rand/seq/
index.rs

1// Copyright 2018 Developers of the Rand project.
2//
3// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
4// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
5// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
6// option. This file may not be copied, modified, or distributed
7// except according to those terms.
8
9//! Low-level API for sampling indices
10
11#[cfg(feature = "alloc")] use core::slice;
12
13#[cfg(feature = "alloc")] use alloc::vec::{self, Vec};
14// BTreeMap is not as fast in tests, but better than nothing.
15#[cfg(all(feature = "alloc", not(feature = "std")))]
16use alloc::collections::BTreeSet;
17#[cfg(feature = "std")] use std::collections::HashSet;
18
19#[cfg(feature = "std")]
20use crate::distributions::WeightedError;
21
22#[cfg(feature = "alloc")]
23use crate::{Rng, distributions::{uniform::SampleUniform, Distribution, Uniform}};
24
25#[cfg(feature = "serde1")]
26use serde::{Serialize, Deserialize};
27
28/// A vector of indices.
29///
30/// Multiple internal representations are possible.
31#[derive(Clone, Debug)]
32#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
33pub enum IndexVec {
34    #[doc(hidden)]
35    U32(Vec<u32>),
36    #[doc(hidden)]
37    USize(Vec<usize>),
38}
39
40impl IndexVec {
41    /// Returns the number of indices
42    #[inline]
43    pub fn len(&self) -> usize {
44        match *self {
45            IndexVec::U32(ref v) => v.len(),
46            IndexVec::USize(ref v) => v.len(),
47        }
48    }
49
50    /// Returns `true` if the length is 0.
51    #[inline]
52    pub fn is_empty(&self) -> bool {
53        match *self {
54            IndexVec::U32(ref v) => v.is_empty(),
55            IndexVec::USize(ref v) => v.is_empty(),
56        }
57    }
58
59    /// Return the value at the given `index`.
60    ///
61    /// (Note: we cannot implement [`std::ops::Index`] because of lifetime
62    /// restrictions.)
63    #[inline]
64    pub fn index(&self, index: usize) -> usize {
65        match *self {
66            IndexVec::U32(ref v) => v[index] as usize,
67            IndexVec::USize(ref v) => v[index],
68        }
69    }
70
71    /// Return result as a `Vec<usize>`. Conversion may or may not be trivial.
72    #[inline]
73    pub fn into_vec(self) -> Vec<usize> {
74        match self {
75            IndexVec::U32(v) => v.into_iter().map(|i| i as usize).collect(),
76            IndexVec::USize(v) => v,
77        }
78    }
79
80    /// Iterate over the indices as a sequence of `usize` values
81    #[inline]
82    pub fn iter(&self) -> IndexVecIter<'_> {
83        match *self {
84            IndexVec::U32(ref v) => IndexVecIter::U32(v.iter()),
85            IndexVec::USize(ref v) => IndexVecIter::USize(v.iter()),
86        }
87    }
88}
89
90impl IntoIterator for IndexVec {
91    type Item = usize;
92    type IntoIter = IndexVecIntoIter;
93
94    /// Convert into an iterator over the indices as a sequence of `usize` values
95    #[inline]
96    fn into_iter(self) -> IndexVecIntoIter {
97        match self {
98            IndexVec::U32(v) => IndexVecIntoIter::U32(v.into_iter()),
99            IndexVec::USize(v) => IndexVecIntoIter::USize(v.into_iter()),
100        }
101    }
102}
103
104impl PartialEq for IndexVec {
105    fn eq(&self, other: &IndexVec) -> bool {
106        use self::IndexVec::*;
107        match (self, other) {
108            (&U32(ref v1), &U32(ref v2)) => v1 == v2,
109            (&USize(ref v1), &USize(ref v2)) => v1 == v2,
110            (&U32(ref v1), &USize(ref v2)) => {
111                (v1.len() == v2.len()) && (v1.iter().zip(v2.iter()).all(|(x, y)| *x as usize == *y))
112            }
113            (&USize(ref v1), &U32(ref v2)) => {
114                (v1.len() == v2.len()) && (v1.iter().zip(v2.iter()).all(|(x, y)| *x == *y as usize))
115            }
116        }
117    }
118}
119
120impl From<Vec<u32>> for IndexVec {
121    #[inline]
122    fn from(v: Vec<u32>) -> Self {
123        IndexVec::U32(v)
124    }
125}
126
127impl From<Vec<usize>> for IndexVec {
128    #[inline]
129    fn from(v: Vec<usize>) -> Self {
130        IndexVec::USize(v)
131    }
132}
133
134/// Return type of `IndexVec::iter`.
