rand/seq/
mod.rs

1// Copyright 2018 Developers of the Rand project.
2//
3// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
4// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
5// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
6// option. This file may not be copied, modified, or distributed
7// except according to those terms.
8
9//! Sequence-related functionality
10//!
11//! This module provides:
12//!
13//! *   [`SliceRandom`] slice sampling and mutation
14//! *   [`IteratorRandom`] iterator sampling
15//! *   [`index::sample`] low-level API to choose multiple indices from
16//!     `0..length`
17//!
18//! Also see:
19//!
20//! *   [`crate::distributions::WeightedIndex`] distribution which provides
21//!     weighted index sampling.
22//!
23//! In order to make results reproducible across 32-64 bit architectures, all
24//! `usize` indices are sampled as a `u32` where possible (also providing a
25//! small performance boost in some cases).
26
27
28#[cfg(feature = "alloc")]
29#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
30pub mod index;
31
32#[cfg(feature = "alloc")] use core::ops::Index;
33
34#[cfg(feature = "alloc")] use alloc::vec::Vec;
35
36#[cfg(feature = "alloc")]
37use crate::distributions::uniform::{SampleBorrow, SampleUniform};
38#[cfg(feature = "alloc")] use crate::distributions::WeightedError;
39use crate::Rng;
40
41/// Extension trait on slices, providing random mutation and sampling methods.
42///
43/// This trait is implemented on all `[T]` slice types, providing several
44/// methods for choosing and shuffling elements. You must `use` this trait:
45///
46/// ```
47/// use rand::seq::SliceRandom;
48///
49/// let mut rng = rand::thread_rng();
50/// let mut bytes = "Hello, random!".to_string().into_bytes();
51/// bytes.shuffle(&mut rng);
52/// let str = String::from_utf8(bytes).unwrap();
53/// println!("{}", str);
54/// ```
55/// Example output (non-deterministic):
56/// ```none
57/// l,nmroHado !le
58/// ```
59pub trait SliceRandom {
60    /// The element type.
61    type Item;
62
63    /// Returns a reference to one random element of the slice, or `None` if the
64    /// slice is empty.
65    ///
66    /// For slices, complexity is `O(1)`.
67    ///
68    /// # Example
69    ///
70    /// ```
71    /// use rand::thread_rng;
72    /// use rand::seq::SliceRandom;
73    ///
74    /// let choices = [1, 2, 4, 8, 16, 32];
75    /// let mut rng = thread_rng();
76    /// println!("{:?}", choices.choose(&mut rng));
77    /// assert_eq!(choices[..0].choose(&mut rng), None);
78    /// ```
79    fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item>
80    where R: Rng + ?Sized;
81
82    /// Returns a mutable reference to one random element of the slice, or
83    /// `None` if the slice is empty.
84    ///
85    /// For slices, complexity is `O(1)`.
86    fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item>
87    where R: Rng + ?Sized;
88
89    /// Chooses `amount` elements from the slice at random, without repetition,
90    /// and in random order. The returned iterator is appropriate both for
91    /// collection into a `Vec` and filling an existing buffer (see example).
92    ///
93    /// In case this API is not sufficiently flexible, use [`index::sample`].
94    ///
95    /// For slices, complexity is the same as [`index::sample`].
96    ///
97    /// # Example
98    /// ```
99    /// use rand::seq::SliceRandom;
100    ///
101    /// let mut rng = &mut rand::thread_rng();
102    /// let sample = "Hello, audience!".as_bytes();
103    ///
104    /// // collect the results into a vector:
105    /// let v: Vec<u8> = sample.choose_multiple(&mut rng, 3).cloned().collect();
106    ///
107    /// // store in a buffer:
108    /// let mut buf = [0u8; 5];
109    /// for (b, slot) in sample.choose_multiple(&mut rng, buf.len()).zip(buf.iter_mut()) {
110    ///     *slot = *b;
111    /// }
112    /// ```
113    #[cfg(feature = "alloc")]
114    #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
115    fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Item>
116    where R: Rng + ?Sized;
117
118    /// Similar to [`choose`], but where the likelihood of each outcome may be
119    /// specified.
120    ///
121    /// The specified function `weight` maps each item `x` to a relative
122    /// likelihood `weight(x)`. The probability of each item being selected is
123    /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
124    ///
125    /// For slices of length `n`, complexity is `O(n)`.
126    /// See also [`choose_weighted_mut`], [`distributions::weighted`].
127    ///
128    /// # Example
129    ///
130    /// ```
131    /// use rand::prelude::*;
132    ///
133    /// let choices = [('a', 2), ('b', 1), ('c', 1)];
134    /// let mut rng = thread_rng();
135    /// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c'
136    /// println!("{:?}", choices.choose_weighted(&mut rng, |item| item.1).unwrap().0);
137    /// ```
138    /// [`choose`]: SliceRandom::choose
139    /// [`choose_weighted_mut`]: SliceRandom::choose_weighted_mut
140    /// [`distributions::weighted`]: crate::distributions::weighted
141    #[cfg(feature = "alloc")]
142    #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
143    fn choose_weighted<R, F, B, X>(
144        &self, rng: &mut R, weight: F,
145    ) -> Result<&Self::Item, WeightedError>
146    where
147        R: Rng + ?Sized,
148        F: Fn(&Self::Item) -> B,
149        B: SampleBorrow<X>,
150        X: SampleUniform
151            + for<'a> ::core::ops::AddAssign<&'a X>
152            + ::core::cmp::PartialOrd<X>
153            + Clone
154            + Default;
155
156    /// Similar to [`choose_mut`], but where the likelihood of each outcome may
157    /// be specified.
158    ///
159    /// The specified function `weight` maps each item `x` to a relative
160    /// likelihood `weight(x)`. The probability of each item being selected is
161    /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
162    ///
163    /// For slices of length `n`, complexity is `O(n)`.
164    /// See also [`choose_weighted`], [`distributions::weighted`].
