(&mut self) -> T
94    where Standard: Distribution<T> {
95        Standard.sample(self)
96    }
97
98    /// Generate a random value in the given range.
99    ///
100    /// This function is optimised for the case that only a single sample is
101    /// made from the given range. See also the [`Uniform`] distribution
102    /// type which may be faster if sampling from the same range repeatedly.
103    ///
104    /// Only `gen_range(low..high)` and `gen_range(low..=high)` are supported.
105    ///
106    /// # Panics
107    ///
108    /// Panics if the range is empty.
109    ///
110    /// # Example
111    ///
112    /// ```
113    /// use rand::{thread_rng, Rng};
114    ///
115    /// let mut rng = thread_rng();
116    ///
117    /// // Exclusive range
118    /// let n: u32 = rng.gen_range(0..10);
119    /// println!("{}", n);
120    /// let m: f64 = rng.gen_range(-40.0..1.3e5);
121    /// println!("{}", m);
122    ///
123    /// // Inclusive range
124    /// let n: u32 = rng.gen_range(0..=10);
125    /// println!("{}", n);
126    /// ```
127    ///
128    /// [`Uniform`]: distributions::uniform::Uniform
129    fn gen_range<T, R>(&mut self, range: R) -> T
130    where
131        T: SampleUniform,
132        R: SampleRange<T>
133    {
134        assert!(!range.is_empty(), "cannot sample empty range");
135        range.sample_single(self)
136    }
137
138    /// Sample a new value, using the given distribution.
139    ///
140    /// ### Example
141    ///
142    /// ```
143    /// use rand::{thread_rng, Rng};
144    /// use rand::distributions::Uniform;
145    ///
146    /// let mut rng = thread_rng();
147    /// let x = rng.sample(Uniform::new(10u32, 15));
148    /// // Type annotation requires two types, the type and distribution; the
149    /// // distribution can be inferred.
150    /// let y = rng.sample::<u16, _>(Uniform::new(10, 15));
151    /// ```
152    fn sample<T, D: Distribution<T>>(&mut self, distr: D) -> T {
153        distr.sample(self)
154    }
155
156    /// Create an iterator that generates values using the given distribution.
157    ///
158    /// Note that this function takes its arguments by value. This works since
159    /// `(&mut R): Rng where R: Rng` and
160    /// `(&D): Distribution where D: Distribution`,
161    /// however borrowing is not automatic hence `rng.sample_iter(...)` may
162    /// need to be replaced with `(&mut rng).sample_iter(...)`.
163    ///
164    /// # Example
165    ///
166    /// ```
167    /// use rand::{thread_rng, Rng};
168    /// use rand::distributions::{Alphanumeric, Uniform, Standard};
169    ///
170    /// let mut rng = thread_rng();
171    ///
172    /// // Vec of 16 x f32:
173    /// let v: Vec<f32> = (&mut rng).sample_iter(Standard).take(16).collect();
174    ///
175    /// // String:
176    /// let s: String = (&mut rng).sample_iter(Alphanumeric)
177    ///     .take(7)
178    ///     .map(char::from)
179    ///     .collect();
180    ///
181    /// // Combined values
182    /// println!("{:?}", (&mut rng).sample_iter(Standard).take(5)
183    ///                              .collect::<Vec<(f64, bool)>>());
184    ///
185    /// // Dice-rolling:
186    /// let die_range = Uniform::new_inclusive(1, 6);
187    /// let mut roll_die = (&mut rng).sample_iter(die_range);
188    /// while roll_die.next().unwrap() != 6 {
189    ///     println!("Not a 6; rolling again!");
190    /// }
191    /// ```
192    fn sample_iter<T, D>(self, distr: D) -> distributions::DistIter<D, Self, T>
193    where
194        D: Distribution<T>,
195        Self: Sized,
196    {
197        distr.sample_iter(self)
198    }
199
200    /// Fill any type implementing [`Fill`] with random data
201    ///
202    /// The distribution is expected to be uniform with portable results, but
203    /// this cannot be guaranteed for third-party implementations.
204    ///
205    /// This is identical to [`try_fill`] except that it panics on error.
206    ///
207    /// # Example
208    ///
209    /// ```
210    /// use rand::{thread_rng, Rng};
211    ///
212    /// let mut arr = [0i8; 20];
213    /// thread_rng().fill(&mut arr[..]);
214    /// ```
215    ///
216    /// [`fill_bytes`]: RngCore::fill_bytes
217    /// [`try_fill`]: Rng::try_fill
218    fn fill<T: Fill + ?Sized>(&mut self, dest: &mut T) {
219        dest.try_fill(self).unwrap_or_else(|_| panic!("Rng::fill failed"))
220    }
221
222    /// Fill any type implementing [`Fill`] with random data
223    ///
224    /// The distribution is expected to be uniform with portable results, but
225    /// this cannot be guaranteed for third-party implementations.