135#[derive(Debug)]
136pub enum IndexVecIter<'a> {
137    #[doc(hidden)]
138    U32(slice::Iter<'a, u32>),
139    #[doc(hidden)]
140    USize(slice::Iter<'a, usize>),
141}
142
143impl<'a> Iterator for IndexVecIter<'a> {
144    type Item = usize;
145
146    #[inline]
147    fn next(&mut self) -> Option<usize> {
148        use self::IndexVecIter::*;
149        match *self {
150            U32(ref mut iter) => iter.next().map(|i| *i as usize),
151            USize(ref mut iter) => iter.next().cloned(),
152        }
153    }
154
155    #[inline]
156    fn size_hint(&self) -> (usize, Option<usize>) {
157        match *self {
158            IndexVecIter::U32(ref v) => v.size_hint(),
159            IndexVecIter::USize(ref v) => v.size_hint(),
160        }
161    }
162}
163
164impl<'a> ExactSizeIterator for IndexVecIter<'a> {}
165
166/// Return type of `IndexVec::into_iter`.
167#[derive(Clone, Debug)]
168pub enum IndexVecIntoIter {
169    #[doc(hidden)]
170    U32(vec::IntoIter<u32>),
171    #[doc(hidden)]
172    USize(vec::IntoIter<usize>),
173}
174
175impl Iterator for IndexVecIntoIter {
176    type Item = usize;
177
178    #[inline]
179    fn next(&mut self) -> Option<Self::Item> {
180        use self::IndexVecIntoIter::*;
181        match *self {
182            U32(ref mut v) => v.next().map(|i| i as usize),
183            USize(ref mut v) => v.next(),
184        }
185    }
186
187    #[inline]
188    fn size_hint(&self) -> (usize, Option<usize>) {
189        use self::IndexVecIntoIter::*;
190        match *self {
191            U32(ref v) => v.size_hint(),
192            USize(ref v) => v.size_hint(),
193        }
194    }
195}
196
197impl ExactSizeIterator for IndexVecIntoIter {}
198
199
200/// Randomly sample exactly `amount` distinct indices from `0..length`, and
201/// return them in random order (fully shuffled).
202///
203/// This method is used internally by the slice sampling methods, but it can
204/// sometimes be useful to have the indices themselves so this is provided as
205/// an alternative.
206///
207/// The implementation used is not specified; we automatically select the
208/// fastest available algorithm for the `length` and `amount` parameters
209/// (based on detailed profiling on an Intel Haswell CPU). Roughly speaking,
210/// complexity is `O(amount)`, except that when `amount` is small, performance
211/// is closer to `O(amount^2)`, and when `length` is close to `amount` then
212/// `O(length)`.
213///
214/// Note that performance is significantly better over `u32` indices than over
215/// `u64` indices. Because of this we hide the underlying type behind an
216/// abstraction, `IndexVec`.
217///
218/// If an allocation-free `no_std` function is required, it is suggested
219/// to adapt the internal `sample_floyd` implementation.
220///
221/// Panics if `amount > length`.
222pub fn sample<R>(rng: &mut R, length: usize, amount: usize) -> IndexVec
223where R: Rng + ?Sized {
224    if amount > length {
225        panic!("`amount` of samples must be less than or equal to `length`");
226    }
227    if length > (::core::u32::MAX as usize) {
228        // We never want to use inplace here, but could use floyd's alg
229        // Lazy version: always use the cache alg.
230        return sample_rejection(rng, length, amount);
231    }
232    let amount = amount as u32;
233    let length = length as u32;
234
235    // Choice of algorithm here depends on both length and amount. See:
236    // https://github.com/rust-random/rand/pull/479
237    // We do some calculations with f32. Accuracy is not very important.