165    ///
166    /// [`choose_mut`]: SliceRandom::choose_mut
167    /// [`choose_weighted`]: SliceRandom::choose_weighted
168    /// [`distributions::weighted`]: crate::distributions::weighted
169    #[cfg(feature = "alloc")]
170    #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
171    fn choose_weighted_mut<R, F, B, X>(
172        &mut self, rng: &mut R, weight: F,
173    ) -> Result<&mut Self::Item, WeightedError>
174    where
175        R: Rng + ?Sized,
176        F: Fn(&Self::Item) -> B,
177        B: SampleBorrow<X>,
178        X: SampleUniform
179            + for<'a> ::core::ops::AddAssign<&'a X>
180            + ::core::cmp::PartialOrd<X>
181            + Clone
182            + Default;
183
184    /// Similar to [`choose_multiple`], but where the likelihood of each element's
185    /// inclusion in the output may be specified. The elements are returned in an
186    /// arbitrary, unspecified order.
187    ///
188    /// The specified function `weight` maps each item `x` to a relative
189    /// likelihood `weight(x)`. The probability of each item being selected is
190    /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
191    ///
192    /// If all of the weights are equal, even if they are all zero, each element has
193    /// an equal likelihood of being selected.
194    ///
195    /// The complexity of this method depends on the feature `partition_at_index`.
196    /// If the feature is enabled, then for slices of length `n`, the complexity
197    /// is `O(n)` space and `O(n)` time. Otherwise, the complexity is `O(n)` space and
198    /// `O(n * log amount)` time.
199    ///
200    /// # Example
201    ///
202    /// ```
203    /// use rand::prelude::*;
204    ///
205    /// let choices = [('a', 2), ('b', 1), ('c', 1)];
206    /// let mut rng = thread_rng();
207    /// // First Draw * Second Draw = total odds
208    /// // -----------------------
209    /// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'b']` in some order.
210    /// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'c']` in some order.
211    /// // (25% * 33%) + (25% * 33%) = 16.6% chance that the output is `['b', 'c']` in some order.
212    /// println!("{:?}", choices.choose_multiple_weighted(&mut rng, 2, |item| item.1).unwrap().collect::<Vec<_>>());
213    /// ```
214    /// [`choose_multiple`]: SliceRandom::choose_multiple
215    //
216    // Note: this is feature-gated on std due to usage of f64::powf.
217    // If necessary, we may use alloc+libm as an alternative (see PR #1089).
218    #[cfg(feature = "std")]
219    #[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
220    fn choose_multiple_weighted<R, F, X>(
221        &self, rng: &mut R, amount: usize, weight: F,
222    ) -> Result<SliceChooseIter<Self, Self::Item>, WeightedError>
223    where
224        R: Rng + ?Sized,
225        F: Fn(&Self::Item) -> X,
226        X: Into<f64>;
227
228    /// Shuffle a mutable slice in place.
229    ///
230    /// For slices of length `n`, complexity is `O(n)`.
231    ///
232    /// # Example
233    ///
234    /// ```
235    /// use rand::seq::SliceRandom;
236    /// use rand::thread_rng;
237    ///
238    /// let mut rng = thread_rng();
239    /// let mut y = [1, 2, 3, 4, 5];
240    /// println!("Unshuffled: {:?}", y);
241    /// y.shuffle(&mut rng);
242    /// println!("Shuffled:   {:?}", y);
243    /// ```
244    fn shuffle<R>(&mut self, rng: &mut R)
245    where R: Rng + ?Sized;
246
247    /// Shuffle a slice in place, but exit early.
248    ///
249    /// Returns two mutable slices from the source slice. The first contains
250    /// `amount` elements randomly permuted. The second has the remaining
251    /// elements that are not fully shuffled.
252    ///
253    /// This is an efficient method to select `amount` elements at random from
254    /// the slice, provided the slice may be mutated.
255    ///
256    /// If you only need to choose elements randomly and `amount > self.len()/2`
257    /// then you may improve performance by taking
258    /// `amount = values.len() - amount` and using only the second slice.
259    ///
260    /// If `amount` is greater than the number of elements in the slice, this
261    /// will perform a full shuffle.
262    ///
263    /// For slices, complexity is `O(m)` where `m = amount`.
264    fn partial_shuffle<R>(
265        &mut self, rng: &mut R, amount: usize,
266    ) -> (&mut [Self::Item], &mut [Self::Item])
267    where R: Rng + ?Sized;
268}
269
270/// Extension trait on iterators, providing random sampling methods.
271///
272/// This trait is implemented on all iterators `I` where `I: Iterator + Sized`
273/// and provides methods for
274/// choosing one or more elements. You must `use` this trait:
275///
276/// ```
277/// use rand::seq::IteratorRandom;
278///
279/// let mut rng = rand::thread_rng();
280///
281/// let faces = "πŸ˜€πŸ˜ŽπŸ˜πŸ˜•πŸ˜ πŸ˜’";
282/// println!("I am {}!", faces.chars().choose(&mut rng).unwrap());
283/// ```
284/// Example output (non-deterministic):
285/// ```none
286/// I am πŸ˜€!
287/// ```
288pub trait IteratorRandom: Iterator + Sized {
289    /// Choose one element at random from the iterator.
290    ///
291    /// Returns `None` if and only if the iterator is empty.
292    ///
293    /// This method uses [`Iterator::size_hint`] for optimisation. With an
294    /// accurate hint and where [`Iterator::nth`] is a constant-time operation
295    /// this method can offer `O(1)` performance. Where no size hint is
296    /// available, complexity is `O(n)` where `n` is the iterator length.
297    /// Partial hints (where `lower > 0`) also improve performance.
298    ///
299    /// Note that the output values and the number of RNG samples used
300    /// depends on size hints. In particular, `Iterator` combinators that don't
301    /// change the values yielded but change the size hints may result in
302    /// `choose` returning different elements. If you want consistent results
303    /// and RNG usage consider using [`IteratorRandom::choose_stable`].
304    fn choose<R>(mut self, rng: &mut R) -> Option<Self::Item>
305    where R: Rng + ?Sized {
306        let (mut lower, mut upper) = self.size_hint();
307        let mut consumed = 0;
308        let mut result = None;
309
310        // Handling for this condition outside the loop allows the optimizer to eliminate the loop
311        // when the Iterator is an ExactSizeIterator. This has a large performance impact on e.g.
312        // seq_iter_choose_from_1000.