226    ///
227    /// This is identical to [`fill`] except that it forwards errors.
228    ///
229    /// # Example
230    ///
231    /// ```
232    /// # use rand::Error;
233    /// use rand::{thread_rng, Rng};
234    ///
235    /// # fn try_inner() -> Result<(), Error> {
236    /// let mut arr = [0u64; 4];
237    /// thread_rng().try_fill(&mut arr[..])?;
238    /// # Ok(())
239    /// # }
240    ///
241    /// # try_inner().unwrap()
242    /// ```
243    ///
244    /// [`try_fill_bytes`]: RngCore::try_fill_bytes
245    /// [`fill`]: Rng::fill
246    fn try_fill<T: Fill + ?Sized>(&mut self, dest: &mut T) -> Result<(), Error> {
247        dest.try_fill(self)
248    }
249
250    /// Return a bool with a probability `p` of being true.
251    ///
252    /// See also the [`Bernoulli`] distribution, which may be faster if
253    /// sampling from the same probability repeatedly.
254    ///
255    /// # Example
256    ///
257    /// ```
258    /// use rand::{thread_rng, Rng};
259    ///
260    /// let mut rng = thread_rng();
261    /// println!("{}", rng.gen_bool(1.0 / 3.0));
262    /// ```
263    ///
264    /// # Panics
265    ///
266    /// If `p < 0` or `p > 1`.
267    ///
268    /// [`Bernoulli`]: distributions::Bernoulli
269    #[inline]
270    fn gen_bool(&mut self, p: f64) -> bool {
271        let d = distributions::Bernoulli::new(p).unwrap();
272        self.sample(d)
273    }
274
275    /// Return a bool with a probability of `numerator/denominator` of being
276    /// true. I.e. `gen_ratio(2, 3)` has chance of 2 in 3, or about 67%, of
277    /// returning true. If `numerator == denominator`, then the returned value
278    /// is guaranteed to be `true`. If `numerator == 0`, then the returned
279    /// value is guaranteed to be `false`.
280    ///
281    /// See also the [`Bernoulli`] distribution, which may be faster if
282    /// sampling from the same `numerator` and `denominator` repeatedly.
283    ///
284    /// # Panics
285    ///
286    /// If `denominator == 0` or `numerator > denominator`.
287    ///
288    /// # Example
289    ///
290    /// ```
291    /// use rand::{thread_rng, Rng};
292    ///
293    /// let mut rng = thread_rng();
294    /// println!("{}", rng.gen_ratio(2, 3));
295    /// ```
296    ///
297    /// [`Bernoulli`]: distributions::Bernoulli
298    #[inline]
299    fn gen_ratio(&mut self, numerator: u32, denominator: u32) -> bool {
300        let d = distributions::Bernoulli::from_ratio(numerator, denominator).unwrap();
301        self.sample(d)
302    }
303}
304
305impl<R: RngCore + ?Sized> Rng for R {}
306
307/// Types which may be filled with random data
308///
309/// This trait allows arrays to be efficiently filled with random data.
310///
311/// Implementations are expected to be portable across machines unless
312/// clearly documented otherwise (see the
313/// [Chapter on Portability](https://rust-random.github.io/book/portability.html)).