238
239    if amount < 163 {
240        const C: [[f32; 2]; 2] = [[1.6, 8.0 / 45.0], [10.0, 70.0 / 9.0]];
241        let j = if length < 500_000 { 0 } else { 1 };
242        let amount_fp = amount as f32;
243        let m4 = C[0][j] * amount_fp;
244        // Short-cut: when amount < 12, floyd's is always faster
245        if amount > 11 && (length as f32) < (C[1][j] + m4) * amount_fp {
246            sample_inplace(rng, length, amount)
247        } else {
248            sample_floyd(rng, length, amount)
249        }
250    } else {
251        const C: [f32; 2] = [270.0, 330.0 / 9.0];
252        let j = if length < 500_000 { 0 } else { 1 };
253        if (length as f32) < C[j] * (amount as f32) {
254            sample_inplace(rng, length, amount)
255        } else {
256            sample_rejection(rng, length, amount)
257        }
258    }
259}
260
261/// Randomly sample exactly `amount` distinct indices from `0..length`, and
262/// return them in an arbitrary order (there is no guarantee of shuffling or
263/// ordering). The weights are to be provided by the input function `weights`,
264/// which will be called once for each index.
265///
266/// This method is used internally by the slice sampling methods, but it can
267/// sometimes be useful to have the indices themselves so this is provided as
268/// an alternative.
269///
270/// This implementation uses `O(length + amount)` space and `O(length)` time
271/// if the "nightly" feature is enabled, or `O(length)` space and
272/// `O(length + amount * log length)` time otherwise.
273///
274/// Panics if `amount > length`.
275#[cfg(feature = "std")]
276#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
277pub fn sample_weighted<R, F, X>(
278    rng: &mut R, length: usize, weight: F, amount: usize,
279) -> Result<IndexVec, WeightedError>
280where
281    R: Rng + ?Sized,
282    F: Fn(usize) -> X,
283    X: Into<f64>,
284{
285    if length > (core::u32::MAX as usize) {
286        sample_efraimidis_spirakis(rng, length, weight, amount)
287    } else {
288        assert!(amount <= core::u32::MAX as usize);
289        let amount = amount as u32;
290        let length = length as u32;
291        sample_efraimidis_spirakis(rng, length, weight, amount)
292    }
293}
294
295
296/// Randomly sample exactly `amount` distinct indices from `0..length`, and
297/// return them in an arbitrary order (there is no guarantee of shuffling or
298/// ordering). The weights are to be provided by the input function `weights`,
299/// which will be called once for each index.
300///
301/// This implementation uses the algorithm described by Efraimidis and Spirakis
302/// in this paper: https://doi.org/10.1016/j.ipl.2005.11.003
303/// It uses `O(length + amount)` space and `O(length)` time if the
304/// "nightly" feature is enabled, or `O(length)` space and `O(length
305/// + amount * log length)` time otherwise.
306///
307/// Panics if `amount > length`.
308#[cfg(feature = "std")]
309fn sample_efraimidis_spirakis<R, F, X, N>(
310    rng: &mut R, length: N, weight: F, amount: N,
311) -> Result<IndexVec, WeightedError>
312where
313    R: Rng + ?Sized,
314    F: Fn(usize) -> X,
315    X: Into<f64>,
316    N: UInt,
317    IndexVec: From<Vec<N>>,
318{
319    if amount == N::zero() {
320        return Ok(IndexVec::U32(Vec::new()));
321    }
322
323    if amount > length {
324        panic!("`amount` of samples must be less than or equal to `length`");
325    }
326
327    struct Element<N> {
328        index: N,
329        key: f64,
330    }
331    impl<N> PartialOrd for Element<N> {
332        fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
333            self.key.partial_cmp(&other.key)
334        }
335    }
336    impl<N> Ord for Element<N> {
337        fn cmp(&self, other: &Self) -> core::cmp::Ordering {
338             // partial_cmp will always produce a value,
339             // because we check that the weights are not nan
340            self.partial_cmp(other).unwrap()
341        }
342    }
343    impl<N> PartialEq for Element<N> {
344        fn eq(&self, other: &Self) -> bool {
345            self.key == other.key
346        }
347    }
348    impl<N> Eq for Element<N> {}
349
350    #[cfg(feature = "nightly")]
351    {
352        let mut candidates = Vec::with_capacity(length.as_usize());
353        let mut index = N::zero();
354        while index < length {
355            let weight = weight(index.as_usize()).into();
356            if !(weight >= 0.) {
357                return Err(WeightedError::InvalidWeight);
358            }
359
360            let key = rng.gen::<f64>().powf(1.0 / weight);
361            candidates.push(Element { index, key });
362
363            index += N::one();
364        }
365
366        // Partially sort the array to find the `amount` elements with the greatest
367        // keys. Do this by using `select_nth_unstable` to put the elements with
368        // the *smallest* keys at the beginning of the list in `O(n)` time, which
369        // provides equivalent information about the elements with the *greatest* keys.