313        if upper == Some(lower) {
314            return if lower == 0 {
315                None
316            } else {
317                self.nth(gen_index(rng, lower))
318            };
319        }
320
321        // Continue until the iterator is exhausted
322        loop {
323            if lower > 1 {
324                let ix = gen_index(rng, lower + consumed);
325                let skip = if ix < lower {
326                    result = self.nth(ix);
327                    lower - (ix + 1)
328                } else {
329                    lower
330                };
331                if upper == Some(lower) {
332                    return result;
333                }
334                consumed += lower;
335                if skip > 0 {
336                    self.nth(skip - 1);
337                }
338            } else {
339                let elem = self.next();
340                if elem.is_none() {
341                    return result;
342                }
343                consumed += 1;
344                if gen_index(rng, consumed) == 0 {
345                    result = elem;
346                }
347            }
348
349            let hint = self.size_hint();
350            lower = hint.0;
351            upper = hint.1;
352        }
353    }
354
355    /// Choose one element at random from the iterator.
356    ///
357    /// Returns `None` if and only if the iterator is empty.
358    ///
359    /// This method is very similar to [`choose`] except that the result
360    /// only depends on the length of the iterator and the values produced by
361    /// `rng`. Notably for any iterator of a given length this will make the
362    /// same requests to `rng` and if the same sequence of values are produced
363    /// the same index will be selected from `self`. This may be useful if you
364    /// need consistent results no matter what type of iterator you are working
365    /// with. If you do not need this stability prefer [`choose`].
366    ///
367    /// Note that this method still uses [`Iterator::size_hint`] to skip
368    /// constructing elements where possible, however the selection and `rng`
369    /// calls are the same in the face of this optimization. If you want to
370    /// force every element to be created regardless call `.inspect(|e| ())`.
371    ///
372    /// [`choose`]: IteratorRandom::choose
373    fn choose_stable<R>(mut self, rng: &mut R) -> Option<Self::Item>
374    where R: Rng + ?Sized {
375        let mut consumed = 0;
376        let mut result = None;
377
378        loop {
379            // Currently the only way to skip elements is `nth()`. So we need to
380            // store what index to access next here.
381            // This should be replaced by `advance_by()` once it is stable:
382            // https://github.com/rust-lang/rust/issues/77404
383            let mut next = 0;
384
385            let (lower, _) = self.size_hint();
386            if lower >= 2 {
387                let highest_selected = (0..lower)
388                    .filter(|ix| gen_index(rng, consumed+ix+1) == 0)
389                    .last();
390
391                consumed += lower;
392                next = lower;
393
394                if let Some(ix) = highest_selected {
395                    result = self.nth(ix);
396                    next -= ix + 1;
397                    debug_assert!(result.is_some(), "iterator shorter than size_hint().0");
398                }
399            }
400
401            let elem = self.nth(next);
402            if elem.is_none() {
403                return result
404            }
405
406            if gen_index(rng, consumed+1) == 0 {
407                result = elem;
408            }
409            consumed += 1;
410        }
411    }
412
413    /// Collects values at random from the iterator into a supplied buffer
414    /// until that buffer is filled.
415    ///
416    /// Although the elements are selected randomly, the order of elements in
417    /// the buffer is neither stable nor fully random. If random ordering is
418    /// desired, shuffle the result.
419    ///
420    /// Returns the number of elements added to the buffer. This equals the length
421    /// of the buffer unless the iterator contains insufficient elements, in which
422    /// case this equals the number of elements available.
423    ///
424    /// Complexity is `O(n)` where `n` is the length of the iterator.
425    /// For slices, prefer [`SliceRandom::choose_multiple`].
426    fn choose_multiple_fill<R>(mut self, rng: &mut R, buf: &mut [Self::Item]) -> usize
427    where R: Rng + ?Sized {
428        let amount = buf.len();
429        let mut len = 0;
430        while len < amount {
431            if let Some(elem) = self.next() {
432                buf[len] = elem;
433                len += 1;
434            } else {
435                // Iterator exhausted; stop early
436                return len;
437            }
438        }
439
440        // Continue, since the iterator was not exhausted
441        for (i, elem) in self.enumerate() {
442            let k = gen_index(rng, i + 1 + amount);
443            if let Some(slot) = buf.get_mut(k) {
444                *slot = elem;
445            }
446        }
447        len
448    }
449
450    /// Collects `amount` values at random from the iterator into a vector.
451    ///
452    /// This is equivalent to `choose_multiple_fill` except for the result type.
453    ///
454    /// Although the elements are selected randomly, the order of elements in
455    /// the buffer is neither stable nor fully random. If random ordering is
456    /// desired, shuffle the result.
457    ///
458    /// The length of the returned vector equals `amount` unless the iterator
459    /// contains insufficient elements, in which case it equals the number of
460    /// elements available.
461    ///
462    /// Complexity is `O(n)` where `n` is the length of the iterator.
463    /// For slices, prefer [`SliceRandom::choose_multiple`].
464    #[cfg(feature = "alloc")]
465    #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
466    fn choose_multiple<R>(mut self, rng: &mut R, amount: usize) -> Vec<Self::Item>
467    where R: Rng + ?Sized {
468        let mut reservoir = Vec::with_capacity(amount);
469        reservoir.extend(self.by_ref().take(amount));
470
471        // Continue unless the iterator was exhausted
472        //
473        // note: this prevents iterators that "restart" from causing problems.
474        // If the iterator stops once, then so do we.
475        if reservoir.len() == amount {
476            for (i, elem) in self.enumerate() {
477                let k = gen_index(rng, i + 1 + amount);
478                if let Some(slot) = reservoir.get_mut(k) {
479                    *slot = elem;
480                }
481            }
482        } else {
483            // Don't hang onto extra memory. There is a corner case where
484            // `amount` was much less than `self.len()`.