314pub trait Fill {
315    /// Fill self with random data
316    fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error>;
317}
318
319macro_rules! impl_fill_each {
320    () => {};
321    ($t:ty) => {
322        impl Fill for [$t] {
323            fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> {
324                for elt in self.iter_mut() {
325                    *elt = rng.gen();
326                }
327                Ok(())
328            }
329        }
330    };
331    ($t:ty, $($tt:ty,)*) => {
332        impl_fill_each!($t);
333        impl_fill_each!($($tt,)*);
334    };
335}
336
337impl_fill_each!(bool, char, f32, f64,);
338
339impl Fill for [u8] {
340    fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> {
341        rng.try_fill_bytes(self)
342    }
343}
344
345macro_rules! impl_fill {
346    () => {};
347    ($t:ty) => {
348        impl Fill for [$t] {
349            #[inline(never)] // in micro benchmarks, this improves performance
350            fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> {
351                if self.len() > 0 {
352                    rng.try_fill_bytes(unsafe {
353                        slice::from_raw_parts_mut(self.as_mut_ptr()
354                            as *mut u8,
355                            self.len() * mem::size_of::<$t>()
356                        )
357                    })?;
358                    for x in self {
359                        *x = x.to_le();
360                    }
361                }
362                Ok(())
363            }
364        }
365
366        impl Fill for [Wrapping<$t>] {
367            #[inline(never)]
368            fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> {
369                if self.len() > 0 {
370                    rng.try_fill_bytes(unsafe {
371                        slice::from_raw_parts_mut(self.as_mut_ptr()
372                            as *mut u8,
373                            self.len() * mem::size_of::<$t>()
374                        )
375                    })?;
376                    for x in self {
377                    *x = Wrapping(x.0.to_le());
378                    }
379                }
380                Ok(())
381            }
382        }
383    };
384    ($t:ty, $($tt:ty,)*) => {
385        impl_fill!($t);
386        // TODO: this could replace above impl once Rust #32463 is fixed
387        // impl_fill!(Wrapping<$t>);
388        impl_fill!($($tt,)*);
389    }
390}
391
392impl_fill!(u16, u32, u64, usize, u128,);
393impl_fill!(i8, i16, i32, i64, isize, i128,);
394
395#[cfg_attr(doc_cfg, doc(cfg(feature = "min_const_gen")))]
396#[cfg(feature = "min_const_gen")]
397impl<T, const N: usize> Fill for [T; N]
398where [T]: Fill
399{
400    fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> {
401        self[..].try_fill(rng)
402    }
403}
404
405#[cfg(not(feature = "min_const_gen"))]
406macro_rules! impl_fill_arrays {
407    ($n:expr,) => {};
408    ($n:expr, $N:ident) => {
409        impl<T> Fill for [T; $n] where [T]: Fill {
410            fn try_fill<R: Rng + ?Sized>(&mut self, rng: &mut R) -> Result<(), Error> {
411                self[..].try_fill(rng)
412            }
413        }
414    };
415    ($n:expr, $N:ident, $($NN:ident,)*) => {
416        impl_fill_arrays!($n, $N);
417        impl_fill_arrays!($n - 1, $($NN,)*);
418    };
419    (!div $n:expr,) => {};
420    (!div $n:expr, $N:ident, $($NN:ident,)*) => {
421        impl_fill_arrays!($n, $N);
422        impl_fill_arrays!(!div $n / 2, $($NN,)*);
423    };
424}
425#[cfg(not(feature = "min_const_gen"))]
426#[rustfmt::skip]
427impl_fill_arrays!(32, N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,);
428#[cfg(not(feature = "min_const_gen"))]
429impl_fill_arrays!(!div 4096, N,N,N,N,N,N,N,);
430
431#[cfg(test)]
432mod test {
433    use super::*;
434    use crate::test::rng;
435    use crate::rngs::mock::StepRng;
436    #[cfg(feature = "alloc")] use alloc::boxed::Box;
437
438    #[test]
439    fn test_fill_bytes_default() {
440        let mut r = StepRng::new(0x11_22_33_44_55_66_77_88, 0);
441
442        // check every remainder mod 8, both in small and big vectors.
443        let lengths = [0, 1, 2, 3, 4, 5, 6, 7, 80, 81, 82, 83, 84, 85, 86, 87];
444        for &n in lengths.iter() {
445            let mut buffer = [0u8; 87];
446            let v = &mut buffer[0..n];
447            r.fill_bytes(v);
448
449            // use this to get nicer error messages.
450            for (i, &byte) in v.iter().enumerate() {
451                if byte == 0 {
452                    panic!("byte {} of {} is zero", i, n)
453                }
454            }
455        }
456    }
457
458    #[test]
459    fn test_fill() {
460        let x = 9041086907909331047; // a random u64
461        let mut rng = StepRng::new(x, 0);
462
463        // Convert to byte sequence and back to u64; byte-swap twice if BE.