370        let (_, mid, greater)
371            = candidates.select_nth_unstable(length.as_usize() - amount.as_usize());
372
373        let mut result: Vec<N> = Vec::with_capacity(amount.as_usize());
374        result.push(mid.index);
375        for element in greater {
376            result.push(element.index);
377        }
378        Ok(IndexVec::from(result))
379    }
380
381    #[cfg(not(feature = "nightly"))]
382    {
383        use alloc::collections::BinaryHeap;
384
385        // Partially sort the array such that the `amount` elements with the largest
386        // keys are first using a binary max heap.
387        let mut candidates = BinaryHeap::with_capacity(length.as_usize());
388        let mut index = N::zero();
389        while index < length {
390            let weight = weight(index.as_usize()).into();
391            if !(weight >= 0.) {
392                return Err(WeightedError::InvalidWeight);
393            }
394
395            let key = rng.gen::<f64>().powf(1.0 / weight);
396            candidates.push(Element { index, key });
397
398            index += N::one();
399        }
400
401        let mut result: Vec<N> = Vec::with_capacity(amount.as_usize());
402        while result.len() < amount.as_usize() {
403            result.push(candidates.pop().unwrap().index);
404        }
405        Ok(IndexVec::from(result))
406    }
407}
408
409/// Randomly sample exactly `amount` indices from `0..length`, using Floyd's
410/// combination algorithm.
411///
412/// The output values are fully shuffled. (Overhead is under 50%.)
413///
414/// This implementation uses `O(amount)` memory and `O(amount^2)` time.
415fn sample_floyd<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec
416where R: Rng + ?Sized {
417    // For small amount we use Floyd's fully-shuffled variant. For larger
418    // amounts this is slow due to Vec::insert performance, so we shuffle
419    // afterwards. Benchmarks show little overhead from extra logic.
420    let floyd_shuffle = amount < 50;
421
422    debug_assert!(amount <= length);
423    let mut indices = Vec::with_capacity(amount as usize);
424    for j in length - amount..length {
425        let t = rng.gen_range(0..=j);
426        if floyd_shuffle {
427            if let Some(pos) = indices.iter().position(|&x| x == t) {
428                indices.insert(pos, j);
429                continue;
430            }
431        } else if indices.contains(&t) {
432            indices.push(j);
433            continue;
434        }
435        indices.push(t);
436    }
437    if !floyd_shuffle {
438        // Reimplement SliceRandom::shuffle with smaller indices
439        for i in (1..amount).rev() {
440            // invariant: elements with index > i have been locked in place.
441            indices.swap(i as usize, rng.gen_range(0..=i) as usize);
442        }
443    }
444    IndexVec::from(indices)
445}
446
447/// Randomly sample exactly `amount` indices from `0..length`, using an inplace
448/// partial Fisher-Yates method.
449/// Sample an amount of indices using an inplace partial fisher yates method.
450///
451/// This allocates the entire `length` of indices and randomizes only the first `amount`.
452/// It then truncates to `amount` and returns.
453///
454/// This method is not appropriate for large `length` and potentially uses a lot
455/// of memory; because of this we only implement for `u32` index (which improves
456/// performance in all cases).
457///
458/// Set-up is `O(length)` time and memory and shuffling is `O(amount)` time.