485            reservoir.shrink_to_fit();
486        }
487        reservoir
488    }
489}
490
491
492impl<T> SliceRandom for [T] {
493    type Item = T;
494
495    fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item>
496    where R: Rng + ?Sized {
497        if self.is_empty() {
498            None
499        } else {
500            Some(&self[gen_index(rng, self.len())])
501        }
502    }
503
504    fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item>
505    where R: Rng + ?Sized {
506        if self.is_empty() {
507            None
508        } else {
509            let len = self.len();
510            Some(&mut self[gen_index(rng, len)])
511        }
512    }
513
514    #[cfg(feature = "alloc")]
515    fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Item>
516    where R: Rng + ?Sized {
517        let amount = ::core::cmp::min(amount, self.len());
518        SliceChooseIter {
519            slice: self,
520            _phantom: Default::default(),
521            indices: index::sample(rng, self.len(), amount).into_iter(),
522        }
523    }
524
525    #[cfg(feature = "alloc")]
526    fn choose_weighted<R, F, B, X>(
527        &self, rng: &mut R, weight: F,
528    ) -> Result<&Self::Item, WeightedError>
529    where
530        R: Rng + ?Sized,
531        F: Fn(&Self::Item) -> B,
532        B: SampleBorrow<X>,
533        X: SampleUniform
534            + for<'a> ::core::ops::AddAssign<&'a X>
535            + ::core::cmp::PartialOrd<X>
536            + Clone
537            + Default,
538    {
539        use crate::distributions::{Distribution, WeightedIndex};
540        let distr = WeightedIndex::new(self.iter().map(weight))?;
541        Ok(&self[distr.sample(rng)])
542    }
543
544    #[cfg(feature = "alloc")]
545    fn choose_weighted_mut<R, F, B, X>(
546        &mut self, rng: &mut R, weight: F,
547    ) -> Result<&mut Self::Item, WeightedError>
548    where
549        R: Rng + ?Sized,
550        F: Fn(&Self::Item) -> B,
551        B: SampleBorrow<X>,
552        X: SampleUniform
553            + for<'a> ::core::ops::AddAssign<&'a X>
554            + ::core::cmp::PartialOrd<X>
555            + Clone
556            + Default,
557    {
558        use crate::distributions::{Distribution, WeightedIndex};
559        let distr = WeightedIndex::new(self.iter().map(weight))?;
560        Ok(&mut self[distr.sample(rng)])
561    }
562
563    #[cfg(feature = "std")]
564    fn choose_multiple_weighted<R, F, X>(
565        &self, rng: &mut R, amount: usize, weight: F,
566    ) -> Result<SliceChooseIter<Self, Self::Item>, WeightedError>
567    where
568        R: Rng + ?Sized,
569        F: Fn(&Self::Item) -> X,
570        X: Into<f64>,
571    {
572        let amount = ::core::cmp::min(amount, self.len());
573        Ok(SliceChooseIter {
574            slice: self,
575            _phantom: Default::default(),
576            indices: index::sample_weighted(
577                rng,
578                self.len(),
579                |idx| weight(&self[idx]).into(),
580                amount,
581            )?
582            .into_iter(),
583        })
584    }
585
586    fn shuffle<R>(&mut self, rng: &mut R)
587    where R: Rng + ?Sized {
588        for i in (1..self.len()).rev() {
589            // invariant: elements with index > i have been locked in place.
590            self.swap(i, gen_index(rng, i + 1));
591        }
592    }
593
594    fn partial_shuffle<R>(
595        &mut self, rng: &mut R, amount: usize,
596    ) -> (&mut [Self::Item], &mut [Self::Item])
597    where R: Rng + ?Sized {
598        // This applies Durstenfeld's algorithm for the
599        // [Fisher–Yates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm)
600        // for an unbiased permutation, but exits early after choosing `amount`
601        // elements.
602
603        let len = self.len();
604        let end = if amount >= len { 0 } else { len - amount };
605
606        for i in (end..len).rev() {
607            // invariant: elements with index > i have been locked in place.
608            self.swap(i, gen_index(rng, i + 1));
609        }
610        let r = self.split_at_mut(end);
611        (r.1, r.0)
612    }
613}
614
615impl<I> IteratorRandom for I where I: Iterator + Sized {}
616
617
618/// An iterator over multiple slice elements.
619///
620/// This struct is created by
621/// [`SliceRandom::choose_multiple`](trait.SliceRandom.html#tymethod.choose_multiple).
622#[cfg(feature = "alloc")]
623#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
624#[derive(Debug)]
625pub struct SliceChooseIter<'a, S: ?Sized + 'a, T: 'a> {
626    slice: &'a S,
627    _phantom: ::core::marker::PhantomData<T>,
628    indices: index::IndexVecIntoIter,
629}
630
631#[cfg(feature = "alloc")]
632impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> Iterator for SliceChooseIter<'a, S, T> {
633    type Item = &'a T;
634
635    fn next(&mut self) -> Option<Self::Item> {
636        // TODO: investigate using SliceIndex::get_unchecked when stable
637        self.indices.next().map(|i| &self.slice[i as usize])
638    }
639
640    fn size_hint(&self) -> (usize, Option<usize>) {
641        (self.indices.len(), Some(self.indices.len()))
642    }
643}
644
645#[cfg(feature = "alloc")]
646impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> ExactSizeIterator
647    for SliceChooseIter<'a, S, T>
648{
649    fn len(&self) -> usize {
650        self.indices.len()
651    }
652}
653
654
655// Sample a number uniformly between 0 and `ubound`. Uses 32-bit sampling where
656// possible, primarily in order to produce the same output on 32-bit and 64-bit
657// platforms.
658#[inline]
659fn gen_index<R: Rng + ?Sized>(rng: &mut R, ubound: usize) -> usize {
660    if ubound <= (core::u32::MAX as usize) {
661        rng.gen_range(0..ubound as u32) as usize
662    } else {
663        rng.gen_range(0..ubound)
664    }
665}
666
667
668#[cfg(test)]
669mod test {
670    use super::*;
671    #[cfg(feature = "alloc")] use crate::Rng;
672    #[cfg(all(feature = "alloc", not(feature = "std")))] use alloc::vec::Vec;
673
674    #[test]
675    fn test_slice_choose() {
676        let mut r = crate::test::rng(107);
677        let chars = [
678            'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
679        ];
680        let mut chosen = [0i32; 14];
681        // The below all use a binomial distribution with n=1000, p=1/14.