464        let mut array = [0u64; 2];
465        rng.fill(&mut array[..]);
466        assert_eq!(array, [x, x]);
467        assert_eq!(rng.next_u64(), x);
468
469        // Convert to bytes then u32 in LE order
470        let mut array = [0u32; 2];
471        rng.fill(&mut array[..]);
472        assert_eq!(array, [x as u32, (x >> 32) as u32]);
473        assert_eq!(rng.next_u32(), x as u32);
474
475        // Check equivalence using wrapped arrays
476        let mut warray = [Wrapping(0u32); 2];
477        rng.fill(&mut warray[..]);
478        assert_eq!(array[0], warray[0].0);
479        assert_eq!(array[1], warray[1].0);
480
481        // Check equivalence for generated floats
482        let mut array = [0f32; 2];
483        rng.fill(&mut array);
484        let gen: [f32; 2] = rng.gen();
485        assert_eq!(array, gen);
486    }
487
488    #[test]
489    fn test_fill_empty() {
490        let mut array = [0u32; 0];
491        let mut rng = StepRng::new(0, 1);
492        rng.fill(&mut array);
493        rng.fill(&mut array[..]);
494    }
495
496    #[test]
497    fn test_gen_range_int() {
498        let mut r = rng(101);
499        for _ in 0..1000 {
500            let a = r.gen_range(-4711..17);
501            assert!((-4711..17).contains(&a));
502            let a: i8 = r.gen_range(-3..42);
503            assert!((-3..42).contains(&a));
504            let a: u16 = r.gen_range(10..99);
505            assert!((10..99).contains(&a));
506            let a: i32 = r.gen_range(-100..2000);
507            assert!((-100..2000).contains(&a));
508            let a: u32 = r.gen_range(12..=24);
509            assert!((12..=24).contains(&a));
510
511            assert_eq!(r.gen_range(0u32..1), 0u32);
512            assert_eq!(r.gen_range(-12i64..-11), -12i64);
513            assert_eq!(r.gen_range(3_000_000..3_000_001), 3_000_000);
514        }
515    }
516
517    #[test]
518    fn test_gen_range_float() {
519        let mut r = rng(101);
520        for _ in 0..1000 {
521            let a = r.gen_range(-4.5..1.7);
522            assert!((-4.5..1.7).contains(&a));
523            let a = r.gen_range(-1.1..=-0.3);
524            assert!((-1.1..=-0.3).contains(&a));
525
526            assert_eq!(r.gen_range(0.0f32..=0.0), 0.);
527            assert_eq!(r.gen_range(-11.0..=-11.0), -11.);
528            assert_eq!(r.gen_range(3_000_000.0..=3_000_000.0), 3_000_000.);
529        }
530    }
531
532    #[test]
533    #[should_panic]
534    fn test_gen_range_panic_int() {
535        #![allow(clippy::reversed_empty_ranges)]
536        let mut r = rng(102);
537        r.gen_range(5..-2);
538    }
539
540    #[test]
541    #[should_panic]
542    fn test_gen_range_panic_usize() {
543        #![allow(clippy::reversed_empty_ranges)]
544        let mut r = rng(103);
545        r.gen_range(5..2);
546    }
547
548    #[test]
549    fn test_gen_bool() {
550        #![allow(clippy::bool_assert_comparison)]
551
552        let mut r = rng(105);
553        for _ in 0..5 {
554            assert_eq!(r.gen_bool(0.0), false);
555            assert_eq!(r.gen_bool(1.0), true);
556        }
557    }
558
559    #[test]
560    fn test_rng_trait_object() {
561        use crate::distributions::{Distribution, Standard};
562        let mut rng = rng(109);
563        let mut r = &mut rng as &mut dyn RngCore;
564        r.next_u32();
565        r.gen::<i32>();
566        assert_eq!(r.gen_range(0..1), 0);
567        let _c: u8 = Standard.sample(&mut r);
568    }
569
570    #[test]
571    #[cfg(feature = "alloc")]
572    fn test_rng_boxed_trait() {
573        use crate::distributions::{Distribution, Standard};
574        let rng = rng(110);
575        let mut r = Box::new(rng) as Box<dyn RngCore>;
576        r.next_u32();
577        r.gen::<i32>();
578        assert_eq!(r.gen_range(0..1), 0);
579        let _c: u8 = Standard.sample(&mut r);
580    }
581
582    #[test]
583    #[cfg_attr(miri, ignore)] // Miri is too slow
584    fn test_gen_ratio_average() {
585        const NUM: u32 = 3;
586        const DENOM: u32 = 10;
587        const N: u32 = 100_000;
588
589        let mut sum: u32 = 0;
590        let mut rng = rng(111);
591        for _ in 0..N {
592            if rng.gen_ratio(NUM, DENOM) {
593                sum += 1;
594            }
595        }
596        // Have Binomial(N, NUM/DENOM) distribution
597        let expected = (NUM * N) / DENOM; // exact integer
598        assert!(((sum - expected) as i32).abs() < 500);
599    }
600}