459fn sample_inplace<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec
460where R: Rng + ?Sized {
461    debug_assert!(amount <= length);
462    let mut indices: Vec<u32> = Vec::with_capacity(length as usize);
463    indices.extend(0..length);
464    for i in 0..amount {
465        let j: u32 = rng.gen_range(i..length);
466        indices.swap(i as usize, j as usize);
467    }
468    indices.truncate(amount as usize);
469    debug_assert_eq!(indices.len(), amount as usize);
470    IndexVec::from(indices)
471}
472
473trait UInt: Copy + PartialOrd + Ord + PartialEq + Eq + SampleUniform
474    + core::hash::Hash + core::ops::AddAssign {
475    fn zero() -> Self;
476    fn one() -> Self;
477    fn as_usize(self) -> usize;
478}
479impl UInt for u32 {
480    #[inline]
481    fn zero() -> Self {
482        0
483    }
484
485    #[inline]
486    fn one() -> Self {
487        1
488    }
489
490    #[inline]
491    fn as_usize(self) -> usize {
492        self as usize
493    }
494}
495impl UInt for usize {
496    #[inline]
497    fn zero() -> Self {
498        0
499    }
500
501    #[inline]
502    fn one() -> Self {
503        1
504    }
505
506    #[inline]
507    fn as_usize(self) -> usize {
508        self
509    }
510}
511
512/// Randomly sample exactly `amount` indices from `0..length`, using rejection
513/// sampling.
514///
515/// Since `amount <<< length` there is a low chance of a random sample in
516/// `0..length` being a duplicate. We test for duplicates and resample where
517/// necessary. The algorithm is `O(amount)` time and memory.
518///
519/// This function  is generic over X primarily so that results are value-stable
520/// over 32-bit and 64-bit platforms.
521fn sample_rejection<X: UInt, R>(rng: &mut R, length: X, amount: X) -> IndexVec
522where
523    R: Rng + ?Sized,
524    IndexVec: From<Vec<X>>,
525{
526    debug_assert!(amount < length);
527    #[cfg(feature = "std")]
528    let mut cache = HashSet::with_capacity(amount.as_usize());
529    #[cfg(not(feature = "std"))]
530    let mut cache = BTreeSet::new();
531    let distr = Uniform::new(X::zero(), length);
532    let mut indices = Vec::with_capacity(amount.as_usize());
533    for _ in 0..amount.as_usize() {
534        let mut pos = distr.sample(rng);
535        while !cache.insert(pos) {
536            pos = distr.sample(rng);
537        }
538        indices.push(pos);
539    }
540
541    debug_assert_eq!(indices.len(), amount.as_usize());
542    IndexVec::from(indices)
543}
544
545#[cfg(test)]
546mod test {
547    use super::*;
548
549    #[test]
550    #[cfg(feature = "serde1")]
551    fn test_serialization_index_vec() {
552        let some_index_vec = IndexVec::from(vec![254_usize, 234, 2, 1]);
553        let de_some_index_vec: IndexVec = bincode::deserialize(&bincode::serialize(&some_index_vec).unwrap()).unwrap();
554        match (some_index_vec, de_some_index_vec) {
555            (IndexVec::U32(a), IndexVec::U32(b)) => {
556                assert_eq!(a, b);
557            },
558            (IndexVec::USize(a), IndexVec::USize(b)) => {
559                assert_eq!(a, b);
560            },
561            _ => {panic!("failed to seralize/deserialize `IndexVec`")}
562        }
563    }
564
565    #[cfg(feature = "alloc")] use alloc::vec;
566
567    #[test]
568    fn test_sample_boundaries() {
569        let mut r = crate::test::rng(404);
570
571        assert_eq!(sample_inplace(&mut r, 0, 0).len(), 0);
572        assert_eq!(sample_inplace(&mut r, 1, 0).len(), 0);
573        assert_eq!(sample_inplace(&mut r, 1, 1).into_vec(), vec![0]);
574
575        assert_eq!(sample_rejection(&mut r, 1u32, 0).len(), 0);
576
577        assert_eq!(sample_floyd(&mut r, 0, 0).len(), 0);
578        assert_eq!(sample_floyd(&mut r, 1, 0).len(), 0);
579        assert_eq!(sample_floyd(&mut r, 1, 1).into_vec(), vec![0]);
580
581        // These algorithms should be fast with big numbers. Test average.