682        // binocdf(40, 1000, 1/14) ~= 2e-5; 1-binocdf(106, ..) ~= 2e-5
683        for _ in 0..1000 {
684            let picked = *chars.choose(&mut r).unwrap();
685            chosen[(picked as usize) - ('a' as usize)] += 1;
686        }
687        for count in chosen.iter() {
688            assert!(40 < *count && *count < 106);
689        }
690
691        chosen.iter_mut().for_each(|x| *x = 0);
692        for _ in 0..1000 {
693            *chosen.choose_mut(&mut r).unwrap() += 1;
694        }
695        for count in chosen.iter() {
696            assert!(40 < *count && *count < 106);
697        }
698
699        let mut v: [isize; 0] = [];
700        assert_eq!(v.choose(&mut r), None);
701        assert_eq!(v.choose_mut(&mut r), None);
702    }
703
704    #[test]
705    fn value_stability_slice() {
706        let mut r = crate::test::rng(413);
707        let chars = [
708            'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
709        ];
710        let mut nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
711
712        assert_eq!(chars.choose(&mut r), Some(&'l'));
713        assert_eq!(nums.choose_mut(&mut r), Some(&mut 10));
714
715        #[cfg(feature = "alloc")]
716        assert_eq!(
717            &chars
718                .choose_multiple(&mut r, 8)
719                .cloned()
720                .collect::<Vec<char>>(),
721            &['d', 'm', 'b', 'n', 'c', 'k', 'h', 'e']
722        );
723
724        #[cfg(feature = "alloc")]
725        assert_eq!(chars.choose_weighted(&mut r, |_| 1), Ok(&'f'));
726        #[cfg(feature = "alloc")]
727        assert_eq!(nums.choose_weighted_mut(&mut r, |_| 1), Ok(&mut 5));
728
729        let mut r = crate::test::rng(414);
730        nums.shuffle(&mut r);
731        assert_eq!(nums, [9, 5, 3, 10, 7, 12, 8, 11, 6, 4, 0, 2, 1]);
732        nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
733        let res = nums.partial_shuffle(&mut r, 6);
734        assert_eq!(res.0, &mut [7, 4, 8, 6, 9, 3]);
735        assert_eq!(res.1, &mut [0, 1, 2, 12, 11, 5, 10]);
736    }
737
738    #[derive(Clone)]
739    struct UnhintedIterator<I: Iterator + Clone> {
740        iter: I,
741    }
742    impl<I: Iterator + Clone> Iterator for UnhintedIterator<I> {
743        type Item = I::Item;
744
745        fn next(&mut self) -> Option<Self::Item> {
746            self.iter.next()
747        }
748    }
749
750    #[derive(Clone)]
751    struct ChunkHintedIterator<I: ExactSizeIterator + Iterator + Clone> {
752        iter: I,
753        chunk_remaining: usize,
754        chunk_size: usize,
755        hint_total_size: bool,
756    }
757    impl<I: ExactSizeIterator + Iterator + Clone> Iterator for ChunkHintedIterator<I> {
758        type Item = I::Item;
759
760        fn next(&mut self) -> Option<Self::Item> {
761            if self.chunk_remaining == 0 {
762                self.chunk_remaining = ::core::cmp::min(self.chunk_size, self.iter.len());
763            }
764            self.chunk_remaining = self.chunk_remaining.saturating_sub(1);
765
766            self.iter.next()
767        }
768
769        fn size_hint(&self) -> (usize, Option<usize>) {
770            (
771                self.chunk_remaining,
772                if self.hint_total_size {
773                    Some(self.iter.len())
774                } else {
775                    None
776                },
777            )
778        }
779    }
780
781    #[derive(Clone)]
782    struct WindowHintedIterator<I: ExactSizeIterator + Iterator + Clone> {
783        iter: I,
784        window_size: usize,
785        hint_total_size: bool,
786    }
787    impl<I: ExactSizeIterator + Iterator + Clone> Iterator for WindowHintedIterator<I> {
788        type Item = I::Item;
789
790        fn next(&mut self) -> Option<Self::Item> {
791            self.iter.next()
792        }
793
794        fn size_hint(&self) -> (usize, Option<usize>) {
795            (
796                ::core::cmp::min(self.iter.len(), self.window_size),
797                if self.hint_total_size {
798                    Some(self.iter.len())
799                } else {
800                    None
801                },
802            )
803        }
804    }
805
806    #[test]
807    #[cfg_attr(miri, ignore)] // Miri is too slow
808    fn test_iterator_choose() {
809        let r = &mut crate::test::rng(109);
810        fn test_iter<R: Rng + ?Sized, Iter: Iterator<Item = usize> + Clone>(r: &mut R, iter: Iter) {
811            let mut chosen = [0i32; 9];
812            for _ in 0..1000 {
813                let picked = iter.clone().choose(r).unwrap();
814                chosen[picked] += 1;
815            }
816            for count in chosen.iter() {
817                // Samples should follow Binomial(1000, 1/9)
818                // Octave: binopdf(x, 1000, 1/9) gives the prob of *count == x
819                // Note: have seen 153, which is unlikely but not impossible.
820                assert!(
821                    72 < *count && *count < 154,
822                    "count not close to 1000/9: {}",
823                    count
824                );
825            }
826        }
827
828        test_iter(r, 0..9);
829        test_iter(r, [0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned());
830        #[cfg(feature = "alloc")]
831        test_iter(r, (0..9).collect::<Vec<_>>().into_iter());
832        test_iter(r, UnhintedIterator { iter: 0..9 });
833        test_iter(r, ChunkHintedIterator {
834            iter: 0..9,
835            chunk_size: 4,
836            chunk_remaining: 4,
837            hint_total_size: false,
838        });
839        test_iter(r, ChunkHintedIterator {
840            iter: 0..9,
841            chunk_size: 4,
842            chunk_remaining: 4,
843            hint_total_size: true,
844        });
845        test_iter(r, WindowHintedIterator {
846            iter: 0..9,
847            window_size: 2,
848            hint_total_size: false,
849        });
850        test_iter(r, WindowHintedIterator {
851            iter: 0..9,
852            window_size: 2,
853            hint_total_size: true,
854        });
855
856        assert_eq!((0..0).choose(r), None);
857        assert_eq!(UnhintedIterator { iter: 0..0 }.choose(r), None);
858    }
859
860    #[test]
861    #[cfg_attr(miri, ignore)] // Miri is too slow
862    fn test_iterator_choose_stable() {
863        let r = &mut crate::test::rng(109);
864        fn test_iter<R: Rng + ?Sized, Iter: Iterator<Item = usize> + Clone>(r: &mut R, iter: Iter) {
865            let mut chosen = [0i32; 9];
866            for _ in 0..1000 {
867                let picked = iter.clone().choose_stable(r).unwrap();
868                chosen[picked] += 1;
869            }
870            for count in chosen.iter() {
871                // Samples should follow Binomial(1000, 1/9)
872                // Octave: binopdf(x, 1000, 1/9) gives the prob of *count == x
873                // Note: have seen 153, which is unlikely but not impossible.
874                assert!(
875                    72 < *count && *count < 154,
876                    "count not close to 1000/9: {}",
877                    count
878                );
879            }
880        }
881
882        test_iter(r, 0..9);
883        test_iter(r, [0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned());
884        #[cfg(feature = "alloc")]
885        test_iter(r, (0..9).collect::<Vec<_>>().into_iter());
886        test_iter(r, UnhintedIterator { iter: 0..9 });
887        test_iter(r, ChunkHintedIterator {
888            iter: 0..9,
889            chunk_size: 4,
890            chunk_remaining: 4,
891            hint_total_size: false,
892        });
893        test_iter(r, ChunkHintedIterator {
894            iter: 0..9,
895            chunk_size: 4,
896            chunk_remaining: 4,
897            hint_total_size: true,
898        });
899        test_iter(r, WindowHintedIterator {
900            iter: 0..9,
901            window_size: 2,
902            hint_total_size: false,
903        });
904        test_iter(r, WindowHintedIterator {
905            iter: 0..9,
906            window_size: 2,
907            hint_total_size: true,
908        });
909
910        assert_eq!((0..0).choose(r), None);
911        assert_eq!(UnhintedIterator { iter: 0..0 }.choose(r), None);
912    }
913
914    #[test]
915    #[cfg_attr(miri, ignore)] // Miri is too slow
916    fn test_iterator_choose_stable_stability() {
917        fn test_iter(iter: impl Iterator<Item = usize> + Clone) -> [i32; 9] {
918            let r = &mut crate::test::rng(109);
919            let mut chosen = [0i32; 9];
920            for _ in 0..1000 {
921                let picked = iter.clone().choose_stable(r).unwrap();
922                chosen[picked] += 1;
923            }
924            chosen
925        }
926
927        let reference = test_iter(0..9);
928        assert_eq!(test_iter([0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned()), reference);
929
930        #[cfg(feature = "alloc")]
931        assert_eq!(test_iter((0..9).collect::<Vec<_>>().into_iter()), reference);
932        assert_eq!(test_iter(UnhintedIterator { iter: 0..9 }), reference);
933        assert_eq!(test_iter(ChunkHintedIterator {
934            iter: 0..9,
935            chunk_size: 4,
936            chunk_remaining: 4,
937            hint_total_size: false,
938        }), reference);
939        assert_eq!(test_iter(ChunkHintedIterator {
940            iter: 0..9,
941            chunk_size: 4,
942            chunk_remaining: 4,
943            hint_total_size: true,
944        }), reference);
945        assert_eq!(test_iter(WindowHintedIterator {
946            iter: 0..9,
947            window_size: 2,
948            hint_total_size: false,
949        }), reference);
950        assert_eq!(test_iter(WindowHintedIterator {
951            iter: 0..9,
952            window_size: 2,
953            hint_total_size: true,
954        }), reference);
955    }
956
957    #[test]
958    #[cfg_attr(miri, ignore)] // Miri is too slow
959    fn test_shuffle() {
960        let mut r = crate::test::rng(108);
961        let empty: &mut [isize] = &mut [];
962        empty.shuffle(&mut r);
963        let mut one = [1];
964        one.shuffle(&mut r);
965        let b: &[_] = &[1];
966        assert_eq!(one, b);
967
968        let mut two = [1, 2];
969        two.shuffle(&mut r);
970        assert!(two == [1, 2] || two == [2, 1]);
971
972        fn move_last(slice: &mut [usize], pos: usize) {
973            // use slice[pos..].rotate_left(1); once we can use that
974            let last_val = slice[pos];
975            for i in pos..slice.len() - 1 {
976                slice[i] = slice[i + 1];
977            }
978            *slice.last_mut().unwrap() = last_val;
979        }
980        let mut counts = [0i32; 24];
981        for _ in 0..10000 {
982            let mut arr: [usize; 4] = [0, 1, 2, 3];
983            arr.shuffle(&mut r);
984            let mut permutation = 0usize;
985            let mut pos_value = counts.len();
986            for i in 0..4 {
987                pos_value /= 4 - i;
988                let pos = arr.iter().position(|&x| x == i).unwrap();
989                assert!(pos < (4 - i));
990                permutation += pos * pos_value;
991                move_last(&mut arr, pos);
992                assert_eq!(arr[3], i);
993            }
994            for (i, &a) in arr.iter().enumerate() {
995                assert_eq!(a, i);
996            }
997            counts[permutation] += 1;
998        }
999        for count in counts.iter() {
1000            // Binomial(10000, 1/24) with average 416.667
1001            // Octave: binocdf(n, 10000, 1/24)
1002            // 99.9% chance samples lie within this range:
1003            assert!(352 <= *count && *count <= 483, "count: {}", count);
1004        }
1005    }
1006
1007    #[test]
1008    fn test_partial_shuffle() {
1009        let mut r = crate::test::rng(118);
1010
1011        let mut empty: [u32; 0] = [];
1012        let res = empty.partial_shuffle(&mut r, 10);
1013        assert_eq!((res.0.len(), res.1.len()), (0, 0));
1014
1015        let mut v = [1, 2, 3, 4, 5];
1016        let res = v.partial_shuffle(&mut r, 2);
1017        assert_eq!((res.0.len(), res.1.len()), (2, 3));
1018        assert!(res.0[0] != res.0[1]);
1019        // First elements are only modified if selected, so at least one isn't modified:
1020        assert!(res.1[0] == 1 || res.1[1] == 2 || res.1[2] == 3);
1021    }
1022
1023    #[test]
1024    #[cfg(feature = "alloc")]
1025    fn test_sample_iter() {
1026        let min_val = 1;
1027        let max_val = 100;
1028
1029        let mut r = crate::test::rng(401);
1030        let vals = (min_val..max_val).collect::<Vec<i32>>();