582        let sum: usize = sample_rejection(&mut r, 1 << 25, 10u32).into_iter().sum();
583        assert!(1 << 25 < sum && sum < (1 << 25) * 25);
584
585        let sum: usize = sample_floyd(&mut r, 1 << 25, 10).into_iter().sum();
586        assert!(1 << 25 < sum && sum < (1 << 25) * 25);
587    }
588
589    #[test]
590    #[cfg_attr(miri, ignore)] // Miri is too slow
591    fn test_sample_alg() {
592        let seed_rng = crate::test::rng;
593
594        // We can't test which algorithm is used directly, but Floyd's alg
595        // should produce different results from the others. (Also, `inplace`
596        // and `cached` currently use different sizes thus produce different results.)
597
598        // A small length and relatively large amount should use inplace
599        let (length, amount): (usize, usize) = (100, 50);
600        let v1 = sample(&mut seed_rng(420), length, amount);
601        let v2 = sample_inplace(&mut seed_rng(420), length as u32, amount as u32);
602        assert!(v1.iter().all(|e| e < length));
603        assert_eq!(v1, v2);
604
605        // Test Floyd's alg does produce different results
606        let v3 = sample_floyd(&mut seed_rng(420), length as u32, amount as u32);
607        assert!(v1 != v3);
608
609        // A large length and small amount should use Floyd
610        let (length, amount): (usize, usize) = (1 << 20, 50);
611        let v1 = sample(&mut seed_rng(421), length, amount);
612        let v2 = sample_floyd(&mut seed_rng(421), length as u32, amount as u32);
613        assert!(v1.iter().all(|e| e < length));
614        assert_eq!(v1, v2);
615
616        // A large length and larger amount should use cache
617        let (length, amount): (usize, usize) = (1 << 20, 600);
618        let v1 = sample(&mut seed_rng(422), length, amount);
619        let v2 = sample_rejection(&mut seed_rng(422), length as u32, amount as u32);
620        assert!(v1.iter().all(|e| e < length));
621        assert_eq!(v1, v2);
622    }
623
624    #[cfg(feature = "std")]
625    #[test]
626    fn test_sample_weighted() {
627        let seed_rng = crate::test::rng;
628        for &(amount, len) in &[(0, 10), (5, 10), (10, 10)] {
629            let v = sample_weighted(&mut seed_rng(423), len, |i| i as f64, amount).unwrap();
630            match v {
631                IndexVec::U32(mut indices) => {
632                    assert_eq!(indices.len(), amount);
633                    indices.sort_unstable();
634                    indices.dedup();
635                    assert_eq!(indices.len(), amount);
636                    for &i in &indices {
637                        assert!((i as usize) < len);
638                    }
639                },
640                IndexVec::USize(_) => panic!("expected `IndexVec::U32`"),
641            }
642        }
643    }
644
645    #[test]
646    fn value_stability_sample() {
647        let do_test = |length, amount, values: &[u32]| {
648            let mut buf = [0u32; 8];
649            let mut rng = crate::test::rng(410);
650
651            let res = sample(&mut rng, length, amount);
652            let len = res.len().min(buf.len());
653            for (x, y) in res.into_iter().zip(buf.iter_mut()) {
654                *y = x as u32;
655            }
656            assert_eq!(
657                &buf[0..len],
658                values,
659                "failed sampling {}, {}",
660                length,
661                amount
662            );
663        };
664
665        do_test(10, 6, &[8, 0, 3, 5, 9, 6]); // floyd
666        do_test(25, 10, &[18, 15, 14, 9, 0, 13, 5, 24]); // floyd
667        do_test(300, 8, &[30, 283, 150, 1, 73, 13, 285, 35]); // floyd
668        do_test(300, 80, &[31, 289, 248, 154, 5, 78, 19, 286]); // inplace
669        do_test(300, 180, &[31, 289, 248, 154, 5, 78, 19, 286]); // inplace
670
671        do_test(1_000_000, 8, &[
672            103717, 963485, 826422, 509101, 736394, 807035, 5327, 632573,
673        ]); // floyd
674        do_test(1_000_000, 180, &[
675            103718, 963490, 826426, 509103, 736396, 807036, 5327, 632573,
676        ]); // rejection
677    }
678}