1031        let small_sample = vals.iter().choose_multiple(&mut r, 5);
1032        let large_sample = vals.iter().choose_multiple(&mut r, vals.len() + 5);
1033
1034        assert_eq!(small_sample.len(), 5);
1035        assert_eq!(large_sample.len(), vals.len());
1036        // no randomization happens when amount >= len
1037        assert_eq!(large_sample, vals.iter().collect::<Vec<_>>());
1038
1039        assert!(small_sample
1040            .iter()
1041            .all(|e| { **e >= min_val && **e <= max_val }));
1042    }
1043
1044    #[test]
1045    #[cfg(feature = "alloc")]
1046    #[cfg_attr(miri, ignore)] // Miri is too slow
1047    fn test_weighted() {
1048        let mut r = crate::test::rng(406);
1049        const N_REPS: u32 = 3000;
1050        let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7];
1051        let total_weight = weights.iter().sum::<u32>() as f32;
1052
1053        let verify = |result: [i32; 14]| {
1054            for (i, count) in result.iter().enumerate() {
1055                let exp = (weights[i] * N_REPS) as f32 / total_weight;
1056                let mut err = (*count as f32 - exp).abs();
1057                if err != 0.0 {
1058                    err /= exp;
1059                }
1060                assert!(err <= 0.25);
1061            }
1062        };
1063
1064        // choose_weighted
1065        fn get_weight<T>(item: &(u32, T)) -> u32 {
1066            item.0
1067        }
1068        let mut chosen = [0i32; 14];
1069        let mut items = [(0u32, 0usize); 14]; // (weight, index)
1070        for (i, item) in items.iter_mut().enumerate() {
1071            *item = (weights[i], i);
1072        }
1073        for _ in 0..N_REPS {
1074            let item = items.choose_weighted(&mut r, get_weight).unwrap();
1075            chosen[item.1] += 1;
1076        }
1077        verify(chosen);
1078
1079        // choose_weighted_mut
1080        let mut items = [(0u32, 0i32); 14]; // (weight, count)
1081        for (i, item) in items.iter_mut().enumerate() {
1082            *item = (weights[i], 0);
1083        }
1084        for _ in 0..N_REPS {
1085            items.choose_weighted_mut(&mut r, get_weight).unwrap().1 += 1;
1086        }
1087        for (ch, item) in chosen.iter_mut().zip(items.iter()) {
1088            *ch = item.1;
1089        }
1090        verify(chosen);
1091
1092        // Check error cases
1093        let empty_slice = &mut [10][0..0];
1094        assert_eq!(
1095            empty_slice.choose_weighted(&mut r, |_| 1),
1096            Err(WeightedError::NoItem)
1097        );
1098        assert_eq!(
1099            empty_slice.choose_weighted_mut(&mut r, |_| 1),
1100            Err(WeightedError::NoItem)
1101        );
1102        assert_eq!(
1103            ['x'].choose_weighted_mut(&mut r, |_| 0),
1104            Err(WeightedError::AllWeightsZero)
1105        );
1106        assert_eq!(
1107            [0, -1].choose_weighted_mut(&mut r, |x| *x),
1108            Err(WeightedError::InvalidWeight)
1109        );
1110        assert_eq!(
1111            [-1, 0].choose_weighted_mut(&mut r, |x| *x),
1112            Err(WeightedError::InvalidWeight)
1113        );
1114    }
1115
1116    #[test]
1117    fn value_stability_choose() {
1118        fn choose<I: Iterator<Item = u32>>(iter: I) -> Option<u32> {
1119            let mut rng = crate::test::rng(411);
1120            iter.choose(&mut rng)
1121        }
1122
1123        assert_eq!(choose([].iter().cloned()), None);
1124        assert_eq!(choose(0..100), Some(33));
1125        assert_eq!(choose(UnhintedIterator { iter: 0..100 }), Some(40));
1126        assert_eq!(
1127            choose(ChunkHintedIterator {
1128                iter: 0..100,
1129                chunk_size: 32,
1130                chunk_remaining: 32,
1131                hint_total_size: false,
1132            }),
1133            Some(39)
1134        );
1135        assert_eq!(
1136            choose(ChunkHintedIterator {
1137                iter: 0..100,
1138                chunk_size: 32,
1139                chunk_remaining: 32,
1140                hint_total_size: true,
1141            }),
1142            Some(39)
1143        );
1144        assert_eq!(
1145            choose(WindowHintedIterator {
1146                iter: 0..100,
1147                window_size: 32,
1148                hint_total_size: false,
1149            }),
1150            Some(90)
1151        );
1152        assert_eq!(
1153            choose(WindowHintedIterator {
1154                iter: 0..100,
1155                window_size: 32,
1156                hint_total_size: true,
1157            }),
1158            Some(90)
1159        );
1160    }
1161
1162    #[test]
1163    fn value_stability_choose_stable() {
1164        fn choose<I: Iterator<Item = u32>>(iter: I) -> Option<u32> {
1165            let mut rng = crate::test::rng(411);
1166            iter.choose_stable(&mut rng)
1167        }
1168
1169        assert_eq!(choose([].iter().cloned()), None);
1170        assert_eq!(choose(0..100), Some(40));
1171        assert_eq!(choose(UnhintedIterator { iter: 0..100 }), Some(40));
1172        assert_eq!(
1173            choose(ChunkHintedIterator {
1174                iter: 0..100,
1175                chunk_size: 32,
1176                chunk_remaining: 32,
1177                hint_total_size: false,
1178            }),
1179            Some(40)
1180        );
1181        assert_eq!(
1182            choose(ChunkHintedIterator {
1183                iter: 0..100,
1184                chunk_size: 32,
1185                chunk_remaining: 32,
1186                hint_total_size: true,
1187            }),
1188            Some(40)
1189        );
1190        assert_eq!(
1191            choose(WindowHintedIterator {
1192                iter: 0..100,
1193                window_size: 32,
1194                hint_total_size: false,
1195            }),
1196            Some(40)
1197        );
1198        assert_eq!(
1199            choose(WindowHintedIterator {
1200                iter: 0..100,
1201                window_size: 32,
1202                hint_total_size: true,
1203            }),
1204            Some(40)
1205        );
1206    }
1207
1208    #[test]
1209    fn value_stability_choose_multiple() {
1210        fn do_test<I: Iterator<Item = u32>>(iter: I, v: &[u32]) {
1211            let mut rng = crate::test::rng(412);
1212            let mut buf = [0u32; 8];
1213            assert_eq!(iter.choose_multiple_fill(&mut rng, &mut buf), v.len());
1214            assert_eq!(&buf[0..v.len()], v);
1215        }
1216
1217        do_test(0..4, &[0, 1, 2, 3]);
1218        do_test(0..8, &[0, 1, 2, 3, 4, 5, 6, 7]);
1219        do_test(0..100, &[58, 78, 80, 92, 43, 8, 96, 7]);
1220
1221        #[cfg(feature = "alloc")]
1222        {
1223            fn do_test<I: Iterator<Item = u32>>(iter: I, v: &[u32]) {
1224                let mut rng = crate::test::rng(412);
1225                assert_eq!(iter.choose_multiple(&mut rng, v.len()), v);
1226            }
1227
1228            do_test(0..4, &[0, 1, 2, 3]);
1229            do_test(0..8, &[0, 1, 2, 3, 4, 5, 6, 7]);
1230            do_test(0..100, &[58, 78, 80, 92, 43, 8, 96, 7]);
1231        }
1232    }
1233
1234    #[test]
1235    #[cfg(feature = "std")]
1236    fn test_multiple_weighted_edge_cases() {
1237        use super::*;
1238
1239        let mut rng = crate::test::rng(413);
1240
1241        // Case 1: One of the weights is 0
1242        let choices = [('a', 2), ('b', 1), ('c', 0)];
1243        for _ in 0..100 {
1244            let result = choices
1245                .choose_multiple_weighted(&mut rng, 2, |item| item.1)
1246                .unwrap()
1247                .collect::<Vec<_>>();
1248
1249            assert_eq!(result.len(), 2);
1250            assert!(!result.iter().any(|val| val.0 == 'c'));
1251        }
1252
1253        // Case 2: All of the weights are 0
1254        let choices = [('a', 0), ('b', 0), ('c', 0)];
1255
1256        assert_eq!(choices
1257            .choose_multiple_weighted(&mut rng, 2, |item| item.1)
1258            .unwrap().count(), 2);
1259
1260        // Case 3: Negative weights
1261        let choices = [('a', -1), ('b', 1), ('c', 1)];
1262        assert_eq!(
1263            choices
1264                .choose_multiple_weighted(&mut rng, 2, |item| item.1)
1265                .unwrap_err(),
1266            WeightedError::InvalidWeight
1267        );
1268
1269        // Case 4: Empty list
1270        let choices = [];
1271        assert_eq!(choices
1272            .choose_multiple_weighted(&mut rng, 0, |_: &()| 0)
1273            .unwrap().count(), 0);
1274
1275        // Case 5: NaN weights
1276        let choices = [('a', core::f64::NAN), ('b', 1.0), ('c', 1.0)];
1277        assert_eq!(
1278            choices
1279                .choose_multiple_weighted(&mut rng, 2, |item| item.1)
1280                .unwrap_err(),
1281            WeightedError::InvalidWeight
1282        );
1283
1284        // Case 6: +infinity weights
1285        let choices = [('a', core::f64::INFINITY), ('b', 1.0), ('c', 1.0)];
1286        for _ in 0..100 {
1287            let result = choices
1288                .choose_multiple_weighted(&mut rng, 2, |item| item.1)
1289                .unwrap()
1290                .collect::<Vec<_>>();
1291            assert_eq!(result.len(), 2);
1292            assert!(result.iter().any(|val| val.0 == 'a'));
1293        }
1294
1295        // Case 7: -infinity weights
1296        let choices = [('a', core::f64::NEG_INFINITY), ('b', 1.0), ('c', 1.0)];
1297        assert_eq!(
1298            choices
1299                .choose_multiple_weighted(&mut rng, 2, |item| item.1)
1300                .unwrap_err(),
1301            WeightedError::InvalidWeight
1302        );
1303
1304        // Case 8: -0 weights
1305        let choices = [('a', -0.0), ('b', 1.0), ('c', 1.0)];
1306        assert!(choices
1307            .choose_multiple_weighted(&mut rng, 2, |item| item.1)
1308            .is_ok());
1309    }
1310
1311    #[test]
1312    #[cfg(feature = "std")]
1313    fn test_multiple_weighted_distributions() {
1314        use super::*;
1315
1316        // The theoretical probabilities of the different outcomes are:
1317        // AB: 0.5  * 0.5  = 0.250
1318        // AC: 0.5  * 0.5  = 0.250
1319        // BA: 0.25 * 0.67 = 0.167
1320        // BC: 0.25 * 0.33 = 0.082
1321        // CA: 0.25 * 0.67 = 0.167
1322        // CB: 0.25 * 0.33 = 0.082
1323        let choices = [('a', 2), ('b', 1), ('c', 1)];
1324        let mut rng = crate::test::rng(414);
1325
1326        let mut results = [0i32; 3];
1327        let expected_results = [4167, 4167, 1666];
1328        for _ in 0..10000 {
1329            let result = choices
1330                .choose_multiple_weighted(&mut rng, 2, |item| item.1)
1331                .unwrap()
1332                .collect::<Vec<_>>();
1333
1334            assert_eq!(result.len(), 2);
1335
1336            match (result[0].0, result[1].0) {
1337                ('a', 'b') | ('b', 'a') => {
1338                    results[0] += 1;
1339                }
1340                ('a', 'c') | ('c', 'a') => {
1341                    results[1] += 1;
1342                }
1343                ('b', 'c') | ('c', 'b') => {
1344                    results[2] += 1;
1345                }
1346                (_, _) => panic!("unexpected result"),
1347            }
1348        }
1349
1350        let mut diffs = results
1351            .iter()
1352            .zip(&expected_results)
1353            .map(|(a, b)| (a - b).abs());
1354        assert!(!diffs.any(|deviation| deviation > 100));
1355    }
1356}